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Preface

Differential equations form a very large subject of mathematics. For many ordinary differential
equations and some partial differential equations there exist methods to find solutions. The
discrete counterparts of differential equations are difference equations. Difference equations
are recurrence relations. Solutions can be found for simple linear difference equations. For
non-linear difference equations solutions can not be found in general. However one can inves-
tigate the stability properties of fixed points and periodic limit cycles in order to gain insight
in the dynamics. The latter can give rise to bifurcations. For a stable periodic limit cycle the
orbit does not diverge to infinity. There also exists orbits which do not diverge to infinity and
which are not periodic. Such orbits are chaotic and often attracted to a strange attractor.
Whether or not an orbit diverges to infinity depends on its starting values and on the values
of the constants in the difference equations. Investigation of dependency of orbits on starting
values leads to basins of attraction and the investigation of dependency of orbits on constants
of the difference equations leads to Lyapunov images. In these images fractals can occur.
Within this brief overview we already meet terms as difference equations, recurrence relations,
orbits, chaotic dynamics, periodic limit cycles, fixed points, bifurcations, basins of attraction,
Lyapunov images, fractals, etc. Moreover, a fixed point can be a node, a saddle, a spiral or
a center dependent on its stability behaviour. So, if, for example, somebody with a technical
background wants to learn something about dynamics of non-linear difference equations or,
as another example, a high school student wants to write a practical assignment on fractals,

they are forced to study the whole area including all kinds of terms which may be new to them.

The present book is intended to be a simple and informal introduction to dynamical sys-
tems and properties as fixed points, bifurcations, Feigenbaum constants, chaotic orbits, Julia
sets, the Mandelbrot set and Misiurewicz points. With simple is meant that a high school level
of mathematics (together with the willingness to study) suffices to understand the contents.
With informal is meant that the book is not organised as an enumeration of theorems and
proofs. Instead it rather is a random walk through famous dynamical systems. In general,

proofs are omitted, formal language is avoided and citations are restricted to a few occasions.
The present book has just been written for educational purposes. It is intended for high

school students with talent for mathematics and for readers with (a little more than) a high

school level mathematical background.

may 2020, Hans Montanus, Ron Westdijk
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Chapter 1

Stability

1.1 Stability of one dimensional systems

The modelling of a process (biological, chemical, physical, economical or whatever) often
leads to a differential equation or to a difference equation. Although our goal is to consider
difference equations, we will occasionally also consider differential equations for comparison.
For instance, the absolute growth of waterlilies in a pond will initially be proportional with the
number of waterlilies. The growth will be damped when the pond becomes full of waterlilies.

This can be casted in a differential equation:

d
d—l; = aw — fw?, (1.1)

where w is the number of waterlilies, where time t is the evolution parameter and where o and
B are constants. Since w is a function of ¢t we should actually write w(t) instead of w. However,
we just write w and keep in mind it actually is w(t). In reality the number of waterlilies will
be counted in the summer and not in the winter. A biologist may argue that the evolution of

waterlilies has to be considered from year to year. This can be casted in a difference equation:

Wil = Wy — bw?I , (1.2)

where w,, is the number of waterlilies in year n and w41 is the number of waterlilies one year
later. Here a and b are the constants. We will use greek symbols for constants in differential

equations and roman symbols for constants in difference equations.

In the foregoing equations the right hand side is a function of solely w respectively w,,. That
is, W = f(w) where the dot represents the derivative d/d¢t and where f(w) = aw — Bfw?, and
wpt1 = f(wy) where f(w,) = aw, —bw?. Differential equations such as w = aw — fw? —2e~*
and difference equations such as wy,+1 = aw, — bw? + 3t can not be written as 1w = f(w) or

Wn41 = f(wn)
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For a general quantity x we consider hereafter only differential equations and difference equa-

tions of the type @ = f(x) respectively x,4+1 = f(zp).

We start with the stability analysis for a differential equation of the type ¢ = f(z). A
point of equilibrium is a point where the quantity x does not change in time: 4(¢) = 0. The
equilibrium points x, therefore follow from f(z,) = 0. For z close to x,, that is, for z = z,+0

with ¢ small, we have

i=fx) — b=flz.+0)~ fla.)+ 8{;(;) 5= b=f(z)s,  (13)
SN o . iy Of(x)
where f’(x,) is the derivative of f with respect to x evaluated at x,. Thus f'(z.) = D

T x
From the equation above for § it follows that an equilibrium point is stable if f’(x,) < 0 and

unstable if f'(z,) > 0.

We give an example by means of the following differential equation:
T =ar, (1.4)

where o # 0 is a constant. The equilibrium point is z, = 0. Since f’'(z) = « the equilibrium

point is stable if & < 0 and unstable if o > 0.

Writing the initial condition as x(0) = x¢ we obtain by means of integration the solution
x(t) = e, (1.5)

If @ > 0 then |z(t)| increases exponentially for increasing ¢t. If a@ < 0 then |z(t)| decreases

exponentially for increasing ¢. Alternatively, lim z(¢) = 0 if @« > 0 and lim z(¢) = 0 if
t——o0 t—o00

a < 0. Indeed for @ > 0 the point z(—o0) = 0 is an unstable equilibrium point (a source),

the larger a the faster the divergence from the source. For a < 0 the point xz(oc0) = 0 is a

stable equilibrium point (a sink), the larger —« the faster the convergence towards the sink.

