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Preface

If somebody with some technical background is, for example, interested in the blockchain
technology or a high school student, as another example, wants to write a practical assign-
ment on cryptography, they will often face the following problem: already at the beginning
of their investigation they read it has something to do with the multiplication of points on
modular elliptic curves over finite fields. They immediately ask themselves: what is an elliptic
curve?, what is a modular elliptic curve? and what is the multiplication of points on a modular
elliptic curve? This is already confusing, even more so since a modular elliptic curve does not
look like a curve at all. Other questions which arise are: what is a finite field or even a field?
A persistent student will find that a field has something to do with a group and that a group
is something with properties like associativity, commutativity and distributivity. So, already
after a few sentences they are drowning in concepts which are new and therefore difficult to

them. At this point they may give up.

In the search for a less difficult book one might face the following problem: either one finds
popular introductions with almost no mathematics or one arrives at university courses and
books written by professors. The first are simple but do not satisfy the desire of the reader
to understand things mathematically. The second are intended for university students. They
are formal and technical, as they should. However, they are too difficult for readers with less
mathematical experience in the field. A book which fills the gap should be mathematical on a
very elementary level. The present book is intended to be a simple and informal introduction
to the mathematics behind cryptography, cryptocurrents and blockchain technology. With
simple is meant that a high school level of mathematics (together with the willingness to
study) suffices to understand the contents. With informal is meant that the book is not orga-
nized as an enumeration of theorems and proofs. Instead it rather is a random walk through
numbers en elliptic curves, some patterns are recognized and captured into relations. Proofs

of relations are omitted, except for a few obvious cases.

Since the contents in this book is very elementary and known for ages, citations are consid-
ered redundant. Citations were also omitted to avoid a technical and intimidating impression.
However, it should be mentioned that I learned a lot from the book of Washington [1], the
book of Koblitz [2] and the book of Silverman and Tate [3]. Of course I also obtained informa-
tion from the internet. For this I wish to mention the following two references: An instructive
explanation of the math behind the bitcoinis is given by Rykwalder [4]. To understand the
blockchain basics a 1blue3brown youtube video [5] was very helpful.

Together with what I already knew, I felt sufficiently equipped to write things in my own

words. At every step I tried to put myself in the shoes of a layman. I also take sideways,



probably to show the reader the beauty of mathematics. The result is a somewhat unique
presentation of the matter. The present book has just been written for educational purposes.
It is intended for high school students with talent for mathematics and for readers with (a

little more than) a high school level mathematical background.

Acknowledgement I wish to thank Ron Westdijk for his improvements and sugges-

tions to the manuscript.

June 2020, Hans Montanus
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Chapter 1

Introduction to group theory

1.1 The group Cs

We start considering an equilateral triangle, see the figure. The arrows in the edges cause the

triangle to have an ‘orientation’.

The triangle is unaltered if it is rotated anti-clockwise over 27/3 around the barycenter Z,
except that the figures at the corners have moved one position. Let us denote this rotation
by r1. The triangle also is unaltered if it is rotated anti-clockwise over 47/3. The figures at
the corners then have moved two positions. This rotation is denoted as ry. With a rotation
angle of 2w both the triangle and the figures at the corners are rotated onto itself. With this
full turn, which we could denote as 73, nothing has changed. The result is the same as a
rotation over 0 (no rotation at all ). This is called a unit rotation (identity) and denoted as
ro (sometimes also as e). First applying rotation r; and then rotation 7o is denoted as ror;.
The result is the unit rotation: rer; = rg. Similarly we have riry = 7o, rir1 = (7“1)2 = 7o,
rorg = (r9)? = 11, r170 = 71, ToT2 = T2, etc. One can also take longer sequences of rotations,
for example ririre. Since rirg = rg we get ri(rire) = rirg = r1. We could also have chosen
to replace r1ry by 7o, then we get (r171)re = rore = r1. The result does not depend on the

order of the replacement: ri(riry) = (rir1)re. This property is known as associativity.
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One can also rotate clockwise. It is the inverse (opposite) of rotating anti-clockwise. The
inverse of 71 is written as 7| ! Since a rotation followed by its inverse rotation is in effect no
rotation at all we have rl_lrl = rg. Since also ror; = rg we obtain 7"1_1 = ro. Of course, we
could have written the latter identity immediately just by looking at the action of r| Land o

to the triangle. Similarly there holds 75! =71 and 75! = 7.

The set {ro,r1,72} is a GROUP because it satisfies the following demands:

1. the set contains a unit element, ro (in general e)
2. each element of the set has an inverse which is also part of the set

3. associativity is satisfied, that is for each triple of elements a, b en ¢ of the set there holds
(ab)e = a(be).

A set is a group if all the three demands are satisfied. A group is called ‘Abelian’ if for each
pair of elements a en b of the group there holds ab = ba. For instance, the triangle group
{ro,r1, 72} is Abelian. The bookkeeping of the action of subsequent group elements is usually
by means of a multiplication table (Cayley table). For the Abelian group {rg,r1,72} it is as

follows:

To 1 2

To To 1 T2

1 1 T2 To

T2 T2 To 1

The group {rg,r1,72} can also be written as {(r1)°, 71, (r1)?}. The element r; therefore is
a generator of the group. The order of ry is 3 (it generates 3 group elements). 79 also is a
generator of the group {rp,71,72}. The cyclic group {rg, 71,72} is denoted as C'3. The number
of elements in a group is the order of a group. In summary: the groep Cs is Abelian, it has

order 3, and 1 generator (1 or rg) is sufficient to generate the group.

Rotations can be described with matrices. For the coordinates (x,y) of a point on a cir-

cle with radius r and its centre at the origin we have

<x ) ) < TC9SQ> | .
Y rsina

where « is the angle with respect to the x axis, see the next figure.
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If the point (z,y) is rotated anti-clockwise over an angle 6, then the new coordinates are

'\ [ rcos(a+0) \ [ rcosacosf —rsinasing (12)

y )\ rsinfw+6) | \ rsinacosd+rcosasing '
'\ [ cosf —sinf rcosa \ [ cosf) —sind x (13)
y ]\ sin@  cosé rsina |\ sind  cosé y | .

The 2 x 2 matrix
cosf) —sinf
. (1.4)
sin 0 cos
is for an anti-clockwise rotation over an angle . The matrices for rotations over 0, 27/3 en

47 /3 are denoted as Ry, R; respectively Ro. Explicitely:

10 - L3 -1 13
Ry = , Ri=| | °? 2T, Re=| 3 SR I (1.5)
01 V3 =3 —3V3 3

The determinants of these matrices are 1. From matrix multiplication it follows (R1)2 = Ry,
(R2)? = Ry and RiRy = RoRy = Ry. This means that the group of matrices {Rg, Ry, Ro} is
similar to {ro,r1,72}:

g < R()

r—— R . (1.6)

Ty < Rz

With this one to one relation the groups have the same group structure: the multiplication
table is similar. The group {Ry, R1, Ro}, which we will call M3, therefore is isomorphic to
the group C'35. The group M3 is just another representation of the group Cs: the matrix
representation. The isomorphy between C3 and Mj is expressed as C3 = Ms.
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1.2 The group C4

Here we consider a square with arrows in the edges, see the figure.

4 B 3
Y . A
7
1 > 2

The square has a fourfold rotational symmetry. The anti-clockwise rotations around the
barycenter Z over 0, /2, m en 3w/2 are denoted as rg, r1, ro respectively r3. The square
also has point symmetry. That is, reflection in point Z leads to the same square. However, if
you look what happens to the figures at the corners you will notice that the point reflection
is actually the same as the rotation ro. The group {rg,r1,72,73} is Abelian with order 4.
The group is generated by r; which has order 4 heeft. The group is denoted as Cy. The

multiplication table is as follows:

o T 9 rs3

To To 1 T2 3

1 r1 T2 3 To

T2 2 3 o |

r3 3 To 1 2

As for the triangle the rotations can be described with matrices. The matrices corresponding

to a rotation over 0, 7/2, m en 37/2 are denoted Ry, R, Ry respectively Rs:

10 0 -1 ~1 0 0 1
RO:(O 1)’ Rl:(l 0)’ R2:(0 —1>’ R3:<—1 o)' (1)

The set matrices {Ry, R1, R, R3} form a group which we will call My. As the reader may
check Cy = My.
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1.3 The group Dj3

Again we consider an equilateral triangle, but this time without the arrows in the edges, see

the figure. The dashed lines are the medians.

The triangle has the same rotation symmetry as the triangle in section 1.1. Again, the rotaties
will be denoted as rg,r1 en ro. Because of the absence of arrows the triangle also has mirror
symmetry. For example, reflection in median & leads to the same triangle, except that the
figures 2 and 3 at the corners are interchanged. This reflection will be denoted as sg. The
reflection in [ and m is denoted as s; respectively so. The complete symmetry group is
{ro, 71,72, 50, $1, s2} and has order 6. This so called dihedral group is denoted as Ds. The

multiplication table is as follows:

7o 1 T2 S0 S1 52

To To 1 T2 50 51 52

1 1 T2 To S1 52 50

T2 T2 7o 1 82 S0 51

S0 S0 52 S1 To T2 1

51 S1 S0 52 1 To 2

52 52 S1 S0 T2 1 To

The combined actions r1sg (read: first reflection in k followed by a rotation over 27/3) has
the same result as solely s, thus 7159 = s1, see the table. Similarly we find sgr; = s9. Since
r189 # Sor1 the group Ds is not Abelian. For the multiplication table it is not necessary to

visualise all combinations of rotations and reflections. Instead one can explore the algebra
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(rules of combined actions). For instance, from ri1sg = s; it follows rorisg = res1. Since

ror1 = rg we find ro9r189 = r9Sg = sg which results in ros; = sg. Convenient rules are:
TiTj = Titj, TiSj = Sitj, SiTj = Ti—j, $iSj = Ti—j - (1.8)

Since ¢ + j and ¢ — j allways have to be 0, 1 or 2 one has to subtract 3 from ¢+ j if ¢ +75 > 3
and add 3 to i — j if i — j < 0; counting modulo 3.

Since so = sgry and s1 = sgro = 31(7‘1)2 the group Djs is generated by 2 generators: 7
and sg. Explicitely: D3 = {(r1)°, 1, (71)?, 50, 5071, 50(71)?}. The order of sq is 2. The group
Cy = {ro, so} (with generator sp) is a subgroup of D3. The group C3 = {rg, r1, 72} (with gen-
erator r1) is a subgroup of Ds. Since {(r1)°, 71, (r1)?, s0, s071, 50(r1)*} = {ro, s0} x {ro, 71,72}
one says that Djg is the group product of C3 and Cy: D3 = C3 ® Cy. The order of Dj is the

product of the order of the 2 generators.

Reflections can also be expressed by matrices. The coordinates (z,y) of a point on a cir-

cle with radius r and its centre at the origin can be written as

<x>:<r69sa> (1.9)
Y 7sin o

If the point (x,y) is reflected in a line which forms an angle 6 with the horizontal axis, then

the new coordinates are

'\ [ rcos(20 —a) \ [ rcosacos(20)+ rsinasin(20) (1.10)
y )\ rsin(20—a) |\ rcosasin(20) — rsin o cos(26) '

( x ) _ ( Cf)s(20) — sin(20) ) ( rc?sa > _ ( c.os(29) sin(20) > ( x ) )
Yy’ sin(20)  cos(26) 7 sin « sin(20) — cos(26) y

The 2 x 2 matrix
c.os(2«9) sin(26) (112)
sin(20) — cos(26)
is the matrix for reflection in a line which forms an angle 6 with the horizontal axis. For the
lines k, [ and m is 8 equal to 30°, 90° and 150°. The corresponding matrices, which we denote

as Sy, S1 respectively So, are:

i V3 -1 0 1 -1V3
So=1{ 1 2 , S1= , Sa=| 2 2 : 1.13
’ (m ) 1 (o 1) : (—;3 ) 1

With matrix multiplication it can be verified that for instance (Sp)? = Ro, SoS1 = Ry and
S1S2 = Re with Ry, Ry and Ry as given in the first section. The set { Ry, R1, R2, So, S1, S2}
is a group which we will denote as Mg. The multiplication table has the same structure as
the table for D3. thus Mg = Ds.



1.4. THE GROUP D,

1.4 The group Dy,

We consider a square, but this time without the arrows in the edges, see the figure. The
square has the same rotation symmetry as the square in section 1.2. Because of the absence

of arrows the square also has mirror symmetry. The 4 lines of reflection are shown as dashed

lines.

The rotations are denoted as rg, r1, 2 en r3 and the reflections in the lines k, I, m and n
as So, S1, S2 respectively s3. The complete symmetry group is {ro, 1,72, 3, S0, $1, S2, s3} and

has order 8. This non-Abelian group is denoted as Dy. The Cayley table is as follows:

o | T1 | T2 | T3 | S0 | S1 | S2 | S3
To To ™ T2 3 S0 S1 52 53
1 T1 T2 | T3 | To | S1 S2 | S3 | So
2 2 3 To ™ 52 53 50 51
3 T3 7o ™ T2 S3 S0 S1 52
S0 S0 83 52 S1 To 3 T2 1
S1 51 So | S3 | S2 | T1 | To | T3 | T2
52 52 S1 S0 53 T2 ™ 70 T3
83 S3 52 S1 S0 3 T2 1 To

The equation also hold for Dy if one counts modulo 4. The group D, is generated by 2
generators: r; and sg. Explicitely:
Dy = {(r1)% 71, (r1)?, (r1)3, 50, 5071, 50(11)?, 50(r1)?}. There holds: Dy = Cy ® Cs.
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The rotation matrices are as in section 1.2. The matrices for reflection are:

01 10 0 -1 1 0
So = . S = . Sy = . Sy = . (114

As can be verified, the group { Ry, R1, Re, R3, So, S1,S2, 53} is isomorphic to Dy.