The situation is schematically illustrated in figure [1.1

Suppose we wish to integrate equation (|1.4) numerically. According to the Euler method

we write = as x, and & as (xn,41 — ©p)/At. The result is a difference equation:
Tptl =Tp + - At-x, = (14 a)x,, (1.6)

where a = - At. Starting with xg we then successively obtain x; = (14-a)xo, z2 = (1+a)z; =
(1 + a)%zg, ..., z, = (1 + a)"z. Stability requires —oo < nli_)rgo(l + a)" < oo, which is, for
a # 0, satisfied if —1 < 1+a <1 or —2 < a < 0. That is, the stability region has shrunk
from (—o0,0) to (—2,0) with respect to the continuous differential equation, see figure



1.1. STABILITY OF ONE DIMENSIONAL SYSTEMS

sink i T source

Y
T T T I T T T
-3 -2 —1 0 1 2 3
o
Figure 1.1: Sink and source structure of & = azx .
source sink source
8 0t--------- ® O
T T T I T T T
-3 —2 —1 0 1 2 3
a

Figure 1.2: Sink and source structure of 41 = (1 + a)z), .
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As another example we consider the differential equation

i=(a—1)z—azx?, (1.7)
where a # 0 is a constant. The differential equation is non-linear because of the z2. The
equilibrium points are z, = 1 — 1/a and x. = 0. Since f'(z) = a — 1 — 2ax we have

f'(xz«) = 1—a. So, the equilibrium point z, = 1—1/« is stable if & > 1 and unstable if a < 1.

Since f'(z4) = a — 1 the equilibrium point x,, = 0 is stable if @ < 1 and unstable if a > 1.

Writing the initial condition as x(0) = x¢, the analytical solution reads

B (1 —-1/a)xg
Cxo+ (1 -1/ —ap)e(@=Dt

(1.8)

The solution is known as the logistic function. If o < 1 then tlim z(t) =1 —1/a and
——00

lim z(t) =0. If a =1 then z(t) = zo. If @ > 1 then lim z(f) =0 and lim z(t) =1—1/a.
t——o0 t—o0

t—o00
For various xg values the evolution of z(t) is shown in the next figure for « = —1 (left panel)

and o = 3 (right panel).

~—~ —~
+ -~
~— ~—

For a < 1 the curves z(t) depart from 1 — 1/a and arrive at 0, while for aw > 1 the curves
x(t) depart from 0 and arrive at 1 —1/a. The curves have an S-shape (Sigmoid curve) if zg is
between 0 and 1—1/c, the curves are horizontal lines if 29 = 0 or 9 = 1 —1/a and the curves
have a discontinuity otherwise. The sink and source structure is schematically illustrated in

the next figure.

Suppose we wish to integrate equation (|1.7) numerically. The Euler method then leads to

the following discrete difference equation:

$n+1:$n+(a—1)At~xn—a'At-x%. (1.9)
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For the choice At = 1 and writing « as a we have:

Tptl = ATy — aazi.

(1.10)

The latter difference equation is known as the logistic equation. The equilibrium points or
fixed points L follow from L = aL — aL?. Tt follows directly that L =0 or L =1 — 1/a. The

curves of the fixed points as a function of a are the same as in the previous figure.

The stability analysis for the fixed points of a difference equation is somewhat different than

for differential equation. For a first order difference equation x,1 = f(x,) a fixed point L is

a solution of the equation
L=f(L).
A fixed point L is stable if
—1< al <
oz lL

(1.11)

(1.12)

It can be seen from a first order Taylor expansion of f(xy) in the neighborhood of L:
(1.13)

0
fan) = S0+ 5
or of
Flan) = f(L) ~ 5=
Since f(xyn) = xp41 and f(L) = L we have
0
Tpy1 — L~ 3»”6{1

L(xn*L)

L(xn_ ) -

(1.14)

(1.15)
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The stability condition |x,+1 — L| <’l‘n — L’ is satisfied if

of

— 1. 1.1
Ox, L < (1.16)

The latter will be briefly written as |f/(L)| < 1. The following diagrams illustrate the stability

condition.
|
of of
—_— < —]_ /’ _]. < ~ < 0 //
ox L L OxlL — L
} i // , 7/
7 ; ‘
’ “y
L e (a)
24 ) fo) || 7
f’ ’ unstable {S:/ stable
L L
| |

unstable

A stable fixed point L for which L = f(L) can be regarded as a limit cycle with period 1.

0
A period 2 limit cycle occurs if both the conditions L = f(f(L)) and —1 < f(gm(ﬂt)) ; <1
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are satisfied. A period 3 limit cycle occurs if the conditions L = f(f(f(L))) and —1 <
f(f(f(x)))
Ox

< 1 are both satisfied, and so on.

For the logistic equation z,.1 = ar, — az? we have f'(L) = a — 2aL. For L = 0 this is
f(0)=aand for L=1—1/a thisis f'(1—1/a) =2 —a. So, L =0is stable if -1 <a <1
and L =1—-1/aif 1 < a < 3. What happens for L =0 at a = —1 and for L =1 —1/a at
a = 3 is that two fixed points come into existence, a bifurcation. For other values of a new
bifurcations can occur (multiple fixed points) or the dynamics can become chaotic (no stable

fixed points at all). Bifurcations and chaos will be considered in chapter 2.

1.2 Mathematical terms

We already met some terms: differential equation, difference equation, non-linear, first order.

It may be clarifying to make a list of terms with small explanations.

e For a differential equation the evolution is continuous. For example, the variable is a

function of time ¢: x(t).

e For a difference equation the evolution is evaluated only for fixed increments. The
number of increments is counted by an integer n: x,. A difference equation is also

called a discrete equation and a recursion equation.

e A differential equation and a difference equation is one dimensional if there is one

variable, x for instance.

e A differential equation and a difference equation is two dimensional if there are two

variables, x and y for instance.

e A differential equation and a difference equation is linear if it contains only linear terms

of the variables, such as x, y, etc.

e A differential equation and a difference equation is non-linear if it contains non-linear

2

terms of the variables, such as z2, 2y, 32, etc.

e A differential equation is first order if it contains only the first derivative, . It is n-th
order if there is a n-th derivative in the equation. For example, &+ ai+ 5 = 0 is second

order.

e A difference equation is first order if it contains only the maximum difference in sub-
scripts is only 1, as for 41 = az, + b. It is n-th order if the maximum difference in

subscripts is n. For example, x,,+1 = ax, + bx,_1 is second order.
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1.3 Stability analysis for two dimensional systems

In the previous section we considered stability analyses for one dimensional systems. An

example of a (non-linear, first order) two dimensional system of differential equations is

b = av — fv? — yow

(1.17)
w:pw—fﬁwz—i-uwv,
where the greek symbols are constants. It will be written as
v = f(v,w
(v, 0) (1.18)

w = g(v,w).