1.5 The group S

With the rotation r1 of D3 all corners move on one step: 1 moves to 2, 2 moves to 3 and 3
moves to 1. By means of cycles this is written as (123). For the rotation r9 of D3 corner 1
moves to 3, 3 moves to 2 and 2 moves to 1. This is expressed with the 3-cycle (132). The
reflection sy of D3 does interchange corners 2 and 3 while corner 1 is unaffected: 2 moves
to 3, 3 moves to 2 and 1 ‘moves to’ 1. This is the 3-cycle (1)(23). The latter is denoted
more briefly with the 2-cycle (23), where it is understood that each missing numbers is in a
1-cyle. The unit element ry is in cyle notation (1)(2)(3) or shortly (). As can be verified,
(123) =(231)=(312) and (23) = (32).

Each element of D3 takes 1 to a, 2 to b and 3 to ¢, where a, b and ¢ are 1, 2 or 3 such
that a # b, a # ¢ and b # c. For a,b,c there are 6 possibilities: 1,2,3 and 1,3,2 and 2,1,3 and
2,3,1 and 3,1,2 and 3,2,1. Since a, b, ¢ are a permutation of 3 different numbers, we have 3! = 6
different permutations and thus 6 possibilities. The group S3 is the permutation group for 3
different numbers. So, the group S3 has order 3! = 6. To each element of S3 corresponds one

element of D3, see the next table.

a,b,c element of S3 | element of D3
1,2,3 () o
1,3,2 (23) S0
21,3 (12) s1
2,3,1 (123) -
3,1,2 (132) r9
3.2,1 (13) $o
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De cycle (abedef...vyz) has the same effect as (ab)(bedef...xyz). Indeed, (bedef...xyz) ev-
erything moves one position except that ¢ ‘moves to’ a and z moves to b. Afterwards the cycle
(ab) interchanges a en z. As a consequence the number positions are identical to the ones
after (abedef...xyz). Therefore, each n-cycle (n > 2) can be written as a product of 2-cycles:
(abcdef...xyz) = (ab)(be)(cd)(de)...(xy)(yz). Furthermore (ab)(ab) = () since two reflections
cancel each other. With these rules it follows for instance that (123) = (12)(23), alternatively:
r1 = s150. Also (123)(132) = (312)(213) = (31)(12)(21)(13) = (31)(13) = () or 172 = 7.

A consequence of the one-to-one correspondence between de cycles of S3 and the elements
of D3 is that S35 =2 D3. For n < 3 the symmetry of a regular n—polygon consists of n rotations
and n reflections. The group D,, therefore has 2n elements. The permutation group S, has
n! elements. The group D, can be isomorphic to S, if 2n = n!. This is only satisfied for
n = 3. For n = 2 (the regular 2-gon is a line element connecting point 1 to point 2) the two
reflections coincide with the identity rg and the rotation r; over w. So, So has two elements
just like C5. As can be verified, Cy = 5.

1.6 The group 9,

For n = 4 the permutation group has 4! = 24 elementen, while D4 has 8 elements. Therefore
is Dy one of the subgroups of Sy. The Cayley table for Sy will not be shown since it is a 24
X 24 table. Instead, in the next table the 24 elements of S are shown and, where applicable,

the corresponding element of Dy.

a,b,c,d element of Sy | element of Dy
1,2,3,4 () ro
1,2,4,3 (34)

1,3,2,4 (23)

1,3,4,2 (234)

1,4,2,3 (243)

1,4,3,2 (24) S0
2,1,3,4 (12)

2,1,4,3 (12)(34) s1
23,1, (123)

2,3,4,1 (1234) 1
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a,b,c,d element of Sy | element of Dy
2,4,1.3 (1243)

2,4,3,1 (124)

3,1,2,4 (132)

3,1,4,2 (1342)

3,2,1.4 (13) 52
3,24,1 (134)

3,4,1.2 (13)(24) r9
3,421 (1324)

4,1,2,3 (1432) r3
4,1,3,2 (142)

4,2,1,3 (143)

4,231 (14)

4,3,1,2 (1423)

4,3,2,1 (14)(23) S3

1.7 Klein four-group V

We consider a rectangle without arrows, see the figure. The lines of reflection are dashed.

4 3

The rectangle is mapped onto itself by a rotation over 0, a rotation over 7, a reflection in the
horizontal axis and a reflexction in the vertical axis. They are denoted as rq, r1, s, respectively
sy. The group {rg,r1, sz, sy} has order 4 and is known as the Klein four-group, denoted as V.

De Cayley tabel is as follows:
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Tro Sy Sy 1
To o Sg Sy 1
Sz Sz To 1 Sy
Sy Sy 71 T0 Sy
T1 T Sy Sy To

15

We also consider the set {1,3,5,7}. Multiplication is modulo 8 (that is, subtract multiples
of 8 until the result is 0, 1, 2, 3, 4, 5, 6 or 7). Modulo is usually abbreviated to mod . For

example, 5 X 7 mod 8 =35 mod 8 =3 . The Cayley table is

1 3 5 7
1 1 3 ) 7
3 3 1 7 5
5 ) 7 1 3
7 7 ) 3 1

The two previous Cayley tables have the same structure. Although rotations and reflections

may seem to have nothing to do with multiplications modulo 8, the Cayley tables learns that

{ro, 1, Sz, sy} and {1,3,5,7} are isomorphic.

1.8 The group Z/nZ

The cyclic group Z/nZ (also written as Z,) is the set {0, 1, ..., n — 1} where addition is modulo
n. For example, Z/37 = {0,1,2} where addition is modulo 3. The Cayley table for Z/37Z is

The table has the same structure as for Cs, so C3 = Z/37Z. In general C,, = Z/nZ for all n.
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The general linear group GL(n,F) is a group of n x n invertible (non-zero determinant)
matrices with matrix elements in F; F can for instance be C or R. However, F can also be
Z/nZ. The special linear group SL(n,F) is a group of n x n matrices with determinant equal
to 1 and with matrix elements in F. Also here F can be Z/nZ. In words, modular counting
can also be applied to matrix elements. For instance, GL(2,7/37Z) is a group of 2 x 2 matrices
with matrix elements in Z/3Z. Ignoring the determinant this would lead to 3* = 81 possible
matrices. A non-zero determinant, calculated (mod 3), reduces the number of possible matri-
ces to 48. For the group SL(2,Z/3Z) this is further reduced to 24. As another example we
consider the group GL(2,7Z/27Z), which is identical to SL(2,Z/27Z). Ignoring the determinant
this would lead to 2* = 16 possible matrices. A non-zero determinant, calculated (mod 2),

reduces the number of possible matrices to 6. These 6 different matrices are:

(o) (1) (10 ) (.15
s-(90) m=(1 1) ==(o1) (.16

The Cayley table for these matrices have the same structure as C3: GL(2,Z/2Z) = C3. Since
C3 = S3 also GL(2,Z/27) = Ss.

1.9 Number of groups of order n

In all the tables shown an element never occurs more than once in a row (or in a column). The
reason for this is as follows. Consider a group consisting of the different elements {a, b, ¢, d, ...}.
Suppose that b followed by a has the same result as ¢ followed by a. That would imply ab = ac.
Since each element of a group has an inverse, we can write ab = ac — a tab = a lac = b=c.

The latter contradicts the initial assumption of b and ¢ being different elements.

The question arises: how many groups of order n have a different (not isomorphic) Cay-
ley table? Without specifying them we denote the elements as e, f, g, etc., where e is the unit

element. For order 1 there is just 1 element: e. So, there is just 1 table possible:

e

e e

For order 2 we have: {e, f}. There is just 1 table possible, isomorphic to the table of Z/2Z:
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For order 3 there are 3 elements: {e, f,g}. To create the table f2 = e is not possible. The
only possibility, f2 = g, leads to 1 table, which is isomorphic to Z/3Z:

el flyg
elel flg
flflo)|e
glglel|f

For order 4 there are 4 elements: {e, f,g,h}. The table can be partly filled:

el flgl|h
ele| flglh

SR |
S| |

To complete the row for f we have three options. The first is f2 = ¢g. The requirement that
each element occurs only once in a row or column limits the options for further filling the

table to just one possibility:

e| flg|h
elelflg|h
Flflg|h]e
glg|hlelf
hlh|lel| flg

With e <+ 0, f < 1, g <> 2 and h <> 3 one sees the table is isomorphic to Z/4Z.

For the second option, f2 = h, one is forced to the following table:

e| flglh

elel| flglh

1 r €
glgle|h|f
hlh|g| f]le

That the latter table also is isomorphic to Z/47 can be seen by interchanging the rows and
columns for g and h followed by replacing g for A and h for g. It can also be seen from the
elements following cyclic from f: f = f', h=f% g= fh = f3, e= fg= f*
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For the third option, f2 = e, it turns out we have two possibilities for further filling:

el flgl|h el flglh
elel|flglh elel|flg|h
flflelhly flflelh
glg|h|[f]e glg|hlelf
hlh|glelf hlh|gl|fle

The left and right table are isomorphic to Z/4Z respectively V. So, there are 2 groups of
order 4: Z/4Z and V. V is the smallest non-cyclic group. Cyclic groups are always Abelian.
Non-cyclic groups are either Abelian or non-Abelian. The non-cyclic group V' is Abelian while,

for instance, the non-cyclic group Dj3 is non-Abelian.

For order 5 one finds only 1 table isomorphic to Z/5Z. For order 6 one finds two tables:

one isomorphic to Z/67Z and one isomorphic to D3. Dj is the smallest non-Abelian group.

If the order of a group is a prime p, there is just 1 table. The table is isomorphic to Z/pZ.

1.10 Subgroups and classes

That V and D3 are not cyclic groups can already be seen from the structure of the table: the
elements seem to be divided in blocks: 2 x 2 blocks for V' and 3 x 3 blocks for D3. In V
is {e, f} a subgroup of order 2. Also {e,g} and {e, h} are subgroups of order 2. The unit
element e is a subgroup of order 1. The order of a subgroup is a divisor of the order of the
group. A group whose order is a prime p can only have e as a subgroup. It therefore has only

a single table: a table isomorphic to Z/pZ.

The group Ds has 1 subgroup of order 1: 7y, 3 subgroups of order 2: {rg, so}, {ro, s1},{70, s2},

1

and 1 subgroup of order 3: {rg,r1,72}. For D3 we can calculate the result of grig~", where

g runs through all the elements of D3, thus rorlral, Tlrlrfl, rzrlrgl, 307“1561, slTlsfl and

L is either r; or ro. The set

827‘182_1. The result is either r; or ro. For each g also grog™
{r1,ro} therefore is a conjugacy class. Similarly one finds that {sg, s1, s2} is a conjugacy class.
The unit element, rg, also is a conjugacy class. So, D3 has 3 different conjugacy classes. A
subgroup consisting of complete conjugacy classes is called a normal subgroup. For instance
for D3 is {ro, 1,72} a normal subgroup, while the subgroup {rg, so} is not a normal subgroup
since it does not contain the complete conjugacy class {sp, s1,s2}. The subgroup {ro} is a
normal subgroup Ds; a unit element always is a normal subgroup. In summary, D3 has 3

classes, 5 subgroups and 2 of the 5 subgroups are normal subgroups.



Chapter 2

Modular Arithmetic

2.1 Some number theory

In number theory an important role is played by the prime numbers. The prime-counting
function 7(z) counts the number of primes smaller than or equal to . For instance, 7(11) =5

since there are 5 primes (2, 3, 5, 7 and 11) smaller than or equal to 11. A well known
T
approximations for 7(z) is a(zr) = li A better approximation is Li(z) = / ﬁdt, which
nzx 5 In

requires a numerical evaluation. A convenient approximation is

x 1
=—|1+—).
@) Inz ( +lnx>

In the figure below all four functions are shown or z < 1000, «(z) in blue, Li(z) in orange,

p(z) in green and 7(z) in black.
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For x > 8- 103 the approximation Li(z) performs on average better than u(z). For large z

the performance of three approximations are tabulated:

10" a(z)/m(z) Li(z)/m () (@) /m(z)
10" 1.08574 1.28011 1.55727
102 0.86859 1.16324 1.05720
10° 0.86170 1.05098 0.98644
10% 0.88343 1.01309 0.97935
10° 0.90553 1.00383 0.98419
106 0.92209 1.00164 0.98884
107 0.93355 1.00051 0.99147
108 0.94224 1.00003 0.99339
10? 0.94901 0.99996 0.99481
1010 0.95438 0.99995 0.99583
10t 0.95874 0.99992 0.99659
10'2 0.96233 0.99993 0.99716
10%3 0.96535 0.99994 0.99759
104 0.96791 0.99994 0.99794
10%° 0.97013 0.99995 0.99821
106 0.97205 0.99992 0.99844
1017 0.97374 0.99992 0.99862
10'8 0.97524 0.99993 0.99877
10" 0.97658 0.99993 0.99890
10%0 0.97778 0.99994 0.99901
10% 0.97886 0.99994 0.99911
10%2 0.97984 0.99995 0.99919
10% 0.98074 0.99995 0.99926
10%4 0.98156 0.99995 0.99932
10% 0.98231 0.99995 0.99937
1026 0.98300 0.99996 0.99942
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A well known unsolved problem, one of the so called Landau’s problems, is Legendre’s con-
jecture: there always exist at least one prime between two consecutive perfect squares.
Let us denote the number of primes between two consecutive squares n? and (n+1)? as x(n).

An estimate for x(n) is obtained as follows. Between the squares n? and (n + 1)? there are

2n numbers. Half of it will be even and therefore not prime. This leaves 2n [ 1 — 5 odd
1 1

numbers. Approximately a third of it will be a multiple of 3. This leaves 2n [ 1 — 2) (1 — 3)
possible primes. Repeating the argument for multiples of 5, 7, and so on, we obtain

B(n) =2n 1 — — ) as an estimate for x(n).

Z Pk
pr<n
From p(x) another estimate is obtained: u((n + 1)%) — u(n?) ~ ... = ni—i—l We will
In(n+1)
1
denote it as {(n), thus £(n) = IT(lJr—kl) In the next figure we have plotted the function x(n)
n(n

(black) and its estimates B(n) (orange) and &(n) (green).
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The function S(n) slightly overestimates. The function £(n) follows accurately k(n), even for

very large n. From £(n) we obtain as an estimate for 7(n?):

n—1 n k
IOEDD Lk
k=1 k=2

With the substitution of x for n? this is

" Ve Ve, T
Z — —dv ~ sdv® = —dt.
prt Ink vz Inwv vz Inwv o Int

This completes the circle since the latter is equal to Li(x). Although still not proven, the
figure above suggests x(n) > 0 for all n > 0. The conjecture might be stated a little stronger.
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A numerical inspection suggests there always is a prime between n? and n? 4+ n and a prime

between n? +n and (n + 1)2, for n > 1. If true, it implies x(n) > 2 for all n > 0.

Another one of Landau’s problems is the Goldbach conjecture: every even number larger
than 2 can be written as the sum of two primes.

A lot of even numbers can be written as the sum of two primes in multiple ways. For instance,
20 = 3+ 17 and 20 = 7+ 13. Let us denote the number of ways an even number 2n can

be written as a sum of primes as A(n). In the next figure we have plotted the function A(n)

(Inn)?

(black). The green and orange curves are respectively

(Inn)2
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The figure above clearly suggests A(n) > 0 for all n > 1. Still, it is not proven.

Another one of Landau’s problems is the twin prime conjecture: there exist infinitely many
primes p such that p + 2 is prime.

The number of twins smaller than or equal to x will be denoted as 7(x). An estimate for 7(x)

is obtained as follows. From &(n) it follows that the probability for a number x between n?

1
and (n + 1) to be prime approximately is LI
2nlnn 2Inn

n? and (n + 1)? are randomly positioned the probability for a number x 4 2 between n? and

. Assuming the primes between

The probability for a twin between n? and

(n + 1)% to be prime approximately is
2Inn

1

(n +1)? therefore is ) For the expected number of primes between n? and (n +1)? we
nn

n

1
then have 2n - e = Snn This leads to the following estimate:

(z) ~ K N/ﬁv d —/xl dt
TE2LomE2 " ) s 2o ), (nt)?
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By means of partial integration we find

vl ¥l t 1" x 2
—_dt= [ —at— || i) - 4 =
/2 (Int)? /2 Int [lntL i() Iz | In2

Neglecting the 2/1In2 and approximating Li(z) by u(x) we obtain

(1) ~ —— 1+i _r 7T

I Inx Inz  (lnz)?

1.63z
(Inx)?

for 7(z). For increasing x a smaller value than 1.63 is required for a good approximation

In the next figure 7(x) is plotted against = (black). The green curve is the estimate

(ultimately to 1.32 for extremely large z).
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The figure above suggests 7(x) is not limited. Still, it is not proven.

2.2 Some modular arithmetic

Modular arithmetic is a sort of cyclic counting; counting modulo a number. For instance, 49
mod 11 means: subtract from 49 a multiple of 11 such that the result is a number larger than
or equal to zero and smaller than 11; 49 mod 11 = 5. We also say that 49 is congruent to 5
modulo 11: 49 =5 mod 11.

Modular arithmetic can be very powerful. To verify that 67'9 — 1 is divisible by 165 we
have to check that 6719 =1 mod 165. Since 165 is 3-5 - 11 we proceed as follows:

67=1 mod 3 — 67'%® =119 =1 mod 3.

67=2 mod5 — 67*=2*=1 mod 5 — 67'% = (67*)" = 12" =1 mod 5.

67=1 mod 11 — 67'%® =11 =1 mod 11.

Now if a number is equal to 1 modulo 3, equal to 1 modulo 5 and equal to 1 modulo 11 it
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must be 1 modulo the product of 3, 5 and 11 since 3, 5 and 11 have no factor in common.
Hence, 67198 — 1 is divisible by 165.

Another powerful result is Fermat’s ‘little theorem’: if p is a prime number then a? = a
mod p for any integer a. One way to prove it is by means of induction.

Firstly, e = @ mod p is obviously true for a = 0 and for a = 1.

P
Secondly, suppose it is true for a then it follows for a + 1: (a + 1)? = Z (i) a?7*. Forpa
k=0
|
prime and k > 0, k < p the numerator of (i) = % contains a factor p not cancelled
p— k)k!
out by a number in the denominator. As a consequence (a + 1)P = a? + 17 = (a+ 1) mod p.

Thus a? = a mod p implies (a + 1)? = (a + 1) mod p.

A little investigation learns that a® = a mod 30 for all a. This can be understood with

5 3 2 3 =

Fermat’s little theorem. For example, for mod 3 we have a® = a® - a> = a-ad® = @ a

mod 3. Similarly, one finds a® = @ mod 2. Together with a® = @ mod 5 this implies a® =

a
mod 2 - 3 - 5 since 2, 3 and 5 have no common factors. For each n we will search for the
largest value m for which a™ = a mod m. It is not necessary to look for values of m larger
than 2™ — 2 since they will violate 2" = 2 mod m. So, m is a divisor of 2" — 2. Now if
a? = a mod p for some prime p than also a?™*®~1 = ¢ mod p. Thus in 2" — 2 occurs
the factor 2 for n = 2,3,4,...,2 + k, ..., the factor 3 for n = 3,5,7,...,3 + 2k, ..., the factor
5 for n = 5,9,13,....,5 + 4k, ....etc. That is, a prime factor p occurs in p* —p for n = 1
mod (p — 1). In other words: a prime p is a factor of 2" — 2 if p — 1 divides n — 1. It quickly
delivers the factors 2, 3, 5, 7 and 13 for n = 13. Since 2-3-5-7-13 = 2730 we obtain
a'® = a mod 2730 for all a. In a similar way one finds for instance a3’ = a mod 1919190

or a*?' = a mod 446617991 732222 310. It is just a consequence of plain modular arithmetic.

For each n we denote the largest values m for which ™ = a mod m as £(n). A different
result is obtained when we search for the largest value m for which ¢”' =1 mod m. For
each n we denote these values of m as n(n). For the first 25 values of n the values of {(n) and

n(n) are shown in the next table. Always is n(n) a divisor of £(n).

n [213]4|51(6| 789 (10|11(12| 13 |14|15|16| 17 |18 19 |20| 21 |22| 23 |24| 25

£(n)[2]6|2(30(2|42]2|30( 2 |66 2 |2730| 2 | 6 | 2 |510] 2 |798| 2 |330| 2 [138] 2 2730

nn)|1|3|1| 5|1 7{1|5 |1 |11|1{ 13 |1 (3|1 |17|1 |19 |1 |11 |1]23|1] 13

The relation a? = a mod p is always true if p is a prime and sometimes true when p is

composite. For example, a®®' = a mod 561 for all a, while the number 561 = 3 -11- 17 is
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composite. Such a number is a Carmichael number. Since p—1 divides 560 for p = 2, 3, 5, 11,
17,29, 41, 71, 113 and 281, and since 2-3-5-11-17-29-41-71-113-281 = 15037922004 270
we obtain ¢! = ¢ mod 15037922004 270. Since the primes 3, 11 and 17 are factors of
15037922004 270 we also have a®®! = a mod 561. Alternatively, n is a Carmichael number
if it is a product of primes p for which p — 1 divides n — 1. Thus 561 is a Carmichael num-
ber because 3 - 11 - 17 = 561 while 2, 10 and 16 are divisors of 560. In this way the next
Carmichael numbers are easily found: 1105 =5-13-17, 1729 = 7- 13 - 19, etc. The smallest
Carmichael number with 4 factors is 41041 = 711 - 13 - 41 and the smallest with 5 factors is
825265 =5-7-17-19-73, etc. For each number of factors there are infinitely many Carmichael

numbers.

An equivalent form of Fermat’s little theorem is:

if p is a prime number then a?~! =1 mod p for any integer a not divisible by p.

If =1 £ 1 mod p for some a Z 0 mod p it is certain that p is composite. However, if

a?~! =1 mod p the number p is either prime or composite. Suppose we want to use Fer-
mat’s little theorem as a test for primality of 3281. If we try it for a = 43 we get 433280 = 1
mod 3281. Let us try a = 150, then we get 1503?80 = 1 mod 3281, still not conclusive. If
we try a = 2 we get 23?80 = 3197 # 1 mod 3281 and we finally know 3281 is composite:
3281 = 17 -193. Among the values 0 through 3280 for a there are 256 values for which
a0 =1 mod 3281. For the Carmichael number 560 there even are 320 values for a < 561
for which a®® = 1 mod 561. To know for sure that p is prime a?~' = 1 mod p has to be
tested for all numbers a < p. For large p this is time consuming. One can do better with
Lehmer’s theorem: if there exists an a such that ¢?~! = 1 mod p and o 1/9 £ 1 mod p
for all primes ¢ dividing p — 1, then p is prime. Now one can stop testing as soon as an a has

been found which satisfies Lehmers theorem.

2.3 A small excursion

n—1

As a small side step we consider the value of p(n) := Z n mod k. For example, for n = 41
k=1

we have p(41) = 297, the values n mod k are shown in the next table

k 1(213]4|5|6|7(8]9]|10(11|12|13|14|15|16|17|18[19|20{21|22|23|...|39|40

41 mod k|0[1(2|1|1(5|6|1|5| 1|8 (5|2 |13{11|9 |7 |5 |3 |1(20(19|18|...]2 |1

If all the values of the bottom row run from 1 through 40 the sum would be % -40 - 41 = 820.
The value p(41) = 297 is a fraction 0.35357... of it. With the table for n = 41 at hand we

can derive an estimation for p(n) for large n. For n = 41 we see for k = 21 through 40 the
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1
values of 41 mod k run from 1 through 20. It contributes to p(41) with 3 20 - 21 = 210.

1 2
For large n this contribution to p(n) would be approximately 3 (g) . For k£ = 14 through
20 the values of 41 mod & run from 1 through 13 with step size 2. For large n it would run

from 1 through about n/3 with step size 2. If it would run from 1 through n/3 with step size
1 2
1 it would contribute to p(n) approximately with 5 (g) . Since it runs with step size 2, the

1 1 2
contribution is about the half of it: = 33 (g) . For k = 11 through 13 the values of 41
mod k run from 2 through 8 with step size 3. Its contribution to p(n) therefore approximately
11 2
is: &~ 33 (Z) . Continuing the line of reasoning we obtain
1212112112112 >
pln) = gn ((2) +3(3) +3(3) +1(5) +- Z S
With the substituti f L L ! the latt b d t
i e substitution of ————~ = — — —— the latter can be rearranged to
kk+1) & k+1 &
oo oo oo
1 1 1 1
kz_lkm Zklﬁ—l k+1)2_;k_k+1 (I<:+1 ;2

The latter sum is the Riemann-zéta function ¢(2), and its value is 72/6.

As a result we therefore have
1 n—1 1 2 2
lim @: lim —QZn mod k = — - (2_71') = <1—7r>.
n—oo n n—oo N — 2 6 12

In the next diagram the ratio p(n)/n? is scattered against n. The limit value 1 — 72/12 is

shown as a green line.
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2.4 FEuler’s theorem

Two numbers m and n are ‘relatively prime’ if they have no common factors or, alternatively,
if ged(m,n) = 1. An important function in number theory is Euler’s totient function . For
a number n Euler’s totient function counts the integers k (1 < k < n) which are relatively
prime to n. For example, p(15) = 8 since there are 8 integers relatively prime to 15: 1, 2,
4,7,8, 11, 13 and 14. Other examples: ¢(3) = 2 (1 and 2 are relatively prime to 3) and
©(5) =4 (1, 2, 3 and 4 are relatively prime to 5). In general ¢(p) = p — 1 if p is a prime.
We see ¢(3) - ¢(5) = p(15). In general ¢(m) - p(n) = @(mn) if m and n are relatively prime.

k—1

1
Another property is go(pk) =p"—p =pF(1—=). Any number n can be written as a

product of powers of primes (fundamental theorem of arithmetic): n = p]fl .- pkr. From the
latter is obtained Fuler’s product formula:

o) = o) ol = (1= ) (1= ) (1= 0.

p1 D2 Dr

Another property is: > ¢(d) = n, where the summation is over all the divisors d of n.
Euler’s theorem reads: a?™ = 1 mod n for any integer a relatively prime to n. If n is a

prime p it is reduced to a»~Y =1 mod p.

Writing = as the sum of y and a multiple of p(n) we have a* = avtemk — qu (a‘p(”))k =
a¥1¥ = a¥ mod n. A consequence of Euler’s theorem therefore is: if # =y mod ¢(n), then
a® = a¥ mod n. If nis a prime p it is reduced to: if x =y mod (p—1), then a® = a¥ mod p.
The latter relation has been applied already in the second section when we searched for the
largest value m for which a™ = a mod m for all a.

Here we will search for the smallest value m which for a given n satisfies a”* =1 mod n for
all a relatively prime to n. For each n these values of m is denoted as A(n). A(n) is known
as the Carmichael function. For the first 28 values of n the Carmichael function and Euler’s

totient function are shown in the next table.

n |11213]4(5|6|78({9(10(11|12|13|14|15|16|17|18]19|20|21|22|23|24|25|26|27 |28

A(n)|1]1|2(2]4|2(6]|2(6]4|10]2|12|/6 |4 |4|16|6 |18 4|6 [10]22|2 [20]12|18|6

e(n)[1]1(2]2|4(2|6/4|6] 4 (10| 4|12/ 6|8 |8 |16|6 (18| 8 |12]10]|22| 8 |20|12|18|12

A(n) is equal to or a fraction of ¢(n). If n is a power of an odd prime or twice the power of
an odd prime A(n) = ¢(n). If nis 2 or 4 A(n) = ¢(n). If n is a power of 2 larger than 4

A(n) = =p(n). For other composite numbers n other fractions occur.

2
A(n)

Carmichael’s theorem reads: a =1 mod n for any integer a relatively prime to n. If n is

a prime p it is reduced to a?~! =1 mod p.
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2.5 Rings and fields

A set is a semigroup for a given operation ( -+ or - or whatever) if it satisfies associativity. A

set is a monoid if it satisfies associativity and contains a neutral element. A set is a group if it

satisfies associativity, contains a neutral element and each element has an inverse. To numbers

we can apply addition and multiplication. For both they can be a group. For instance, the

set of real numbers R is a group for addition:
1. R contains a neutral element, 0: a +0 =0+ a = a.
2. each element a of (R,+) has an inverse, —a: a + (—a) = (—a) + a = 0.
3. associativity is satisfied: (a+b) +c=a+ (b+ ¢).
The set of real numbers R also is a group for multiplication:
1. R contains a neutral element, 1: ¢-1=1-+a = a.
2. each element a (except 0) of (R,-) has an inverse, 1/a: a-1/a=1/a-a = 1.
3. associativity is satisfied: (a-b)-c=a-(b-c).