The equilibrium point is the point where both © = 0 and w = 0. Let (vs,ws) be a point of

equilibrium, then for v = v, + § and w = w, + € with § and € small the system becomes

5'% 8f(’U,’U)) 5_’_ 8f(v,w)
v

(v*7w*)
1.1
. Og(v,w) (1.19)
< ov

5 9 oI 5
-8 [ "
ov  Ow (v, wi)

The matrix with the derivatives is the Jacobian. The Jacobian evaluated at (v, w,) will be

denoted as J (v, wy). Thus
) )
() ~ J (g, wy) - ( ) (1.21)
€ €

The stability of an equilibrium point (v, w,) depends on the eigenvalues of J(vy,wy). The

(U*vw*)

In matrix notation this is

eigenvalues follow from

Jii— A J12

=0 — M- (JH + ng))\ + J11Jog — J12J91 = 0. (1.22)
Joar Ja2— A

The equation can be written shortly as
M -TA\+D=0, (1.23)

where T is the trace of the Jacobian (the trace is the sum of the elements of the main diagonal)

and where D is the determinant of the Jacobian. The solutions are

T+VT?—4D

Ae = .

(1.24)
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An equilibrium point is a
e stable node or sink if both eigenvalues are real and negative.
e unstable node or source if both eigenvalues are real and positive.
e saddle if both eigenvalues are real and have opposite sign.

e stable focus or spiral sink if both eigenvalues have an imaginary part and a negative

real part.

e unstable focus or spiral source if both eigenvalues have an imaginary part and a

positive real part.
e center if both eigenvalues are pure imaginary.
An example of a (first order, non-linear) two dimensional system of difference equations is

Uptl = QUp — bv% — CUR Wy

) (1.25)
W41 = rWy — kw;,, + mw,vy, ,
where the roman symbols without subscripts are constants. In general it is
Unt1 = f(vp,w
" (b, 01) (1.26)

Wnp+1 = g(vn, wn) .

The equilibrium point is the point where both v,+1 = v, and w41 = wy,. Let (L, K) be a

point of equilibrium:

L=f(LK
A ) (1.27)
K=y¢y(L,K).
A first order Taylor expansion with respect to (L, K) gives
_ of of
f(un,wn) = f(L, K) + 81) (LK)(Un L)+%(L,K)( n — K) (1.28)
P :
gomn) =LK + 52| )+ 52| (e - K)

owl @) "

Substituting f(vy, wy) = vny1, f(L, K) = L, g(vp, wy,) = wpy1 and g(L, K) = K we have

vn+1—L:a—f (vn—L)+8—f (w, — K)
ov |(L,K) ow |(L,K) (1.29)
_ 9 Og _ |
Wpt1 — K = B0 (L1 (v, — L) + 9wl L0 (wp, — K) .

In matrix notation this is

0, 0
)-8
_ o9 99
Wn+41 K v  Ow

Up — L
. ( ) (1.30)
(LK) wy, — K
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The Jacobian evaluated at (L, K) will be denoted as J(L, K). Thus

n _L n_L
(” 1 > ~ J(L,K)- (” ) (1.31)
wn+1—K wn—K

The stability of an equilibrium point (L, K) depends on the eigenvalues of J(L, K). For this
the modulus of a complex eigenvalue is important. The modulus is the square root of the

sum of the real part squared and the imaginary part squared, thus the modulus of = + iy is

\/aﬁy2 . An equilibrium point is a
e stable node if both eigenvalues are real and both moduli smaller than 1.
e unstable node if both eigenvalues are real and both moduli larger than 1.
e saddle if both eigenvalues are real and just one modulus is smaller than 1.

e stable focus or stable spiral point if both eigenvalues have a non-zero imaginary part

and a modulus smaller than 1.

e unstable focus or unstable spiral point if both eigenvalues have a non-zero imaginary

part and a modulus larger than 1.
e center if both eigenvalues have a non-zero imaginary part and a modulus equal to 1.

The stability analysis and classification of equilibrium points can be extended to three and

more dimensional systems, but that is beyond our scope.

1.4 One dimensional, first order, linear difference equations

A recursion formula of the type u,4+1 = au, + b, with a # 0 and b constants, is a one dimen-

sional, first order, linear difference equation. The equation (1.6) is an example.

The difference equation w1 = au,+b has a fixed point L = 1 as follows from L = aL+b.

The fixed point is stable if —1 < a < 1.

—a

Starting with ug we successively obtain
u1 = aug + b,

uy = aug +b = a®ug + b(1 + a),

u3z = aug + b = adug + b(1 + a + a?),

Uy = a"ug+b(14+a+a®+ ... +a" )

The latter is equal to u, = a™ug+b
b

_a.

n__ . . .
aaill. Hence, a direct equation for u, is u, = (up—L)a"+L,

where L =
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In case a = 1 there is no equilibrium, u,, grows forever: u, = ug + nb.

An alternative way is to substitute u,, = v, + L where L = is the fixed point. Then

—a
Up4+1 = aly, + b is reduced to

Unt1+L=alvp,+L)+b — vpqy1=avy,—L+al+b — vuy1 =av,. (1.32)

a”—1
a—1 "~

Hence, v, = a™vg and thus u,, — L = a"ug — a"™ L. The latter also gives u,, = a"ug + b

First order linear difference equations, u,4+1 = au, + b, have simple sum rules:

= amtt —1 b (m+1)b
If @ # 1 there holds Zuk = <u0 — ) + .
P a—1 1 1—a

m
1
If @ = 1 there holds Zuk =(m+1) (uo + 2mb).
k=0
1.5 One dimensional, second order, linear difference equations

A recursion formula of the type u,+1 = au, + bun—1 + ¢, with a, b # 0 and ¢ constants is a

one dimensional, second order, linear difference equation. As follows from L = aL + bL + ¢

c
it has a fixed point L = [— Here it is advantageous to substitute u, = v, + L with
J— a —
c
L = —— . Then the equation uyy1 = auy + bup—1 + ¢ is reduced to

l—a—0

Upt1 = Uy + bup_1 . (1.33)

Starting with vg and v; we successively obtain

v9 = avy + buyg,

v3 = ave + buy = (a® + b)vy + abuy,

vy = av3 + bug = (a® + 2ab)vy + (a® + b)buvy,

etc. As shown in appendix A for arbitrary n > 2 this is

—_ Ln/g/zJ n-— 1 - k n—l—?k}bk‘ + b Ln/QZ_IJ n— 2 - k n—?—?kbk‘ (1 34)
Un = U1 k a (%) k a . .
k=0 k=0

When we substitute v, = ¢", with g a constant, the equation ((1.33) reduces to the character-

1stic equation:

g>—ag—b=0. (1.35)
It has two solutions:
1 1
g+:§(a+\/a2—|—4b> , g_:§(a—\/M). (1.36)
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It is shown in appendix B that for a? 4+ 4b # 0 the equation (1.34) is identical to the equation

_ b9+ — U1 no_ vog- — U1 g (1.37)
9+ — 9- 9+ — 9-

If a® + 4b = 0 then g, = g_ = a/2. For this situation we will write both g, and g_ as g. So,
g = a/2 and ¢g? = a®/4 = —b. It is shown in appendix C that for a® + 4b = 0 the equation
(1.34) is identical to the equation

vp = nu1g"t — (n — 1Dueg™. (1.38)

As a result we have two expressions for the solution of linear second order difference equations.
The first one is the equation (1.34). The second equation is the equation (1.37) if a® 4+ 4b # 0
and the equation (1.38) if a? + 4b = 0.

For the stability analysis we write v, as wp4+1. Then the equation ([1.33) becomes a two

dimensional system:
Upt1 = avy + bwy,

(1.39)
Wnp+1 = Up -

i) (@D ™). (1.40)
Wp41 1 0 (LK) W,

The fixed point is (L, K') = (0,0). The equation for the eigenvalues of the Jacobian is equation

In matrix form this is

A2 —a)X — b= 0. This is equal to the characteristic equation. The eigenvalues are

A+=1(a+ a2+4b) , )\_:l(a—\/a2+4b>. (1.41)

2 2

Obviously, g+ is identical to Ay.

We distinguish three cases:

1. a®+4b > 0, then g4 and g_ are real. As an example we consider the difference equation
Fopn=F,+ F1, (142)
with Fy =0 and F; = 1. That is, a = 1 and b = 1. According to the equation (1.34) we

therefore have
n/2-1/2)
F, = 1.4
> (" (1.43)

and according to the equation ((1.37) we have

_ gt -t (A4 VE) - (- VE)"
g+ —9- 27/5 '

Fy (1.44)
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Both lead to the Fibonacci series 0,1,1,2,3,5,8,13,21,34,55,89,.... For increasing
n the Fibonacci numbers diverge to infinity, while their ratio F,/F,_; converges to
¢ = (1++/5)/2; the golden ratio.

As another example we consider the difference equation is

1 1
Untl = 5Un + i (1.45)

with vg = 0 and v1 = 4. That is, a = 1/2 and b = 1/4. According to the equation (1.34)
we obtain
[n/2-1/2] 1—k
n—1-—
— 23771 ]
Un > ( L ) (1.46)
k=0

and according to the equation ((1.37) we obtain

99" _ psn(1+VE)" - (1= VE)"
9+ — 9- 275
35 _ 13 21 17
Both 1 h i 4,2,2,—, -1, —, —, —, ..
oth lead to the series 0,4, 2, 2, 5 11 1632’ 32"
the connection with the Fibonacci numbers: v, = 237 "F,.

vy =4 (1.47)

.. The series converge to 0. Notice

2. a2 +4b =0, then g = a/2 and g> = —b. Expressed in the constant a the equation (1.38)

reads = (2 (UO . <2av1 —m)) ' (1.48)

For |a|] > 2 the series diverges. If a = 2 the series grows linear with n:
Up = v +n (v — ) - (1.49)
For |a| < 2 the series converges.

3. a®> +4b < 0, then g, and g_ are complex numbers. As an example we consider the
difference equation

Untl = Up — Up_1, (1.50)

with v9 = 0 and v; = 1. That is, a = 1 and b = —1. According to the equation (1.34)
we therefore have
[n/2-1/2] 11—k
_ n—21i- k
=y ( . )(—1) (1.51)
k=0
and according to the equation ((1.37) we have
_gr -9t

_ A+ - (1 —iV3)"
9+ —9g- 21i\/3 '

(1.52)
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The latter can also be written as

— ul/g <<cosg + isin g)n - <cosg — isin g)n> . (1.53)

Un,

By means of the de Moivre’s theorem this is equal to

1 nmw ..onmT nmw ..onmw
vn:%(<cos?+zsm?>—(cos?—zmn?))
1 nTt .. nmw nwTo .. N
= ﬁ (cos? + isin —= — cos — + 4sin ?) (1.54)
2 nmw

All expressions lead to the series 0,1,1,0,—1,-1,0,1,1,0,—1,—1,0,1,1,0,.... From a
two dimensional perspective this is (0, 1), (1, 1), (1,0), (0, —1), (-1, —1), (-1,0), (0, 1), ....
Since the modulus is of Ay is 1 the fixed point (0,0) is a center of clockwise rotation.