The next two tables show the Z/5Z structure for addition respectively multiplication.

+10]112|3]|4 0(1(2]3]4
01011,2]3]|4 0jo0oj0j0j01|0
1111213 ,4]0 1101112]3]4
2121341011 21012141113
313[4(10]1]2 31013 |1]4)|2
41410111213 410141321

We see Z/5Z is a group for addition and, if we forget the 0, a group for multiplication .

situation changes for Z/6Z, see the next tables.

+10]12|3]4]5 0112|345
0OjJ]01 1|2 [3]4]|5 0j]ojoOj0Oj0O|0]O0
1111213 [4|5]0 1101112345
212131451011 2101214 10]|2]4
313145 (0]1)|2 3103013 |0]3
4141510 1(2]3 4101412 (0)|4]2
5150|112 |3|4 51015141321

The

The set Z/67Z is a group for addition. However, it is not a group for multiplication since 2, 3

and 4 have no inverse.
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When both operations are considered together one obtains, depending on properties satisfied,
rings or fields. To this end it is clarifying to enumerate properties (which should hold for every
a, for every pair a,b and for every triple a, b, ¢) in the following order:
P1: associativity for (+): a4+ (b+¢) = (a +b) + ¢
P2: neutral element for (+): a4+0=0+a = a.
P3: inverse for (+): a + (—a) = (—a) +a = 0.
P4: commutative (Abelian) for (+): a+b=0b+ a.
P5: associativity for (-): a-(b-¢) = (a-b)-c.
P6: distributivity: a-(b+c¢)=a-b+a-c; (a+b)-c=a-c+b-c
P7: neutral element for (-): a-1=1-a=a.
P8: commutative (Abelian) for (): a-b=1"0-a.
P9: no divisors of 0: if a-b=0thena=0or b= 0.
P10: inverse (except for 0) for (-): a-(1/a) = (1/a)-a = 1.
Then we have the following nomenclature:
A set is a semigroup if P1 is satisfied.
A set is a monoid if P1 and P2 are satisfied.
A set is a group if P1, P2 and P3 are satisfied.
A set is a commutative (Abelian) group if P1, P2, P3 and P4 are satisfied.
A set is a semiring, SR, if P1, P2, P4, P5 and P6 are satisfied.
A set is a ring, R, if P1, P2, P3, P4, P5 and P6 are satisfied.
A set is a unitary ring, UR, if P1, P2, P3, P4, P5, P6 and P7 are satisfied.
A set is a commutative unitary ring, CUR, if P1 through P8 are satisfied.
A set is an integral domain, 1D, if P1 through P9 are satisfied.
A set is a field, F, if P1 through P10 are satisfied.
As a consequence: F'C ID CCURCURC R C SR.

Some examples: the set of real numbers R satisfies P1 through P10 and therefore is a field.
The same holds for the set of complex numbers C. Also the set of rational numbers Q is a
field. The set of integers Z is an integral domain (the inverse of for instance 3 is % ¢ 7). In
general Z/nZ is a ring. For instance, Z/6Z is a ring. The subset {0,2,4} of Z/6Z also is a
ring (with 4 as neutral element); it is a subring of the ring Z/6Z. We are more specific when
we say that Z/6Z is a CUR. Similarly, since {0,2,4} € Z/6Z satisfies P9 we are more specific
when we say that {0,2,4} € Z/6Z is an ID. Z/5Z is a field. In general, the ring Z/pZ is a
field if p is a prime.

A ‘unit’ is an element of a ring which has a multiplicative inverse. For R every element,
except 0, has an inverse; every element of R except 0 is a unit. Z has 1 and —1 as units. The
‘unit group’ of Z therefore is {1, —1}. For Z/6Z is {1,5} the unit group. For {0,2,4} € Z/6Z
is {4} the unit group. For Z/pZ with p a prime is every element except 0 a unit.
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2.6 Polynomials

An expression of the form K[z] = a,2™ + a,_12" ! + ... + a12 + ag is a polynomial. In short
n

Z a;z’ is a polynomial (an infinite series such as a Taylor series of sin x is not a polynomial).
1=0
The largest power of x, n, is the degree of the polynomial. If the largest power is 0, the

polynomial is a constant: ag. If the coefficients a; are in a ring R, a UR, a CUR or an 1D,
then the polynomial also is a ring R, a UR, aCUR or a ID respectively. If the coefficients
a; are in a field F', then the polynomial is an ID; a polynomial in a field requires for the
multiplicative inverse a fractional power of x which is outside the definition of a polynomial.
Thus, although R is a field, R[z] is an ID.

A polynomial is reducible if it can be written as a product of factors, where a factor may

not be a unit. Some examples:

1 1 1 1
The polynomial 2+ +1 over C can be factored : 2°+ 241 = (x+§ +§Z\f3)(x+ 5~ izx/g),

while it can not be factored (is irreducible) over R.

1 1 1 1
The polynomial 22 — z — 1 over R can be factored : 22 +z+1 = (z — 3 + 5\/5)($+ 3~ 5\/5),
while it is irreducible over Q. ) ) ) .
The polynomial 2% + tz — & over Q can be factored: z? + riaart (x + 5)(1‘ — §)

The polynomial 2 — 3z + 2 over Z is reducible: 2% — 3z 4+ 2 = (z — 1)(z — 2).

The polynomial 3z + 1 over Z is irreducible, 3(z + %) is not allowed since 3 ¢ Z. The poly-
nomial 3z + 1 also is irreducible over Q, 3(x + %) is not allowed since 3 is a unit of Q.

If a polynomial is irreducible over Z it is irreducible over Q. The reverse may not be true:
The polynomial 3z + 3 over Z is reducible: 3x+3 = 3(z+ 1), while it is irreducible over Q; 3 is
a unit (invertible) in Q, while not a unit in Z. The greatest common divisor of the coefficients
of the latter polynomial is 3. Therefore 3 can be separated without causing a fraction in the
other factor. Hence, if a polynomial is irreducible over Q and the greatest common divisor of
the coefficients is equal to 1, then it is irreducible over Z. A polynomial for which the greatest

common divisor of the coefficients is equal to 1 is called a primitive polynomial.

Some modular arithmetic examples: The polynomial 22 + = + 1 over Z/2Z is irreducible.
Indeed, for z = 0 we have 02 4+0+1=1%#0 mod 2 and for x =1 we have 124+ 1+1=1#0
mod 2; there are no roots. For the polynomial 22 + x + 1 over Z/37Z we find for z = 1
that 124+ 1+ 1 = 0 mod 3. Hence, the polynomial 22 + x + 1 over Z/37Z is reducible:
(x—-1)22=22-22+1=22+2+1 mod3. The next value for n for which 22 + = + 1
is reducible over Z/nZ isn = 7: (x —2)(z —4) = 22 —6r+8 = 22 + 2+ 1 mod 7.
The list goes on for n = 13,19,21,31,.... The polynomial 2> + x + 1 over Z/91Z can
be factored in two ways: (z — 9)(z — 81) = 2?2 — 90z + 729 = 22 + z + 1 mod 91 and
(r — 16)(z — 74) = 22 — 90z + 1184 = 22 + v + 1 mod 91. Notice that 91 is not a prime
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number. There are more examples for which the polynomial 2 + x + 1 over Z/nZ can be
factored in multiple ways if n is not a prime. If for a prime p the polynomial 22 + = + 1 over

Z/pZ is reducible, it can be factored in only one way.

As another example we consider the polynomial 22 + 1 over Z/nZ. It is reducible for n = 2:
(x—1)2 =22 —2r+1 = 22 + 1 mod 2. Other values for n for which the polynomial
22 + 1 over Z/nZ is reducible are 5,10,13,17,25,.... For the composite number n = 65 we
have the first value for which the polynomial 22 + 1 over Z/nZ can be factored in two ways:
(x—8)(x—57) = 22— 652x+456 = 22+1 mod 65 and (v —18)(x—47) = 2? —65x+846 = 2> +1
mod 65. Again, for a prime p the polynomial 22 + 1 over Z/pZ can be factored, if it is re-
ducible, in only one way. The reducibility of the polynomial 22 + 1 over Z/pZ for a prime p,
thus 2 + 1 = 0 mod p for some z, implies that z? + 1 is equal to p or a multiple of p for
some x. This brings us to the fourth Landau problem: are there infinitely many primes of
the form k% + 1 with k € N. Let us denote the number of such primes smaller than n? + 1 as

~v(n). An estimate for v(n) is obtained as follows. In the first section we saw the probability

. This leads to the

for a number between n? and (n + 1)? to be prime approximately is
nn
following estimate:

1 L 1 1 0.5 1
v(n) =~ Z R~ dt = -Li(n) = —p(n) = =on (1 + )

2Ink 9 2Int 2 " lnn Inn
k=2

0.71 1
In the next figure we have plotted the function v(n) (black). The green curve is n <1 +