As another example we consider the difference equation

1
Unt1 = Un = 5Un—1, (1.55)

with vg = 0 and v; = 1. That is, a = 1 and b = —1/2. According to the equation (1.37
we have g+ = (1+14)/2 and
n __ .n 1 A (1 — )™ 9
SR et € il ) sin 2. (1.56)
9+ — 9~ 2% (V2)n 4

It leads to the series 0,1,1,1/2,0,—1/4,—1/4,-1/8,0,1/16,1/16,1/32,0,.... From a
two dimensional perspective this is (0,1), (1,1), (1,1/2),(1/2,0), (0,—1/4), .... Since the
modulus is of g4 is %\@ < 1 the fixed point (0, 0) is a stable focus. The successive points

spiralize (clockwise rotation) towards the fixed point.



Chapter 2

One dimensional difference equations

2.1 Introduction

In this chapter we will consider difference equations of the type

ITm+1 = f(xm) ) <2~1)

where f may depend on one or more parameters. For instance, for f(z) = a(1l — z) with a a

parameter, the difference equation is as follows:
Tmt1 = a(l — ) . (2.2)

An equilibrium point, L, also called a fixed point, follows from L = a(1 — L). The fixed point
is L = aL—i—l' For a = 3/4, for instance, the fixed point is L = 3/7 and it is stable. To
illustrate it we take a = 3/4 and start with g = 1/3. Then x; = 1/2, x9 = 3/8, x3 = 15/32,
x4 = 51/128, etc. In the long run the values of x,, converge to 3/7, see the next figure.

0.7 - |
0.6 =
0.5 . -

04 / ‘g e . . -

Tm

0.3 B
0.2 B
0.1 B

0 T T T T T T T T T T
0 1 2 3 4 ) 6 7 8 9 10 11 12
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For a = 0.99 and xy = 1/3 the successive z,, slowly converge to 99/199 ~ 0.4974874, see the

next figure.

0.6 - |

0.5

0.4

Tm

0.3 B

For a =1 and zy = 1/3, we obtain x; = 2/3, 9 = 1/3, x3 = 2/3, x4 = 1/3, etc. That is, the

T, alternate are 1/3 and 2/3, see next figure.
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0.6 Y A /A ,\\ //\\ //\ [
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g 0.4 ) v/ L L Vo - s

8 / \/ \y
[ J

0.3 L

0.2 L

0.1+ L

0 T T T T T T T T T T T T T
o 1 2 3 4 5 6 v 8 9 10 11 12

There is neither convergence nor divergence. Of course, for all zg we will obtain 1 = 1 — xg,
x99 =1—(1—=2x9) = x0, 3 = 1 — 20, T4 = T, etc. For a = 1 and zyp # 1/2 we obtain an

alternating sequence. For a = 1 and z¢p = 1/2 we have z,, = ¢ = 1/2 for all m.
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For a = 5/4 and xy = 1/3 the successive z,, diverge from 5/9, see the next figure.
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In a similar manner it is found for a < 0 that subsequent x,, converge if —1 < a < 0, and

diverge if a < —1.

The foregoing mapping function was linear: the power of x in f(x) is 1. Things become
more of interest when we consider more general functions with larger powers of x, such as
f(x) =22 +aor f(x) = asin(x). For a general function f(x) a fixed point L is a solution of

the equation
L=f(L). (2.3)

As shown in chapter 1 a fixed point L is stable if

1Y) (2.4)

A stable fixed point L for which L = f(L) can be regarded as a limit cycle with period 1.

A period 2 limit cycle occurs if both the conditions L = f(f(L)) and —1 < O (@)

1
Ox ‘L <
are satisfied.

A period 3 limit cycle occurs if the conditions L = f(f(f(L))) and —1 < W‘L <1

are both satisfied, and so on.
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2.2 Logistic equation

A one dimensional, first order, non-linear difference equation is the logistic equation:

Tmt1 = 0T (1l — 2 .

(2.5)

The function f(x) = ax — ax? is the logistic function. The additional condition 0 < a < 4
guarantees 0 < 2,41 < 1 for x,,, € [0,1]. A fixed point L occurs if L = aL — aL?. There

-1
are two solutions: L = 0 and L = ¢ Since 8—

gl a — 2alL, the stability requires

a x

—1 < a—2aL < 1. Substituting L = 0 into the stability requirement leads to 0 < a < 1 and
a —_—

substituting L = into the stability requirement leads to 1 < a < 3. So, this is what

happens: for a close to 0 the sequence xg, 1, z2,... quickly converges to 0. It is illustrated in
the left panel of the next figure.

0.9 | 0.9 =
0.8 | 0.8 =
0.7 |e 0.7 |e -
0.6 | “‘ a=0.2, zg=0.7 0.6 | \‘\ a=0.9, zg=0.7 |

205 205 s
04| 04
03 031
02{ 02 | o
01| 0.1 | '\-\1\._._._1_._._._1

0 ®-0-0-0 0-0-0-0 0 -0 0
0 2 4 6 8 10 12 0 2 4 6 8§ 10 12
m m

For a a little smaller than 1 the sequence xg, z1, o, ... slowly converges to 0, see right panel
of previous figure. For a a little larger than 1 the sequence xg, x1, o, ... slowly converges to

a—1

. For a close to 2 the sequence xg, z1, T3, ... quickly converges to ——, see the left panel

a a

of next figure. For a a little smaller than 3 the sequence xg,x1,x2, ... slowly converges to
—— see the right panel of next figure.

a
The speed with which the sequence xg, 1,2, ... converges to a stable fixed point L is deter-
0
mined by a—f at this point. If, for instance,
x

= — the speed of convergence is three
8$ acam 8 1
times larger in comparison to the situation where a—f =5 Actualy,
Xz,
|Tmy1 — L| = " |2y, — L, (2.6)
of . . : .
where k,;, = In e , as will be derived in section 2.4.
|z,
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In particular for ¢ = 3 and x,,, = 2/3 we have k,, = 0: no convergence. Beyond a = 3 a

period 2 limit cycle sets in, see next figure.
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Alternatively, for a = 3 there is a bifurcation to two fixed points. The fixed points follow from

L= f(f(L))

—  L=af(L) - af*(L)

The latter equation can be elaborated to

3L — 20313 + (a®> + a®)L? — L+ L =0.

This polynomial for L can be reduced to

(aL2 +(1—a)L) (a2L2 —(a+d*)L+1 +a)=0.

—  L=a(aL — aL?) — a(aL — aL?)%

(2.7)

(2.8)

(2.9)
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The expression between the first pair of brackets is the 1 limit cycle. This is not a surprise

since a 2 limit cycle contains a 1 limit cycle. The expression between the second pair of

brackets is for a 2 limit cycle with two different limit values. The two limit values follow from

a’L* —(a+ad>)L+1+a=0. (2.10)
The two solutions are
a+1t+/(a+1)(a—3
Ly = (Qa ) ) . (2.11)
We also find 5 I
fgL()) =a®—2a*(1 4+ a)L +6a°L* — 4a3L3. (2.12)
for L = L4 it is reduced to
of(f(L)) 2
—_ =a°—2a—4. 2.1
5L . a a (2.13)

The requirement for stability therefore is

—1<a’-2a—-4<1 — 3<a<l+6. (2.14)

At a = 1+ 6 ~ 3.449... a new bifurcation occurs. The two limit values for a = 1 + /6

1 / 1 /
areg <2+\/§+ 2—\/5) and £ <2—\/§—|— 2—!—\/5). As a result there will be a 4 limit

cycle for values of a slightly larger than a = 1 + /6, see the left panel of next figure. At
a =~ 3.544090... a new bifurcation occurs and an 8 limit cycle comes into existence, see right

panel of next figure.
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At a = 3.564... the 8 limit cycle turns into a 2* limit cycle, etc. The sequence of 2" limit
cycles for n — oo ends at a ~ 3.56994567.... In the next diagram the limit values are plotted

against a. It visualizes the bifurcations. It is called a bifurcation diagram.
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0.75

=~ 0.5

0.25

3.5

The value of a where a limit cycle with period 2" changes in a limit cycle with period 27! is

2.3 Feigenbaum constants

denoted as a,, see next figure.
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0.25 |



26 CHAPTER 2. ONE DIMENSIONAL DIFFERENCE EQUATIONS

The ratio of differences between two successive a,, values is:
S (2.15)
an4+1 — Gn

In the limit where n — oo the series of ratios converges to a constant value § which is known

as a Feigenbaum constant:

Qn

5= lim "1 — 4.6692016091.... (2.16)

We denote the width of a 2" bifurcation at the value of a where L = 1/2 as w,,, see next

figure.

0.75

0.25

In the limit where n — oo this series of ratios of successive widths

Wn—1

. (2.17)

wn
converges to a constant value a:

Wnp—1

a = lim
n—00 Wy,

= 2.502907875..... (2.18)

The latter also is a Feigenbaum constant.
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2.4 Chaos

For the logistic equation the 2™ limit cycle ends for n — oo at a &~ 3.5699.... So far we only
considered the situation for a smaller than this value. For a slightly larger value of a, say
3.57, the sequence of x,,’s, the orbit, does not converge to a limit cycle. Instead, the sequence
shows chaotic behaviour. From every starting point 0 < xy < 1 the orbit is quite irregular.
The orbit never passes twice through the same point since then one would have periodic be-
haviour. For increasing a ‘windows’ with chaotic behaviour and windows with periodic limit
cycles alternate. To visualize the chaotic behaviour and periodic limit values one can for every
a iterate the starting value xq for instance 20 000 times and plot the final 50 values of the x,,

sequence. The result is shown in the next figure.

1 ‘ |
|
: SREPFL N
NG O RSN
RBL N R S
TGRSR
0.75 :

o

S

S

S

I

8

-~

2

o 0.5

]

=

+~

o

0

=3

S

—

8

0.25
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Figure 2.1: Orbit diagram for the logistic equation. The dashed, orange line is where the 2"

limit cycles end and where the first chaos sets in.

There are several windows of periodic cycli present. An obvious window is for the 3 x 2"
limit cycle. It is a 3 limit cycle for n = 0. From L = f(f(f(L))) it follows, after factor-
ing out L = f(L), that 1 + a + a® — (a + 2a® + 2a® + a*)L + (a® + 3a® + 3a* + 2a°)L? —
(a® + 3a* + 5a® + a®) L3 + (a* + 4a® + 3a%)L* — (a® + 3a%)L® + a®L® = 0. Together with the
(9]”(]"(;];(95))) L= 1 we obtain —49 — 28a — 18a? + 24a3 + 4a* — 6a® + a = 0. It
factorizes into (7 — 5a + a?)(—7 — 2a + a?)(1 + a + a?) = 0. The factor (-7 — 2a + a?) = 0
has the analytical solution a = 142v/2. Hence, a 3 limit cycle sets in at a = 1+2v/2 ~ 3.8284...

condition
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A less obvious window is a 4 limit cycle for a close to 4. From L = f(f(f(f(L)))) to-
Bf(f(J;(j(m)))) L= 1 we obtain (1 4 a?)(5 — 4a + a®)(—5 — 2a +
a?)(—135 — 54a — 9a® + 28a® + 3a* — 6a® + a%) = 0. The factor —5 — 2a + a? has a root
a =1+ /6 as we already met before. The factor —135 — 54a — 9a? + 28a> + 3a* — 6a° 4 af
has a root 1 + V4 + 3 x V4 ~ 3.96010188.... It turns into an 8 limit cycle at a ~ 3.96076....

The sequence of 4 x 2™ limit cycles ends at a ~ 3.9612.... The window for this cycle is very

gether with the condition

narrow; Aa =~ 0.001.