Inn Inn
800 *
600 *
~~~
S i
A 400 .
200 *
0 ) L L L | L L L | L L L | L L L | L L L
0 2000 4000 6000 8000 10000

The estimate suggests y(n) will not stop growing. Still, it is an open problem.

)
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2.7 The Riemann zeta function

As another small excursion we consider the Taylor expansion of sinz/x: s

sinzx x2  xt 1S

:1 —_— _—— —
T 3'+5' 7'+

Since sinz has zero’s for x = nm, n € Z, (sinz)/z also has zero’s for = nw except for n = 0.

Knowing its roots the function (sinx)/x can be approximated as follows

T 1=+ D= D+ D) - Dyt o).
" sin x? z? z?
A (1= 50— )= o)

Euler already proved the latter equation is exact. That is, the approximation symbol =

actually is an equality symbol =. For our purpose we write the latter equation as

T (- (1) = Y1 )
k=1

where y, = 22/(k7)?. Removing the brackets and grouping similar products, we obtain

sinz

=1—(yi+y2+..)+ W2 +nys + ... +yys +...) — (yiyays + ...),

which can be systematically denoted as

sinx >
- —80—51+52—S3+...—1+Z(—

where
[ee] oo o0

So=1,8 =Y u, S = Zzyzyp S5 =23 yisuk, etc.
i=1

i=1 j>i i=1 7>1 k>j

The factors S, can be systematically expressed as follows:

n

00
Sp = — Z(—l)kHSn_ka, where T, = Zy,?
k=1 k=1

Solving for .S,, we obtain

So =1,

S1="T,

Sy = (T} — Ta) /2!,

Sy = (T} — 3T\ Ty + 2T3) /3!,

Sy = (T{ — 6T Ty + 3T5 + 8T\ T3 — 61y) /4!
and so on.

1 — 1
Since yy, = x2/(km)? we have T,, = % Z T and since Z T is equal to the Riemann
k=1

2n
zeta function ((2n), we can write T, = —-((2n). As a result we have
™
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sing_ 79;«2) n 29‘3; (C3(2) - ¢(4)) - ?f; (¢*(2) — 3¢(2)¢(4) +2¢(6)) +
A (€H2) — 6C2)C() + 3C () + BC(2)C(6) — 6C(8)) — ..
Comparison with the series Si’;x —1- ”; + ”; _ 5;? + 9;? — . gives
2= 3¢
5= g ()W)
% _ 3'%6 (¢3(2) — 3¢(2)C(4) + 2¢(6))
% - ris (€*(2) = 6¢%(2)C(4) + 3¢*(4) + 8C(2)¢(6) — 6¢(8)), ete.

2
Successively solving for ((2), ((4), ¢(6) and ((8), we obtain ((2) = % as we used it in
4 6 8

the previous excursion, and ((4) = 79LO’ ¢(6) = 97;—5, ¢(8) = 9450 and so on.

We can also consider finite sums of positive powers of integers such as

1 1 1 1 1

§ :k:7n2+7n7 g k2:*n3+*n2+*na

- 2 2 e~ 3 2 6

- Ly - 4 5 4,13

B3 — St 3,1 R 23 n et

kg_l 4n + 2n + 4n , kg_l 5n + 2n + 3n 30n, etc

o I & (m+1 :
In general E E™ = e E ( . >Bj n™ 7 with B; the j-th the Bernoulli num-
m ; J

k=1 7=0

ber:

g 10(1]23] 4 |56 |7 8 |9(/10]|11 12 (13|14 |15| 16 |17 | 18

1 1 1 5 691 3617 43867
0| -+ lolLlol-L]o]Z]o0 0 — 3617 | | 43867

Bj |1 ~ 9730

N[ —
=
[SNEN]
[a)

The Bernoulli numbers are related to the Riemann zeta functions. One of the relations is

(_1)n+lBQn(2ﬂ.)2n
2(2n)! ’

¢(2n) =
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2.8 Divisor sum

The sum of the divisors of an integer n is denoted as o(n). For instance 12 has 1, 2, 3, 4, 6
and 12 as divisors, so 0(12) = 14+2+34+4+6+12 = 28. Similarly, 0(7) = 1+7 = 8. If m and
n have no common divisors then o(mn) = o(m)o(n). Thus 0(84) = 0(12)0(7) = 28-8 = 224.
If p is prime then o(p*) =1+ p+p> + ...+ = P = 1)/(p—1).

k;+1 o 1

Ifn= pr’ then o(n) = 1:[0(])?") = 1:[ pzpzi—l

Perfect numbers are numbers for which o(n) = 2n. According to the Euclid-Euler theorem a
number n = 2P~! (2P — 1) is perfect if p is a prime and 2P —1 is prime. Primes of the type 2 —1
are known as Mersenne primes. It then follows that o(n) = o(2P~1)o(2P—1) = (2P —1)2P = 2n.
The smallest perfect number is 2!(22 — 1) = 6, the second is 22(23 — 1) = 28, the third is
24(25 — 1) = 496, the fourth is 26(27 — 1) = 8128, the fifth is 2'2(2!3 — 1) = 33550336. The
number 219(2!1 — 1) = 2096 128 is not perfect since 2! — 1 = 2047 = 23 - 89 is not prime.
A number n is multiperfect if o(n) is a multiple (larger than 2) of n. Examples, for which

o(n) = 3n are 120, 672, 523776, .... o(n) = 4n for 30240, 32760, ...

If we add o(1) through o(41) the result is 1384. In section 3 we saw the sum of 41 mod 1
through 41 mod 41 is equal to 297. It is no coincidence that 1384 4+ 297 = 1681 = 41%. In

general

in mod k + ia(k) = n?.
k=1 k=1

As before, we denote the sum of the remainders as p. The relation then reads

p(n) + 3 o(k) = n?,
k=1

n

where p(n) = Zn mod k and where o is the divisor sum: o(k) = Zd, d | k means d a
k=1 d|k
divisor of k.

A proof of the relation is as follows. Since n =1+ ((n —1) mod k) if k is not a divisor of n
andn=0=1+ ((n—1) mod k) — k if k is a divisor of n it follows that

Z(n mod k) = Z(l +((n—=1) mod k))) — Zk
k=1 k=1 k|n
n n—1
=>» 14+((n—1) modn)+ Z((n —1) mod k) —o(n)
k=1 k=1

n—1
=2n—1+ Z((n —1) mod k) —a(n).
k=1
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Hence
p(n) —p(n—1)=2n—1-0(n).

A repetitive application of the latter leads to

p(n) = p(1) + > (plk) —plk — 1)) =0+2> k=31 o(k)
k=2 k=2 k=2 k=2
=(m*+n-2)—(n-1)+0(1) =Y ok)=n’>-Y ok). O
k=1 k=1

For convenience a self explanatory scheme for n =9 is given below.

k— 1123|456 7|8]|9 | sum of divisors
divisors of 1 | 1 o(l)=1
divisorsof 2 | 1 | 2 o(2)=3
divisors of 3 | 1 3 o(3)=4
divisorsof 4 | 1 | 2 4 o4)="17
divisors of 5 | 1 5 o(5) =6
divisorsof 6 | 1 | 2 | 3 6 o(6) =12
divisors of 7 | 1 7 o(7) =38
divisors of 8 | 1 | 2 4 8 o(8) =15
divisors of 9 | 1 3 9 0(9) =13

9modk | 0|10 |1 |4a|3|2]1]0] p9 =12

sum 91919191919 ]191919 81

From the relation nh—>Holo /)7(1721) =1- 7;; and the relation p(n) + . o(k) = n? we obtain
k=1

1 — 2
Jm a2 o ="
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Chapter 3

Elliptic curves

3.1 Rational points on a circle

As a start we consider rational points on a circle.

B B(0,1)

A-1,00 o0 A-1,00 0

In the left side of the figure a line is drawn through A(—1,0) and C(u,v) where A and C are

u+1
implies that the coordinates of B are rational if the coordinates u and v of C' are rational. In

the right side of the figure a line is drawn through A(—1,0) and B(0,¢). The line intersects

1—t% 2t
the circle at C' | ——,——
v <1 +t27 142
y coordinate t of B is rational. As a consequence, every rational point C on the circle is

v
both on a unit circle. As can be calculated the line intersects the y axis in B (0, > . This

>. This implies that the coordinates of C' are rational if the

m
parameterised by a rational parameter ¢. If we write the rational number ¢ as t = T such

k? —m? 2mk
m and v = m Therefore
we can find all right triangles with integer sides a, b and ¢ (Pythagorean triples, satisfying

a’? +b? = ¢?) by taking a = k> — m?, b = 2km and ¢ = k? + m? and substituting integer

that ged(m, k) = 1, then the coordinates of C' read u =

values for k and m. The important conclusion is that there are rational points on the circle

37
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22 4y% = 1. This is not the case for the curves 2" 43" = 1 for n = 3,4, .... (Fermat’s theorem,
proven by Wiles). There are no rational points on, for instance, the circle 22 4+ y? = 3. So,
the occurrence of rational points on a circle 22 4+ y? = a depends on a. The possibilities are
extended if we apply modular counting. For instance, z2+4% =3 mod 7 is satisfied for z = 1
mod 7 and y = 4 mod 7. There are more x,y pairs satisfying 22 + y?> = 3 mod 7, see the

next figure.

3.2 Right triangles with integer area

As a small excursion we consider right triangles with rational sides for which the area is an in-
teger. This is always the case for Pythagorean triples. For instance, the Pythagorean (3,4, 5)
triangle has area 6. The Pythagorean (9,40, 41) triangle has area 180. Since 180 = 5-62 we can
obtain a smaller integer area by dividing the sides by 6. Then the right triangle (1%7 6%, 6%)

has area 5. Another example with area 5 is (3:‘732, 3%, 4;’2‘%22), see next figure.
4 354769
747348 543
62 492
6 11
2
2 363
63 3519
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For right triangles with rational sides the smallest integer area is 5. Examples of right triangles

with area 6 are shown below.

5 5 1176080
5 - 1319901 5 502
=0 . 1551
"5
1 398
4 177 5ﬁ

The integer area n for right triangles with rational sides are known as ‘integer congruent num-
bers’. The sequence of integer congruent numbers starts with 5,6,7,13, 14, 15, 20, 21, 22, 23,
24,28,29,30,31,34, ... If we denote the rational sides of a right triangle as a, b and ¢, with
¢ the hypothenuse, we have, next to the Pythagorean relation a? + b> = ¢2, for the area the
relation n = %ab. Setting x = nb and y = + 2n

c—a c—a

3 —n2z. This is an equation for an elliptic curve. If a, b, ¢ and thus also n

it follows that the pair (x,y) satisfy the
equation y% = x

are rational, then z and y are rational and the pair (z, y) is a rational point on the elliptic curve.

Two n = 5 examples: for (a,b,c) = (1%,6%,6%) we obtain (6%,9%) and (6%,—9%) as a
rational point on the elliptic curve y? = z3 — 252. By changing roles of a and b we obtain for
(a,b,c) = (6%7 1%,6%) the rational point (45,300) and (45, —300). Moreover, taking opposite
sign for ¢ leads to additional rational points: (—4,—6), (—4,6), (—g, —3;—2) and (—%, 3%—?).

In a similar way we find from the (3%,3%,4?2%22

nal points on the curve y? = 2% — 25z: (1125, 36115), (1120 —3672L2), (12473 40%;8(1]),

) right triangle the following ratio-

144> 144> 1728 961>
473 13760 238 42174 238 42174 3 56706
(12W7_4029791)’ (= 16817_668921)’ (_21681’668921)’ (_22401’_6117649) and
(—2%, 61516776%69). These are not the only rational points on the curve y? = 2% — 25z. Other

rational points are, for instance, the zero’s (—5,0), 0,0) and (5,0).

Two n = 6 examples: from the (3,4,5) triangle we obtain (12,36), (12,—-36), (18,72),
(18, -172), (—3,-9), (=3,9), (—2, —8) and (—2, 8) as rational points on the curve y? = 3—36z.
From the (171, 5,174 triangle we obtain (63,43), (63,—42), (294,5040), (294, —5040),

’ 10 8
(=532, —473), (=532, 4:%), (-5, —22%) and (—5,22%) as rational points on the curve
y? = 23 — 362.

3.3 Elliptic curves
Third degree equations in two variables are in general given by
3 2 2 3 2 2 _
a1y + cy'r + cayx” + cux” + csy” + ceyr + cra” + gy + o + 19 = 0,

where the coefficients ¢; are elements of a field. If the equation is not singular, its curve is

called an elliptic curve. For our purpose we restrict to the situation where the ¢; are elements
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of Q, Z or Z/pZ. For these fields the elliptic curve can, by means of change of variables and

coordinate transformations, be rewritten in the Weierstrass form: y? = 23 + ax + b.

For b = 0 and a = —25 respectively a = —36 we obtain the elliptic curves from the pre-

vious section. They are shown, together with some of their rational points, in the next figure.

S R S I 22 y? = 2% — 36z i

20 40 | i

20 g

- (D ol |
—920 | B

—20 —40 | L
60 | i

—40 | | | R I N
5 0 5 0 15 10 =5 0 5 10 15 20

Figure 3.1: Left: the curve y? = 23 — 25z and some rational points found from the (1%, 6%, 6%)

343 3363 4?2‘71;612) right triangle (orange). Right: the curve

right triangle (green) and the (

492> 21519°
y? = 23 — 362 and some rational points found from the (3,4, 5) right triangle (green) and the
(171, i5,173%) right triangle (orange).

3 2

For the curve y? = 23 — n2x the zeros are: y =0 = (22 —n?) =0 =2 =0, 2 = —n, = =n.
For —n <z < 0 and = > n the curve has a real value for y; outside these ranges the value of

1y is complex.

The shape of the elliptic curve depends on the coefficients ¢ and b. This is illustrated in
the next matrix of figures. For y? = 23 — 3z — 18 there is a single real zero at (3,0) (upper

3 _ 3¢ — 2 there are

left). If the value of b is increased the zero moves to the left. For y? =
three real zero’s: one at (2,0) and a twofold one at (—1,0) (upper middle). For y? = 2% — 3z
there are three real zero’s: (—/3,0), (0,0) and (v/3,0) (upper right).

For y? = o3 — 3z + 2 there are three real zero’s: one at (—2,0) and a twofold one at (1,0)
(middle left). For y* = 2 — 3z + 8% there is a single real zero at (—21,0) (central figure).
For 32 = 23 there is a threefold zero at (0,0) (middle right). For y? = 23 + 8 there is a single
zero at (—2,0) (lower left). For y? = 23 4 3z — 4 there is a single zero at (1,0) (lower middle)

and for y? = 23 + 3x + 4 there is a single zero at (—1,0) (lower right).
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The curve for 2 = 23 +ax +b is singular if a twofold or threefold zero is present. A singularity
occurs if 4a® + 27b% = 0. A twofold singularity is the case for a = —3, b = —2 (upper middle)
and a = —3, b = 2 (middle left). A threefold singularity is the case for a = 0, b = 0 (middle
right). The points of singularity are denoted as S.

4 3 — 3z|— 18 4 3 — 3z|— 2 -4 3 — 3z B
2 | -2 -2 -
S

0 0 0

—2 2 | 2 | -

4 -4 -4 -
T T T T T T T T T T T T
—4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
| | | | | | |

4 28— 3z+2 4 a3 — 3a tt 8% 4 3 i

2 /\ -2 F -2 a

S

0 b 0 0 S

—2 2 | & 2 | -

—4 -4 x -4 -
T T T T T T T T T T T T
—4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

| | | | | | |
4 3+ 8 4 3+ 3x—4 4 23+ 3xH+4 B

3.4 Arithmetic on elliptic curves

A point P and a point @ on an elliptic curve can be composed (‘added’) to a point P 4 @ as
follows: draw a vertical line through the intersection point of the line through P and ) with
the elliptic curve, the intersection point of the vertical line with the elliptic curve is P+ Q. It

is illustrated in the left diagram of the next figure. Now let ) approach P. In the limit that
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(Q — P the line through P and ) becomes the tangent line at P. This is illustrated in the