In between the windows of limit cycles there is chaotic behaviour: the sequence of x,,’s is
sensitive for the initial value zg. A slightly different x¢p may lead to a completely different
orbit. Starting with zy we are after one step at x1 = f(xg). Starting with xg + dy we arrive

after one step at x1 + 1 = f(xo + Jp). Taking a first order Taylor expansion of f the latter is

0 1 0
x1+01 ~ f(xg) + 5g—f‘ . Since x1 = f(xo) it is reduced to RS of . The rate of change
ox o (50 ox )
0 0
is 5—1 = 8—f . Calculating §o from 41, 3 from d9,etc. through 6, leads to the equation
0 T 1o
5"_5".5”_1..’52.51~8f gﬁ (2.19)
50 5n—1 571—2 (51 (50 ox Zn1 ox z1 ox o ’ .
or 5
P efin—1F K1tk 2.20
T~ , (2.20)
where of
=In|— 2.21
fom . ox Tm ( )
It can be written as
|0n] & €™ [d0] (2.22)
where
1 n—1
o= > (2.23)
m=0
In the limit where n goes to infinity it is known as the Lyapunov exponent \:
A= lim %K. (2.24)

In case of a convergence to a periodic limit cycle the Lyapunov exponent is smaller than 0. In
case of chaotic behaviour the Lyapunov exponent is larger than 0: small differences initially
grow each step. In the next figure the Lyapunov exponent is plotted against the parameter a

for the logistic equation.
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Lyapunov exponent

3.7 38 39

Figure 2.2: Lyapunov exponent for the logistic equation.

2.5 Starting points

So far we only considered 0 < a < 4 and starting values zy between 0 and 1 for the logistic
equation, since the orbit either is periodic or chaotic for 0 < a < 4 and 0 < zg < 1. For other
starting values xy and other values for a the orbit may either be attracted to a periodic limit
cycle diverge, stay in a chaotic region or diverge to infinity. The situation is shown in the next

figure. If the orbit tends to infinity the pixel at (a, z¢) is coloured yellow, orange through red
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dependent on a slow, intermediate through fast velocity with which the orbit goes to infinity.
If the orbit ends in a stable periodic limit cycle or is at an unstable fixed point (as g = 0 or
xo = 1) or stays in a chaotic region, that is, if the orbit does not diverge to infinity, the pixel
at (a,xg) is coloured white. The region of zp’s which do not lead to divergence to infinity has
the borders - <m0 < “ 1 if 2<a<0, T <ap< tif0<a<land0<ax <1 if

a a a a
1 < a < 4. In the next figure the orbit diagram is shown on top of the previous figure.

2.6 Other difference equations

In this section we will investigate how the orbit diagrams look for other difference equations.
First we consider the sine map:

Tim41 = bsin(ma,,) . (2.25)

The additional condition 0 < b < 1 guarantees 0 < z,,41 < 1 for x,, € [0,1]. The orbit
diagram for the sine map is shown in the figure Although the logistic map differs from
the sine map, their orbit diagrams look almost identical. The Feigenbaum numbers § and «
for the sine map are identical to the ones for the logistic equation. This suggests that the
Feigenbaum numbers are universal constants. Except for some scaling effects, power sine maps

such as bsin®(7wx) have a comparable orbit diagram.

1 1 1
With the linear transformation z — (Z—la — §) T+ 3 the logistic equation takes the form

1
f(z) =1 — pa? with u = Za(a — 2). The iterations
T =1—px?,, 0<pu<2 (2.26)

lead to the diagram in figure Also here the Feigenbaum numbers § and « are identical to

the ones for the logistic equation.
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Z19950 through w0000

Z19950 through x20000
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0.25

Tm41 = bsin(mayy,)

0.7 0.8 0.9 1
b

Figure 2.3: Orbit diagram for the sine map.

0.5 -

—0.5 -

0 0.5

2
Tm+1 =1 — px;,

—_

Figure 2.4: Orbit diagram for the map f(z) = 1 — pz?.

31
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Another often used example is the hyperbolic tangent map: f(x) = gx(1 — tanhz). The
iterations Z;,+1 = g, (1l — tanhz,,), with ¢ > 1, lead to the orbit diagram and Lyapunov
diagram as shown in figure [2.5] and figure [2.6] respectively.

5

Tmt1 = 9gTm (1 — tanh x,,)

Z19950 through 20000

Figure 2.5: Orbit diagram for the hyperbolic tangent map f(z) = gz(1 — tanhz).

-1.5

2 4 6 8 10 12 14 16 18
g

Figure 2.6: Lyapunov exponent for the hyperbolic tangent map.
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Of course, one can create an arbitrary smooth function with a maximum value on its domain.

T

Let us try, for instance, f(z) = haxe™™. The iterations x,,+1 = hxye®, with h > 1, lead to

the orbit diagram and Lyapunov diagram as shown in figure [2.7] and figure respectively..

20
Tm41 = hxpme™ "™

g 15 |
S
&
=
20
=
S
= 10
&

5 -

0 T

1 10
h
Figure 2.7: Orbit diagram for the map f(z) = hxe™*.
1

30 40 50 60
h

Figure 2.8: Lyapunov exponent for the map f(x) = hze™?.
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For all these examples the Feigenbaum numbers § and « are identical to the ones for the
original logistic map. For one-dimensional maps f(z) the Feigenbaum numbers are universal

if the Schwarzian derivative of f(x),

= (58) 3(58) 5B 3(5). o

is negative on the given domain.

An example of a one-dimensional difference equation whose Schwarzian derivative is not neg-
ative is the tent map f(z) = dmin(x,1 — ). The iterations z,,+1 = d min(x,,, 1 — z,,) on
the domain [0, 1] lead to the diagram of figure

1

d min(zy,,1 — )

0.8

0.6 |

0.4

T19950 through 20000

0.2

O T T T T T T T T T
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

d

Figure 2.9: Orbit diagram for the tent map f(x) = d min(zy,, 1 — x,,).

The diagram for the tent map contains unstable periodic orbits and chaotic orbits. Cascades

of bifurcations are not present.



Chapter 3
Two dimensional difference equations

In this chapter the main characteristics of non-linear, two dimensional systems will be ex-
plained by means of the Lotka-Volterra model and the Hénon map. We start with the Lotka-

Volterra model.

3.1 Lotka-Volterra model

The Lotka-Volterra model describes the evolution of the size of the population of two interact-
ing species, predators and prey. For concreteness we take stoats as the predators and rabbits
as the prey. If s is the number of stoats and r the number of rabbits then the Lotka-Volterra

system in differential form is |1, 2]

dr ds
= — = — G — — — — .1
7 i ar — Brs $ i ~vs + dsr, (3.1)

where t is the time parameter and where the constants are defined by:
« is the growth rate of rabbits in the absence of stoats,

[ is the death rate of rabbits due to the presence of stoats,

v is the natural death rate of stoats in the absence of rabbits,

¢ is the growth rate of stoats in the presence of rabbits.

All four constants are larger than 0.

The equilibrium points of the system follow from 7 = 0 and $ = 0. They are (7, $x) = <Z, g)

and (7., Ssx) = (0,0). For the stability analysis we write the system as

r=f(r,s) , $=g(r,s), (3.2)

where f(r,s) = ar — frs and g(r,s) = —ys + dsr. The Jacobian is

of of _ _
s =g o)=(00r 53
= & ds —v + or

35
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At the equilibrium point (r., s«) = (0,0) this is

J(Fas, $20) = (a ! ) (3.4)

0 —v

The eigenvalues are Ay = o and A = —v. Since Ay > 0 and A_ < 0 the equilibrium point
(7sxy Ssx) = (0,0) is a saddle point.

At the equilibrium point (ry, i) = (g, ;) the Jacobian is

_By
T(rerss) = (5‘1 K ) (35)

The eigenvalues follow from

—A _BT 2
by =0 — MN+4+ay=0. (3.6)
B
The eigenvalues are Ay = i,/ay and A\_ = —i,/a7y. Since the eigenvalues are pure imaginary
the equilibrium point (7., s.) = (v/d,a/B) is a center. The solutions near this center are

periodic. We consider the dynamics close to the equilibrium point (ry, s.). That is, we take
r(t) = r« + n(t) and s(t) = s« + €(t). Then we have the system

dn By de da

— = ——€— , — = —n+dne. 3.7

% 5 €~ Ben Qo (3.7)
For n and € very small we have the approximation

dn By de da
il P e L 3.8
from which it follows that 7j & —a+yn and € ~ —arye. The solutions are n(t) ~ x sin(\/ayt+0)

and €(t) = {sin(\/ayt + ¢), where § = arcsin(n(0)/x) and ¢ = arcsin(e(0)/£).

There is no analytical solution for r(¢) and s(¢). One can eliminate ¢ by dividing the two

equations of motion:

dr  ar—prs (a—Bs)r

— = = ) 3.9
ds —ys+dsr (—y+dr)s (39)
Separation of variables gives
DN _ _
(v + r)dr: (a Bs)ds — (fy—i—é) dr = (g—ﬂ) ds. (3.10)
r S r S

Integration gives

/<_7+(5>dr:/<a—ﬂ)ds —  —ylnr+o6r+c=alns— s, (3.11)
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where ¢ is the constant of integration. Exponentiation of both sides leads to
K = V5% 0 hs (3.12)

where K = ¢° is a constant of motion: K = 0. Its value is therefore determined by the initial
conditions:
K = r]sge 0mo=hs0, (3.13)

For a given r the equation (3.12) delivers two values for s. If after a while the number of
rabbits is again the earlier r, the values for s will be the earlier values since K is a constant

of motion. As a consequence the parametric plot of (r(¢), s(t)) is a closed curve.

As an example we consider the situation for o = 0.05, 5 = 0.005, v = 0.025 and ¢ = 0.00025.

%, g) is the point (100,10). For the initial condition ro = 50 and
sg = 10 the evolution of r and s is shown in the left panel of figure The parametric plot

The equilibrium point

is shown in the right panel of figure The arrow in the parametric curve indicates the

evolution in forward time. The time unit is arbitrary, something like days or weeks or so.
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Figure 3.1: Evolution of the population size of rabbits r and stoats s (left panel) and the

parametric plot (right panel). See the text for the initial conditions and the constants.

Next we consider the population dynamics close to the equilibrium point (100, 10). To be
specific, we take the initial conditions ro = 90 and sg = 10. The result is shown in figure
As expected, the closer the populations are to the equilibrium point (100, 10), the more the
parametric plot looks like an ellipse. And the closer the populations are to the equilibrium
point (100, 10), the closer is the period of the oscillation to 27/, /ay = 177.7. Indeed, in figure
the period is approximately 177.7, while in figure the period is approximately 182.
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Figure 3.2: Evolution of the population size of rabbits r and stoats s (left panel) and the

parametric plot (right panel). See the text for the initial conditions and the constants.

If we take the equilibrium point (100,10) as the initial populations, then the r(¢) and s(t)
curves are horizontal lines and the parametric plot is the single point (100,10). From the
figures and we see the shape of the parametric curve depends on the initial condition.

Parametric curves are drawn for sg = 10 and 7o = 10 through 100 in steps of 10 in figure [3.3
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Figure 3.3: Parametric plots for various initial conditions. The rotation is anti-clockwise.
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Close to the equilibrium point (100, 10) the parametric curve is almost an ellipse, while far

away from the equilibrium point (100, 10) it rather is a triangle with rounded corners.

Since we do not have an analytical solution for r(¢) and s(¢) we have to resort to numeri-

T4l — T Snt+1 — S
cal methods for the plots. To this end we write 7 as %tn and § as L " Then

At

Tntl = T + @At r, — At T, s, (3.14)
Sni+1 = Sp — YAt s, + At s,y ,
with rg and sg as the starting values. Absorbing At in the constants, thus a = aAt, b = AL,

etc., we obtain
Tntl =Tn +aTn —bTnsy (3.15)
Sn+l = Sp — CSp +d SpTn ,

The latter is a discrete system of difference equations. It often is considered as a more appro-

priate model for the prey-predator system than the continuous system.

The equilibrium points of the discrete syste