right diagram of the next figure.

8 | VAR 8 VAl
Q

4 P - 4 L -

> 0 > 0 R
—4 | B —4 L

2P
787 T T T \P+Q\\7 787 T T T T '\\7
—4 =2 0 2 4 —4 2 0 2 4
xT T

For the line through P(zp,yp) and Q(zg,yq) we have the equation y = A(x — 2 p) + vy, where

yQ—~yp

e Substituting it in the equation y? = 3 + ax + b for the curve, we

the slope is A =

obtain a third order equation for z:
2 — N222 + (a + 2\%zp — 2 \yp)z + b — N2 + 2\zpyp — yp = 0.
From the comparison with
(z —ap)(x — xg)(x — xprg) = 2° — (xp + xg + Tprg)r® + ..k +...=0

we see that x, + xg + xp4@ has to be equal to A2. For the addition of P and ) we obtain:

Tp4Q :)\2—:Ep—:cQ , yp+Q = Map —xp1Q) — yp where M\ = ig:ay;.
For the tangent line through P(xp,yp) we also have the equation y = A(z — xp) + y, while
now the slope is the derivative in P: A = ?w;i/:a. For the tangent line the point @) is equal
to the point P. For the doubling of P we therefore obtain:

Top =N —22p yop = Mxzp — xop) — yp where /\:?’:Uj;:a.

If P and @ have rational coordinates then P + () has rational coordinates and if P has ratio-
nal coordinates then 2P has rational coordinates. So, starting with a rational point one can

obtain a chain of other rational points.

For a point R on the curve where y = 0, a root, the tangent line is a vertical. As a con-
sequence 2R is a point at infinity, denoted as O, thus 2R = . Since the elliptic curve is
reflected in the y axis to every point P(x,y) corresponds a mirror point —P(x, —y). In par-
ticular for a root R there holds R = — R, which is the same as saying that 2R = O.

Finally, since P + Q = Q + P the group of points on an elliptic curve is abelian.
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3.5 Torsion

For a root R of an elliptic curve we saw 2R = O. The group {R,O} is a cyclic group of
order 2. Cyclic groups on elliptic curves are called torsion groups. Elliptic curves always have
two points of inflection. The two points of inflection form, together with O, a torsion group
of order 3. Differentiating twice the equation y? = 3 + ax + b gives yy” = 3z — y'y/. The
inflection condition, 3’ = 0, leads to 3z = (y/)?. Substitution of y' = (322 + a)/2y gives
122y? = (322 +a)?. The substitution of y? = 23 + az + b leads to 32* + 6az? + 12bx — a® = 0.

The four solutions of this equation are

where D = —4a® — 27b2. Since the solution already looks complicated we restrict ourselves

to the case where b = 0. Then the equation is reduced to 3z* + 6ax? — a® = 0, which can be

solved by hand:
/ 2
r==4y/—at ga\/g,

To visualise the result we take a = 25 and a = —25. For a = 25 the equation of the curve
is 42 = 23 + 25z and has one real root Ry = (0,0). The equation for the point of inflection,
3z + 15022 — 625 = 0, has four solutions. The only solution for which both the = and y
coordinate are real (in the sense of not complex) is for z = 5,/—1 + %\/g If we denote the

/ 2 5 /
starting point as P then P = (5 -1+ g\/g, 5\/ 30 -3+ 2\/§> Numerically this is

P ~ (1.9666, 7.5346).

For a = —25 the equation of the curve is y? = 23 — 25z and has three real roots R_ = (—5,0),
Ry = (0,0) and R, = (5,0). The equation for the point of inflection, 3z* — 15022 — 625 = 0,

has four solutions. The only solution for which both the x and y coordinate are real is

2
P= (5,/ 1+ g\/i gx/% 3+2V3 ) Numerically this is P ~ (7.3394, 14.5558).

In the foregoing analysis we ‘assumed’ a point of inflection is part of a group of order 3.
If one wants to be sure there is no other group of order 3, one can apply the arithmetic of the

previous section in a straightforward manner. For a = 25 it goes as follows.

. . . 32% + 25
Start with a point P and double it to 2P: zop = “oun ) 2zp. If P has order 3, then
yp
2P = — P and since x_p = xp we obtain the condition x9p = xp. Hence
322 +25\° 322 +25\°
<30P+> —2xp—xp=0 or <W> —3xp=0
2yp 2yp

The y coordinate of P is eliminated by substitution of the equation for the elliptic curve:

y% = x% + 25zp. The elimination of yp leads to the equation 3x§3 + 1501‘% — 625 =0 as
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found above. It is a matter of inspection to identify the solution with an inflection point. For
y? = 23+ 25x and y? = 23 — 252 the curves and the inflection points are shown in respectively

the left and right diagram of the next figure.

40 | | | | | 40 | | | | |
30 | y? =23 + 25z L 30 | y? =23 — 25z B
20 | B 20 | P B
10 | v R 10 | R
_].0 | 2P [ _10 | [
—20 | B —20 | 2P B
=30 | order 3 B =30 | order 3 B

_40 T T T T T T T T T _40 T T T T T T T T T
—-6-4-20 2 4 6 8 10 12 —-6-4-20 2 4 6 8 10 12

x x

Hereafter we restrict to the situation with a = 25 and a = —25. A cyclic group of order 4 is

found as follows: take a line through a root point R and tangent to the curve in a point P.

This means that the slope of the tangent line has to equal the slope of the line through R and

322 +25

% — Y The latter can be elaborated to 323 4 25z = 292
Y T

Substituting y? = 23+ 25z we obtain x3 — 25z = 0, which factors in z(z —5)(x+5) = 0. From

the three solutions only z = 5 is a valid x coordinate for P. The corresponding y coordinate is
5v/10. For a = —25 a similar analysis leads to the condition 23 — 1522 + 252 4 125 = 0. There
are two solutions. The first, which is on the ‘egg’ of the curve, is (5(1 — v/2),5v/5(2 — V2)).
The second, which is on the rounded cusp, is (5(1 +/2), =5v5(2 + \@)) Again, the solution

could also have been obtained by equating x3p with xp and y3p with —yp and determine the

P. For a = 25 this means

geometrical structure afterwards. The results are shown in the next figure.

40 | | | | | 40 | | | | | \(
30 | y? =23 + 25z B 30 | y? =3 — 25z 1
20 | P B 20 | -
10 - 10 B
= 0 2P > 0 =
—10 B —10 | -
—20 | 3P 5 —20 | B
=301 order 4 i =301 order 4 ‘ i
_40 T T T T T T T T T _40 T T T T T T T T - \k
—-6-4-20 2 4 6 8 10 12 —-6-4-20 2 4 6 8 10 12
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Notice that we could have started as well with 3P. We could not have started with Ry since
2Ry = O. That is, {R4+, 0} is a subgroup of {P,2P,3P,0}, in the same way as Cs is a
subgroup of Cjy.

For a = 25 fivefold torsion leads to the equation 2430026 — 162502* — 81250022 + 390625 = 0

with the solution

Tp = 5\/—3 +2v5 —2v5 —2v5 and yp = 5\/10\/\/—133 +62v/5 + 61/1025 — 458+/5.
Numerically it is P ~ (8.55164, 28.9685).
For a = —25 the equation is 28 — 3002% — 162502 + 81250022 + 390625 = 0 with the solution

rp = 5\/3 +2V5+2v5+2V5 and yp = 5\/10\/\/133 + 62v/5 4 61/1025 + 458V/5.

Numerically it is P ~ (18.4577,76.334). Since 5 is a prime, one can start any of the four

points.

Sixfold torsion: for a = 25 we obtain the equation z* — 15022 — 1875 = 0 with the solution

zp = 5v3 423 and yp = 5101/ /45 + 26y/3. Numerically this is P ~ (12.7123,48.705).

The points 2P and 4P are points of inflection. For a = —25 we obtain three equations. For the
first equation, 24 —2023 — 15022 —5002+625 = 0, the solutionis zp = 5 (1 +vV3+V3+ 2\/5)

and yp = 5V 10\/18 +10v/3 4 /627 + 362v/3. Numerically this is P =~ (26.3726, 132.978).
The group is shown in green in the right diagram of the next figure. For the second equation,

z* + 15022 — 1875 = 0, the solution is zp = —5v/ —3 + 2v/3 and yp = 5v/101/ v/ —45 + 261/3.
Numerically this is P ~ (—3.40625, 6.75538). The group is shown in brown. For the third equa-
tion, 2% + 2043 — 15022 + 5002 + 625 = 0, the solution is 2p = —5 (1 +V3-3+ 2\/3) and

yp = 5\/10\/—18 —10v/3 + /627 + 362v/3. Numerically this is P ~ (—0.947955,4.77986).

The group is shown in red, see next figure. In all three cases the points 2P and 4P are points
of inflection. Notice that the group {3P, O} and the group {2P,4P, O} are subgroups of each

sixfold torsion group (in the same way as Cy and Cj5 are subgroups of Cj).
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ANy

10 2P -
—10 4 s B

5P ||
order 6 \

I e e s B B
—-6—-4-20 2 4 6 8 10 12
X X

Sevenfold torsion: we obtain the equation 7X12 4308 X —2954X 10 1 19852X° — 35321 X8
82264 X7 — 111916 X6 F 42168 X5 4+ 15673 X* 4+ 14756 X3 4+ 1302X2 + 196 X2 — 1 = 0, where
X = (éx)2 The upper and lower part of the plusminus symbols is for a = 25 and a = —25
respectively. For a = 25 the starting point is P ~ (17.5386, 76.3763). For a = —25 the starting
point is P ~ (35.7759,211.886). The results are shown in the next figure.

40 | | | | | | 40 | | | | |
30 | y? =23 + 25z K, 30 | y? =3 — 25z
20 op - 20
10 - 10
3P
—10 - —10
—20 | °r - =20
=30 | order 7 6]\)7 =30 | order 7
_40 T T T T T T T T T _40 T T T T T T T
—-6-4-20 2 4 6 8 10 12 —-6-4-20 2 4 6 8
x x

Eightfold torsion: for a = 25 the equation is 2% — 2023 — 5022 — 5002 + 625 = 0.

Asolution is zp = 5 (1+ V2 + V2 +22) and yp = 5V/10\/13 + 9v/3 + 21/82 + 58v2. Nu-
merically this is (23.0579,113.294). The result is drawn in the left diagram of the next figure.
For a = —25 the equation is 28 — 4027 — 30026 — 10002° + 237502* + 2500023 — 18750022 +
625000 4+ 390625 = 0. There are two solutions. The first starts with P = (46.6517,316.805)
and is shown in green. The second starts with P = (—0.535886,3.63913) and is shown in
brown. All solutions have {4P, O} as an order 2 subgroup and {2P,4P,6P,O} as an order
4 subgroup (as Co and Cjy are subgroups of Cg). If you follow the tangent lines you will see

interesting geometrical properties which are not a priori obvious.
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40 | | | | |
30 | y? =23 + 25z
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Ninefold torsion: we obtain the equation —3814697265625 + 407409667968750X
+1666717529296875X 2410463378906250000.X 3+14066674804687500.X *4+9546767578125000.X >
+ 3351823242187500.X ¢ 4+ 1089921093750000X 7 + 388437363281250X 8 + 86779382812500.X°
+7773391406250.X 19F277076250000.X 1 —132156562500.X 12 F12528675000.X 13—170842500.X 14
T 15174000X 1 — 284625 X 16 £1710X 7 +3X"® = 0, where X = (%x)Z The upper and lower
part of the plusminus symbols is for a = 25 and a = —25 respectively. For a = 25 the starting
point is P ~ (29.2843,160.765). For a = —25 the starting point is P ~ (58.9924, 451.47). The
solutions have {3P,6P, 0} as an order 3 subgroup (as Cj is a subgroup of Cy). The results

are shown in the next figure.

40 —

30 | y? =23 + 25z

20 |

10 |

> 0
—10 N
_20 |
_30 |
—40 —

T~

The geometry of the green solutions becomes evident by now. Just to illustrate a more in-
teresting geometry a torsion group of order 12 for y? = 23 — 25z is shown in the next figure.
In this illustration as well as in the illustrations shown above there is no torsion point with
both the x and the y coordinate rational. For rational points we should consider other elliptic

curves.
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10 ‘ ‘

30

20

order 12

3.6 Torsion lines

If we take the situation for sixfold torsion at hand we have six points: P,2P,3P,4P,5P, 0.
For 32 = 234252 the line from P to 4P was tangent in P. Since P is twofold for its tangent we
can denote the line as (1, 1,4). That is, it hits twice P and once 4P. The line which intersects
3P, 2P and P is (3,2,1). The line tangent to the root hits twice the root 3P and once O:
(3,3,0). The vertical line through the inflection points is (2,4,0). The line intersecting 5P,
4P and 3P is (5,4,3). The tangent line in the point of inflection is threefold in 2P: (2,2,2).
The line tangent to 5P is (5,5,2). The line tangent to 5P can also be regarded as starting in
5P, going to 2P and returning in 5P: (5,2,5). Alternatively, the order of the numbers do not
matter. If we add the three numbers identifying a line we either obtain 0, 6 or 12. That is, for
line (a,b,c), c = (12 —a —b) mod 6. For n-fold torsion a line is (a,b, (2n —a —b) mod n).
This can be seen as follows. If we add the points aP and bP we obtain the point (a+b)P. So,
the line through a P and bP goes through —(a+b)P = (—a—0b)P. Since the points are mod n
we get for the line: (a,b,(—a —b) mod n), which is identical to (a,b, (2n —a —b) mod n).
We can now generate all the lines: run a from 0 to n — 1 and b from 0 to n — 1 and calculate
c=2n—a—>b mod n. This leads to n? lines. However, the line (a, b, c) is the same line as
(a,c,b). If a, b and c all three differ from each other we have 6 combinations for the same line.
If two out of a, b and ¢ are equal we have 3 combinations for the same line. This reduces the
number of lines. Before we successively consider the situation for increasing order, we first
will distinguish lines by their nature. The line (a,b,c) with a # 0, b # 0 and ¢ # 0 all three

different from each other is a line intersecting the elliptic curve in three different points. We
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will denote it as type S. The line (0,b,¢) with b # 0 and ¢ # 0 different from each other is
a vertical line intersecting the elliptic curve in b, ¢ and O. We will denote it as type V. The
line (a,b,b) with a # 0 and b different from a is a line tangent in b and intersecting the elliptic
curve in a. We will denote it as type 7. The line (0, b,b) with b # 0 is a vertical line tangent
in a root b. We will denote it as type R. The line (a,a,a) with a # 0 is a line tangent in a
point of inflection a. We will denote it as type I. The line (0,0,0) is a line through O. We
will denote it as type O. For order n the number of lines will be denoted as L(n). The number
of lines of type O, I, R,T,V,S will be denoted as Lo(n), L;(n), Lr(n), Ly(n), Ly (n), Ls(n).
Their sum will be denoted as L(n).

The results are tabulated.

type| n =1 | Lyype(1) |[type| n =2 | Liype(2) || type n=3 Liype(3)
O |(0,0,0) 1 O 1(0,0,0) 1 (0] (0,0,0) 1
1 0 I 0 I |(1,1,1) (2,2,2) 2
R 0 R |(0,1,1) 1 R 0
T 0 T 0 T 0
V 0 v 0 V (0,1,2) 1
S 0 S 0 S 0
sum 1 sum 2 sum 4
type n=4 Liype(4) || type n=>5 Liype(5)
(0] (0,0,0) 1 (@] (0,0,0) 1
I 0 I 0
R (0,2,2) 1 R 0
T |(1,1,2) (2,3,3) 2 T |(1,1,3) (3,3,4) (1,2,2) (2,4,4) 4
|4 (0,1,3) 1 |4 ,1,4) (0,2, 2
S 0 S 0
sum ) sum 7

For instance, from the table for n = 4 we read of that 2 is root, that a line tangent in 1
intersects de curve in the root 2, that a line tangent in 3 intersects de curve in the root 2,
that there is a vertical line through 1 and 3 and that there is a vertical line tangent to 2. This
determines the geometry. In case of 3 roots one still has to find out for which root this is
possible. One also has to find out if there is more than one possibility. Nevertheless, the tables
can be of help for the understanding of the geometry of all the lines involved, in particular for

increasing n.
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type|n =6 Ltype(6) type|n =7 Ltype(7)
0] (0,0,0) 1 0] (0,0,0) 1
1 (2,2,2) (4,4,4) |2 1 0
R (0,3,3) 1 R 0
T (1,1,4) (2,5,5) |2 T (1,1,5) (2,2,3) (4,4,6) (1,3,3) (2,6,6) (4,5,5)|6
% (0,1,5) (0,2,4) |2 \%4 (0,1,6) (0,2,5) (0,3,4) 3
S (1,2,3) (3,4,5) |2 S (1,2,4) (3,5,6) 2
sum 10 sum 12
type |n = Ltype(S)
0] (0,0,0) 1
1 0
R (0,4,4) 1
T (1,1,6) (2,2,4) (5,5,6) (2,3,3) (2,7,7) (4,6,6) |6
%4 (0,1,7) (0,2,6) (0,3,5) 3
S (1,2,5) (1,3,4) (3,6,7) (4,5,7) 4
sum 15
type|n =9 Liype(9)
0] (0,0,0) 1
1 (3,3,3) (6,6,6) 2
R 0
T (1,1,7) (2,2,5) (5,5,8) (1,4,4) (2,8,8) (4,7,7)|6
\%4 (0,1,8) (0,2,7) (0,3,6) (0,4,5) 4
S (1,2,6) (1,3,5) (2,3,4) (3,7,8) (4,6,8) (5,6,7)|6
sum 19
type|n =10 Ltype(lo)
0] (0,0,0) 1
I 0
R (0,5,5) 1
T (1,1,8) (2,2,6) (3,3,4) (6,6,8) (2,4,4) (2,9,9) (4,8,8) (6,7,7) |8
V (0,1,9) (0,2,8) (0,3,7) (0,4,6) 4
S (1,2,7) (1,3,6) (1,4,5) (2,3,5) (3,8,9) (4,7,9) (5,6,9) (5,7,8) |8
sum 22
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type|n =11 Liype(11)
O (0,0,0) 1

I 0

R 0

T [(1,1,9) (2,2,7) (3,3,5) (6,6,10) (7.7.8) (1,5,5) (2,10,10) (3,4,4) (4,9,9) (6.,8,8) |10

vV [(0,1,10) (0,2,9) (0,3,8) (0,4,7) (0,5,6) 5

S (1,2,8) (1,3,7) (1,4,6) (2,3,6) (2,4,5) (3,9,10) (4,8,10) (5,7,10) (5,8,9) (6,7,9) |10

sum 26
type|n = 12 Liype(12)

0,0

~

14.4) (8,8,8)

0,6,6)

QUL CoO | —| DN

0,1,11) (0,2,10) (0,3,9) (0,4,8) (0,5,7)

1,2,9) (1,3,8) (1,4,7) (1,5,6) (2,3,7) (2,4,6) (3,4,5) (3,10,11) (4,9,11) (5,8,11)| 14

o,
I
B |(
T |(1,1,10) (2,2,8) (3,3,6) (7,7,10) (2,5,5) (2,11,11) (4,10,10) (6,9,9)
VI
s |«
(5,9,10) (6,7,11) (6,8,10) (7.8,9)

sum 31

The number of lines of type O, I, R and T together will be denoted as Lrgrro. If we look
at the sum of the number of lines of type O, I, R and T, then Lyr;o(n) = n. The number
of lines of type V and S together will be denoted as Lyg. If we compare Ly g(n) with L(n)
then Lygs(n) = L(n — 3). Since Lys(n) = L(n) — Lrrro(n) = L(n) —n we obtain L(n) =
L(n—3)+n. Starting with n = 4 we have L(4) = L(1)+4 =144, L(7) = L(4)+7 = 1+4+7,
L(10) = L(7)+ 10 =1+44 7+ 10 and so on. Hence, L(n) = énQ +In+ % if n=1 mod 3.
Starting with n = 5 we have L(5) = L(2) +5 = 2+ 5, L(8) = L(5) +8 = 2+ 5+ §,
L(11) = L(8) + 11 = 2+ 5+ 8+ 11 and so on. Hence, L(n) = ¢n* +in+ L if n = 2
mod 3. Starting with n = 6 we have L(6) = L(3) +6 =446, L(9) = L(6) +9=4+6+ 9,
L(12) = L(9) + 12 =446 + 9+ 12 and so on. Hence, L(n) = ¢n*+ in+1if n=0 mod 3.

3.7 Generating rational points

As an example of an elliptic curve with rational points we consider the curve given by
y? = 2% — 52 + 12. The single root R(—3,0) is an integer torsion point of order 2. Next
to the root R(—3,0) the curve has P(—1,4), —P(—1,—4), S(8,—-22) and S(8,22) as integer
points, where S = R + P. Starting with P we can calculate 2P with the ‘doubling’ formula.

Thereafter we can calculate 3P = 2P 4+ P. We can calculate 4P either by regarding it as
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4P = 2P + 2P and apply the doubling formula or by regarding it as 4P = P + 3P and apply

the addition formula, etc. Either way, we obtain 2P = (32 —26%17), for 3P = (%0417, 110167268465;3),

16>
4P = (—;gggggg, — 141514812350185411367), etc. Notice that the denominator of the x coordinate is the

square of a number while the denominator of the y coordinate is the cube of that number.

The rational point P and some of its multiples are shown in the next figure.

30 | y? =23 — 5r + 12 -
20 |

10 |

—10
—20

—30

From S(8, —22) we obtain for 25 the coordinates (33, —207) for 35 (— 864 3015166y £, 49

16~ 64 90257 857375
7363967 11182515137 ) _ . .
(— 5710336 — 541308416 )» etc. Since S = R+ P the points generated by S are not independent

of the points generated by P. It also follows that 25 = 2R+ 2P = O + 2P = 2P and thus
45 = 4P, 65 = 6P, etc. The points S, P and their multiples are shown in the figure. For

clarity, the mirror points —P, —2P,....—kP, —S5, —25,..., —kS,.. are not shown.

The points on an elliptic curve form an abelian group, E(R). The subgroup of rational points
is denoted as E(Q). The rank of an elliptic curve is the number of generators, ‘starting points’,
needed to generate all the rational points. For instance, for the elliptic curve y? = 2% — 5z 412
the rational points are generated (whether or not with the help of the torsion point R(—3,0))
by P(—1,4). Since there are no other rational points (just take it for granted because rank
determination is complicated), the rank is 1. According to a theorem of Mordell the number

of generators of rational points always is finite.

As another example we consider the curve y? = 3 — 152 4+ 22. Next to the root (2,0)
the curve has (—1,6), (—1,—6), (3,2) and (3, —2) as integer points. If we denote (—1,6) as
P, then 2P = (3,-2), 3P = (2,0), 4P = —2P = (3,2), 5P = —P = (~1,—6) and 6P = O.

The situation is shown in the next figure.
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y? =23 — 152 + 22
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The order of P is 6: P is cyclic with cycle length 6. There is no rational point which generates

an infinite number of rational points, so the rank is 0.

In general, if nP = O then n is the order of point P. For a point P with order n there
holds (n + 1)P = P. That is, the point P is cyclic with cycle length n. A cyclic point P is
called a torsion point. An elliptic curve is denoted as E. The group of all points on the curve
as F(R). The group of torsion points Erogrs is a subgroup of E(R).

The group of rational torsion points is called E(Q)pogrs. For the order n of a rational torsion
point there holds n < 12 and n # 11; a theorem of Mazur. Only the neutral point O has
order 1. Roots, points on the y = 0 axis, have order 2. There are 3 root points (of which 2
may be complex). Together with the neutral point we have 4 points of order 2. The points of
inflection have order 3. The inflection equation, 3’ = 0, is a fourth degree equation in x with 4
(of which 3 complex) solutions for x. For every solution x,y there also is a solution z, —y. So,
we have 8 solutions. Together with the neutral point we have 9 points of order 3. In a similar
way we have n? points (possibly complex) of order n. In general, torsion points are not ratio-
nal. However, if the coefficients of the elliptic equation are integer, the torsion points also are
integer. The group of torsion points ErgRrs is infinite. However, the group of rational torsion
points E(Q)rors is finite. The group E(Q) of rational points is generated by a finite number
of generators. Every element @ of E(Q) can be written as Q = m1 Py + moPy+...+m, P, + T,
where Pi,..., P, are the generators, where myq,...,m, € Z, where r is the rank and where
T € E(Q)tors. The group E(Q) is isomorphic to Z" & E(Q)ToRs-
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3.8 Rational points on y? = 2% — 252

The elliptic curve E : y? = 23 — 252 has (—5,0), (0,0), (5,0), (—4,6), (—4,—6), (45,300)
and (45, —300) as integer points. The roots (—5,0), (0,0) and (5,0) are three points each
with order 2. Earlier we found that (—4,6) corresponds to the (1%,6%,6%) right triangle
with area 5. Denoting (—4,6) as P we obtain 2P = (1120, —361;—%8). Earlier we found it
corresponds to the (3%, 3%,4?2%23) right triangle. For the present purpose we write it

as a = %, b= 2920 4nd ¢ = 33416 N[yltiplication by 747348 leads to the Pythagorean

1519 4921519
triple: (15192,10-4922,3344161). By means of 3P = 2P+ P we obtain 3P = (— gégggig, 3 15112997726628957953).

nb 2n2 . 2 —n? 2nx
From the correspondence x = and y = £ we obtain a = ,b=—and
c—a c—a Y Yy
2%+ n? . . . . . . .
c = . For the coordinates of 3P it leads to a right triangle with rational sides a =
Y
25353117 ' py — 35254340 o)\ o — O54G8G2L9104361  \1y)tiplication by 89380740677778=3525434-25353117

3525434 25353117 89380740677778
leads to the Pythagorean triple: (253531172,10-35254342,654686219104361). For 4P we find the co-

12832131841 1791076534232245919 . . : .
5 5951116139416 33393411665 -665536)- 1t corresponds to a right triangle with ratio-

535583225279 _ 49985040700560 _ 249850594047271558364480641 -~
1508504070056° 0 = “s3sasamanzro and ¢ = Seriiiosiiosotolcidseos - Multipli

cation by 2677114931410801046145624 =4998504070056-535583225279 leads to the Pythagorean triple:

ordinates (

nal sides a =

(5355832252792,10-49985040700562,249850594047271558364480641).

coordinates (x,y) of nP Pythagorean triangle A,, B,,C,, | generating (k,,m)
zp=-22, yp=2-3 A =32 B =25 Ci =41 |k =5, m =22
_ 4 Ay =7%.31%2, By =2°.32.5.41% | ky = 412
Iop = 94 .32 2= y D2 =479 -0~ 2=
72.31-41 -
$p:—a72 Ay = 3%. 5872 . 47992 ks =5-37%. 612
3 372 . 612 3 3
a-3%-587-4799
= By =23.5.11%2.372.612 . 712 =22.112.712
ysp 373 . 613 3 ms3
where v :=2-11-71 C3 =41 -15967956563521
B2 2 2 2
= Ay = 113279° - 4728001 ks = 3344161
TP =06 g2 74312 412 | 4
YaP = 55 33 76 . 313 . 413 By=2"-3-5-7"-317-417- 8 mMy=26.33.5.74.312.412
where § := 3344161 C'4 = 545834881 - 457740248460360961
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In the previous table coordinates for nP and the integer sides of the corresponding Pythagorean
triangle and its generating numbers (k,m) (a = k? — m?,b = 2km, c = k% + m? remember)
are shown in factorised form. We see the generating (kgj,mo;) for (24)P follows from the
(Aj, B;,Cy) for jP via kyj = CJZ and mg; = 2A;B;. In conclusion, we can construct an

infinite number of Pythagorean triangles for which AB/2 is 5 times a square.

Denoting the roots (—5,0), (0,0) and (5,0) respectively as R_, Ry and Ry and denoting
(45,—-300) as S we find R_ + P = S. Also here 2P = 25, so only odd multiples of S are new

points. The first two of them are shown in the next table.

coordinates (z,y) of nS Pyth. triangle A, B, Cy, generating k,, my,

zg =325 ys=22-3-52 | B =3% A =225 Ci=41 | ky =5, m; =22

2
-5
T3g = % B3 = 3% 587% - 47992 ks =5-37%. 612
+22.52.11-37-71
yas = — o Ag=20-5-112.372.612- 712 | my = 22 112 712
where a := 3% - 587 Cs5 = 41 - 15967956563521

We see that changing from (25 + 1) P to (25 + 1)S is a matter of changing roles of Ag;i; and

Bsji1. Not a surprise because this was the way we constructed S from P earlier.

Next we consider V. = Ry + P. We find for V the coordinates (6%,9%), from which we

can find new points 3V, 5V, etc. The first two are shown in the next table.

coordinates (z,y) of nV Pyth. triangle A,, By, Cp generating k,, my,
52 352
V= W= A =32 B =285 Ci=41 | k =5, m =22
xv:a72 As = 3%. 5872 - 47992 ks =5-37%-612
VT 92 12712 3
a-3%-5-587-4799
= By =2%.5.112.37%2.612 . 712 =922.112.712
213\/ 23 . 113 ] 713 3 5 37 6 7 ms3 7

where o :=5-37- 61 C3 =41 -15967956563521




o6 CHAPTER 3. ELLIPTIC CURVES

Finally we consider W = R, + P. We find for W the coordinates (—8, —3%), from which we
can find new points 3W, 5W, etc. The first two are shown in the next table. The coordinates
and the Pythagorean triangle sides of, for instance, 3P are governed by the prime numbers
2,3,5,11,37,61,71,587,4799 . For the coordinates of 35, 3V and 3W some of these prime num-

bers are moved from denominator to numerator and vice versa in comparison with 3P.

coordinates (x,y) of nW Pyth. triangle A,, By, Cp generating k,, my
52 3.52
TW = —om YW = g A =32 B =235 C =41 | k1 =5, my =22
Ty = __« Bs = 3% . 5872 . 47992 ks =5-37%- 612
34. 5872
a-22.5-11-37-61-71
= A3 =23.5-112-372.61% - 71 =922.112.712
Ysw 36 . 5873 3 ma
where a := 5 - 4799 C5 = 41 - 15967956563521

From the addition of two points P, S, V and W we obtain new points:

5-312 2-3-52.31-41
e =5 >,P+W:S+V:<

24.32.52 92.3.52.72.31
P — — [ — _
+V=S+W ( PR e

‘independent’ point since W =S5 4+ V — P. The roots R_, Ry, R4 are torsion points, each of

5.7% 23.3.52.72.41
pes v )

3127 313

and so on. Notice that W is not an

order 2. Together with the rational point P all the other rational points are generated. So,
the rank is 1.

One might wonder if there is a point, say H, such that its double is P(—4,6). Using the
doubling formula in reversed order we obtain fourth degree equations for the coordinates of
H. The four solutions are complex: (241, —1+ 7i), (2 —14,—1—7i), (—10 + 53,25 + 257) and
(—10 — 5i,25 — 25i). Often H is denoted as %P for obvious reasons: 2 - %P = P. Application
of the doubling formula in reversed order to 2P = (11%, —36%) leads to the following four
solutions: (—4,6), (45, —300), (6%,9%) and (—8, —3%). That is, P, S, V and W as expected
since 25 = 2V = 2W = 2P.

In the next figure a number of multiples of P, S, V and W are shown (the mirror points
are left).
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20 |

y? =23 — 25z

15 +

10 +

—10 |

_15 |

—20

The positions of rational points nP in the figure above are such that nP is close to (n + 8)P.
A similar observation can be made for the points nS, nV and nW. The reason for this is
that the generator (—4,6) of the rational points on the curve E : y? = 23 — 25z is close to
the non-rational torsion point (—4.03198,5.93736) (see the brown 3P in the eightfold torsion

figure two sections earlier).

3.9 Modular counting on elliptic curves

As we did for a circle equation in the first section, we will apply modular counting on elliptic
curves. As an example we will consider the curve E : y? = 23 +axz+b modulo a prime number.
Alternatively, we consider y? = 23 + ax + b over the field Z/pZ with p prime. The group of
integer points on an elliptic curve E over Z/pZ is usually denoted as E(FF,). The prime should
not be 2 or 3 for reasons we will not go into. In addition we can only take prime numbers for
which the curve does not become singular. A singularity occurs if the discriminant D becomes
0. The discriminant of an n—th degree equation is defined as the product of the squares of

2n—2

~"—2 where a,, is the leading coefficient, the coefficient

the distances between the roots times a
of ™. Thus
D =a?"? H(:c, — ;)2

i>j
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For the quadratic equation y = ax? + bz + ¢ the leading coefficient is a. Since the two roots

—b— Vb%2 —4dac B —b+ Vb% —4dac

T, = and z;

2a 2a
Vb2 — 4dac

. Hence, D = a*(z9 — 1) = b* — 4ac.

a
For the cubic equation y = 3 + ax + b the leading coefficient is 1. If we denote the three

are

, the distance between them is x9 — 21 =

roots as z1, oo and x3 then D = 1*(zy — x1)?(z3 — 21)%(23 — x2)%. The calculation of the

roots of the cubic equation is standard in complex function theory. We just give the result:

a+T 14+iv3a 1—iV3T q 1—iv3a 144V/3T .
==+, 22 = = — — and zp = = — —, where
L=7 T3t 2 T 2 3 2 2 T 2 3"

. From these expressions one obtains the following expression

T \5/ —27b + 3v/3V/4a3 + 27b2
B 2
for the discriminant: D = —(4a® + 27%).

If we consider an elliptic equation modulo a prime p, then the curve is singular if the
discriminant is 0 mod p. For example for y?> = 2® — 5z + 12 the discriminant is D =
—(4-—53427-123) = —3388. Modulo 7 we have D = —3388 mod 7 = 0. Since 3388 = 22.7.112
the discriminant will also be 0 for p = 11: D mod 11) = 0. Therefore p = 7 and p = 11
are not allowed for modulo counting on the curve y? = 3 — 5z + 12. With this in mind we

consider modular counting on some elliptic curves.

3.10 Modular counting on y? = 2* — 5z + 12

In this section we will consider the curve y? = 3 — 52 + 12 modulo a prime number.

For instance, for p = 13 the integer points on ‘the curve’ are (10,0), (11,1), (4,2), (6,4),

(8,4), (12,4), (0,5), (2,6), (2,7), (0,8), (6,9), (8,9), (12,9), (4,11) and (11,12). Together

with O the group of 16 points is E(F;3). If we denote (4,2) as P the doubling formula gives

2P = (6,9). The calculation is as follows. First the slope of the tangent line in P:

\_ 3rp+a _3-4°-5 43
2yp 2-2 4

4
7 =1 mod 13.

Having obtained the slope we proceed: zap = A2 — 2ep = 12-2.4=-7=6 mod 13 and
yop = Maxp —x9p) —yp = 1(4—6) =2 =—-4=9 mod 13. Indeed 2P = (6,9).

Since the tangent line through P = (4,2) has slope 1 it arrives in integer point: (6,4).
The latter point is mirrored with respect to y = 6%, similar to the y = 0 mirror for continuous
curves. The final point is 2P = (6,9). The doubling of P is illustrated in the next figure.
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Next we apply the addition formula to obtain 3P:

- —2 7
A= PmVP 972 T oot g7 7249=10 mod 13.
Top —Xp 6—14 2

Notice that 7 is the inverse of 2 since 7-2 = 14 = 1 mod 13. This makes clear that unique
inverses require the modulo counting with a prime number. Having obtained the slope of the
line connecting P and 2P we proceed: x3p = N —zp—xop=102—4—6=90=12 mod 13
and yop = ANzp — z3p) —yp = 10(4 — 12) — 2 = —82 = 9 mod 13. Hence 3P = (12,9).
Continuing the addition we obtain 4P = (0,8), 5P = (8,4), 6P = (11,1), 7P = (2,7),
8P = (10,0), 9P = (2,6), 10P = (11,12), 11P = (8,9), 12P = (0,5), 13P = (12,4),
14P = (6,4), 15P = (4,11) and 16P = O. So, P is of order 16. Since 1,3,5,7,9,11,13 and
15 are relative prime to 16 (recall p(16) = 8 with ¢ Euler’s totient function), the 8 points
P,3P,5P,7TP,9P,11P,13P,15P have order 16. The point 2P has order 8, and since 1,3,5
and 7 are relative prime to 8, the 4 points 2P,6P,10P, 14P have order 8. The point 4P has
order 4, and since 1 and 3 are relative prime to 4, the 2 points 4P, 12P have order 4. The
point 8P has order 2. The point 16P has order 1, 16P = O is the single element with order
1. The full group P,2P,...,16P is isomorphic to the cyclic group Cig. Subgroups are Cg, Cy,
Cy and C].

The line through P and 2P goes through (7%,13) where it is wrapped to (7%,0). From
there it goes to (10%, 13) where it is wrapped to (10%, 0) after which it arrives at the integer
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point (12,4). The latter point is mirrored with respect to y = 63 to (12,9). So, 3P = (12,9).
The addition of P + 2P = 3P is illustrated in the next figure.

13 :
12
11

| | |
=2 -5 +1

°
15P

3Pe |

13P/ B

’GP |

8 4P
7 7P
6 *9pP
o ®12P

8P
0 T T T T T T T T T hd T T
01 2 3 4 5 6 7 8 9 10 11 12 13

x

Since 15P = — P we see that going from P to —P is a matter of reflection of the y coordinate
with respect to the y = 6% line. For an elliptic curve over the field Z/pZ the points are
mirrored in y = p/2.

For the next prime, p = 17, we find 13 integer points. Together with the neutral element
O the points forms a group of order 14: P,2P,...,14P = O. The subgroup 2P,4P, ..., O has
order 7, and the element 7P has order 2. The largest order of the elements is 14. The full
group P,2P,...,14P is isomorphic to the cyclic group C14. Subgroups are C7, Cy and C}.

For p = 19 we obtain the following 17 points: (16,0), (8,3), (7,4), (13,4), (18,4), (15,5),
(5,6), (14,8), (3,9), (3,10), (14,11), (5,13), (15,14), (7,15), (13,15), (18,15) and (8, 16).
Together with O we have 18 elements; the order of the group is 18. Denoting (7,4) as P
we obtain 2P = (3,10), 3P = (16,0), 4P = (3,9), 5P = (7,15), 6P = O. Denoting (8, 3)
as @@, we obtain 2QQ = (8,16) and 3Q) = O. The other points now are P + Q = (5,13),
2P + Q = (13,4), 3P + Q = (18,15), 4P + Q = (14,8), 5P + Q = (15,5), P+ 2Q = (15,14),
2P + 2Q = (14,11), 3P + 2Q = (18,4), 4P + 2Q = (13,15), 5P + 2Q = (5,6). The group
structure is Cs x C3. The largest order of the elements of the group is 6.
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The number of integer points E(F,) including O is the order of E(F,). The order of each
element of E(F,) is a divisor of the order of E(F,). For a different elliptic curve such as
E : y? = 23 — 252 we obtain 20 for the order of F(F13), E(F17) and E(F19). They are not far
away from the corresponding values for the elliptic curve E : 32 = 23 — 52 + 12. They also
are not far away from the prime p. That this is even more so for larger primes is illustrated in
the next figure where the order of E(F,) for the elliptic curves E : y? = 2® — 5z + 12 (green
dots) and E : y? = 23 — 252 (red dots) is plotted against p for p < 1000.
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3.11 Modular counting on y* = 2* — 25z

In this section we will consider the curve y? = 23 — 252 modulo a prime number.

For p = 7 there are 8 points (group structure Cy x C3). For p = 11 there are 12 points. They
are generated by two elements, one of order 6 and one of order 2 (Cs x C3) . For p =13, 17
and 19 there are 20 points. In all three cases the group structure is Cg x Cy. For p = 13,
17 and 19 the corresponding points (except O) are shown as respectively red, green and blue

dots in the next figure.
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A common point for red and blue is (10,3). Common points for all three colours are the
roots (0,0) and (5,0). For the third root, (—5,0), we find different values for different p:
(=5,0) = (8,0) mod 13), (—=5,0) = (12,0) mod 17) and (—5,0) = (14,0) mod 19). The
number of points with y = 0 is either 0 (if there is no integer root), 1 (in case of one integer
root) or 3 (in case of three integer roots). For a group E(F,) the sum of the y coordinates of
points with the same = coordinate is p, because of the reflection with respect to the horizontal
line y = p/2. If there are three points with the same y coordinate, the sum of the x coordinates

is p or 2p.

For p = 13 (red points) there are eight = values with 2 points. We will denote it as Xy = 8.
For p = 13 there are two = values with no points. We will denote it as Xy = 2. In general we
will denote the number of x values with k points as X and the number of y values with &
points as Y. For p = 13,17 and 19 the X and Y} values are tabulated

p | X1 | Xo | V1 | Yo | V3 | #E(F),)
13 3 8 8 4 1 20
17 3 8 4 0 5 20
19 3 8 8 0 3 20

Taking O into account there holds X7 +2Xo +1 =Y] +2Y5 4+ 3Y3 +1 = #E(F,). The X,
and Yy are not shown in the table since Xo =p— X; — Xoand Yo=p—Y] — Yy — Ys.
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For E : y? = 23 — 25z the largest order of the elements of E(F13), E(Fi7) and E(Fg) is
10, while the order of these three groups is 20. In all three cases the largest order of the
elements is half the order of the group. In the next figure the largest order of the elements of
the group E(IF,) is plotted against p, p < 1000, for the elliptic curves E : y? = a® — bx + 12
(green dots) and E : y? = 23 —25z (red dots). We see that for the curve E : y? = 23 —5x+12
the largest order of the elements of the group E(F),) is in most cases as large as the order of

the group E(F,), while for the curve E : y? = 23 — 25z the largest order of the elements of

the group E(F,) is at most half the order of the group E(F)).
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3.12 A ratio in E(F,)

Let us define p as the following ratio: u(p; E)

The set of different p values depends on the elliptic curve and on p. For p < 1000 (and

S e B LA
*° i
r 1
op . M
. 27
R .t 1
o 0o’ %o i
. o o
. “:.'”o.
.Qof:.o
.O’o’.
° ‘ O]
ol .
o 4
t° Lt L .
400 600 800 1000

B order of E(F))
~ largest order of the elements of E(F,)’

p not a divisor of the discriminant) the ratio p takes on the values:

1,2,3,4,5,6 for £ : y?> = 2% — 5z + 12,

1,2,3,4,5,6,7,8,9,12,16 for E : y?> = 23 — 152 + 22,

1,2,3,4,6 for E: y?> = 2% — 3z + 18,

1,2,4,5,6,7,10,12,14,23,24 for E : y? = 23 — 3z,
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1,2,4,6,8,10,12,14,16,18,20,24, 28 for E : y> = x3 + 8,
1,2,4,6 for E: y?> = 23 + 32 — 4,

1,2,3,4,6 for E: y?> = 23 + 32 + 4,

2,4,6,8,10,12,14, 16, 18,20,22,24 for E : y?> = 23 — x,
2,4,6,8,10,12, 14,16, 18,20,22,24 for E : y> = x> — 16w,
2,4,6,8,10,12, 14, 20,26 for E : y? = 23 — 25z,
2,4,6,8,10,12,14, 22,24 for E : y?> = 23 — 36z.

The set of s for E : y? = 2% —x and the set of s for E : y? = 2% — 162 are identical. In gen-
eral the sets for E : y? = 22 — t1x are the same for any t. Moreover, for E : y? = 23 — t*z the
order of E(IF,) as well as the largest order of the elements of E(F,) only depend on p and not
on t. In fact, for E : y?> = 23 — t*x the group structures of E(F,) only depend on p. This can

3

be understood as follows. If we start with y? = 2% — z and perform the linear transformation

T
y = t%’ o 3 we obtain y”2 = #'3 —t*2’. Since the group structure is not changed by a linear
transformation, the group for E : y? = 2’3 — t*a’ is identical to the one for F : y? = 2® — .

In general, the group for E : y? = 23 +at*z+bt0 is identical to the one for E : y? = 23 +ax+b.

For E : y?> = 23 — x the order of the group E(F,) against p is shown by the red dots in
the next figure and the largest order of the elements of E(IF,) against p is shown by the green

dots in the next figure.
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Chapter 4

Modular elliptic curves

4.1 Modular counting on y?> =23+ 7

For elliptic curves with integer coefficients the integer torsion points can be systematically
found by means of Nagel-Lutz theorem: if an elliptic curve with integer coefficients contains
a torsion point the y coordinate of the point is either 0 or its square is a divisor of the dis-
criminant: y2|D. The reverse does not have to be true: if (z,y) is an integer point such that
y%| D it is not necessarily a torsion point. There also are integer points which are part of an
infinite series of rational points generated by a generator. For each y satisfying y?|D one has

to test if it belongs to a finite cyclic group or an infinite group.

For example, for y? = 2% — 252 we have for y = 0 the integer roots © = —5, = 0 and x = 5;
(=5,0), (0,0) and (5,0) are torsion points of order 2. The discriminant is D = —(4 - —253) =
62500. The possible values for 32 such that y?|D are y? = 1,52 54 56 22.52 22.5% 92.56
Since each of these values for y do not correspond to an integer value for x there are no further
torsion points (except for the trivial O). Integer points (—4,6) and (45,300) are part of an
infinite series of rational points.

As another example, for y? = 2% — 52 + 12 we have for y = 0 the integer root x = —3; (-3, 0)
is a torsion point of order 2. The discriminant is D = —(4 - —53 4+ 27 - 122) = —3388. The
only possible values for y? such that y?|D are y? =