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Preface
If somebody with some technical background is, for example, interested in the blockchain
technology or a high school student, as another example, wants to write a practical assign-
ment on cryptography, they will often face the following problem: already at the beginning
of their investigation they read that it has something to do with the multiplication of points

on modular elliptic curves over finite fields. They immediately ask themselves: what is an
elliptic curve?, what is a modular elliptic curve? and what is the multiplication of points on a

modular elliptic curve? This is already confusing, even more so since a modular elliptic curve
does not look like a curve at all. Other questions which arise are: what is a finite field or
even a field? A persistent student will find that a field has something to do with a group and
that a group is something with properties like associativity, commutativity and distributivity.
So, already after a few sentences they are drowning in concepts which are new and therefore
di!cult to them. At this point they may give up.

In the search for a less di!cult book one might face the following problem: either one finds
popular introductions with almost no mathematics or one arrives at university courses and
books written by professors. The first are simple but do not satisfy the desire of the reader
to understand things mathematically. The second are intended for university students. They
are formal and technical, as they should. However, they are too di!cult for readers with less
mathematical experience in the field. A book which fills the gap should be mathematical on a
very elementary level. The present book is intended to be a simple and informal introduction
to the mathematics behind cryptography, cryptocurrency and blockchain technology. With
simple is meant that a high school level of mathematics (together with the willingness to study)
su!ces to understand the contents. With informal is meant that the book is not organized as
an enumeration of theorems and proofs. Instead it rather is a random walk through numbers
en elliptic curves, some patterns are recognized and captured into relations. Proofs of these
relations are omitted, except for a few obvious cases.

Since the contents in this book is very elementary and known for ages, citations are consid-
ered redundant. Citations were also omitted to avoid a technical and intimidating impression.
However, it should be mentioned that I learned a lot from the book of Washington [1], the
book of Koblitz [2] and the book of Silverman and Tate [3]. Of course I also obtained informa-
tion from the internet. For this I wish to mention the following two references: An instructive
explanation of the math behind the bitcoins is given by Rykwalder [4]. To understand the
blockchain basics a 1blue3brown youtube video [5] was very helpful.
Together with what I already knew, I felt su!ciently equipped to write things in my own
words. At every step I tried to put myself in the shoes of a layman. I also take sideways,
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probably to show the reader the beauty of mathematics. The result is a somewhat unique
presentation of the matter. The present book has just been written for educational purposes.
It is intended for high school students with talent for mathematics and for readers with (a
little more than) a high school level mathematical background.

Acknowledgement I wish to thank Ron Westdijk for his improvements and sugges-
tions to the manuscript.

Februari 2025, Hans Montanus
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Chapter 1

Introduction to group theory

1.1 The group C3

We start considering an equilateral triangle, see the figure. The arrows in the edges cause the
triangle to have an ‘orientation’.

Z

1 2

3

The triangle is unaltered if it is rotated anti-clockwise over 2ω/3 around the barycenter Z,
except that the figures at the corners have moved one position. Let us denote this rotation
by r1. The triangle also is unaltered if it is rotated anti-clockwise over 4ω/3. The figures at
the corners then have moved two positions. This rotation is denoted as r2. With a rotation
angle of 2ω both the triangle and the figures at the corners are rotated onto itself. With this
full turn, which we could denote as r3, nothing has changed. The result is the same as a
rotation over 0 (no rotation at all ). This is called a unit rotation (identity) and denoted as
r0 (sometimes also as e). First applying rotation r1 and then rotation r2 is denoted as r2r1.
The result is the unit rotation: r2r1 = r0. Similarly we have r1r2 = r0, r1r1 = (r1)2 = r2,
r2r2 = (r2)2 = r1, r1r0 = r1, r0r2 = r2, etc. One can also take longer sequences of rotations,
for example r1r1r2. Since r1r2 = r0 we get r1(r1r2) = r1r0 = r1. We could also have chosen
to replace r1r1 by r2, then we get (r1r1)r2 = r2r2 = r1. The result does not depend on the
order of the replacement: r1(r1r2) = (r1r1)r2. This property is known as associativity.
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6 CHAPTER 1. INTRODUCTION TO GROUP THEORY

One can also rotate clockwise. It is the inverse (opposite) of rotating anti-clockwise. The
inverse of r1 is written as r→1

1 . Since a rotation followed by its inverse rotation is in e"ect no
rotation at all we have r→1

1 r1 = r0. Since also r2r1 = r0 we obtain r→1
1 = r2. Of course, we

could have written the latter identity immediately just by looking at the action of r→1
1 and r2

to the triangle. Similarly there holds r→1
2 = r1 and r→1

0 = r0.

The set {r0, r1, r2} is a GROUP because it satisfies the following demands:

1. the set contains a unit element, r0 (in general e)

2. each element of the set has an inverse which is also an element of the set

3. associativity is satisfied, that is for each triple of elements a, b en c of the set there holds
(ab)c = a(bc).

A set is a group if all the three demands are satisfied. A group is called ‘Abelian’ if for each
pair of elements a en b of the group there holds ab = ba. For instance, the triangle group
{r0, r1, r2} is Abelian. The bookkeeping of the action of subsequent group elements is usually
by means of a multiplication table (Cayley table). For the Abelian group {r0, r1, r2} it is as
follows:

r0 r1 r2

r0 r0 r1 r2

r1 r1 r2 r0

r2 r2 r0 r1

The group {r0, r1, r2} can also be written as {(r1)0, r1, (r1)2}. The element r1 therefore is a
generator of the group. The order of r1 is 3 (it generates 3 group elements). The element r2

also is a generator of the group {r0, r1, r2}. The cyclic group {r0, r1, r2} is denoted as C3. The
number of elements in a group is the order of a group. In summary: the groep C3 is Abelian,
it has order 3, and 1 generator (r1 or r2) is su!cient to generate the group.

Rotations can be described with matrices. For the coordinates (x, y) of a point on a cir-
cle with radius r and its centre at the origin we have

(
x

y

)
=

(
r cosε

r sinε

)
, (1.1)

where ε is the angle with respect to the x axis, see the next figure.
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ε

y

x

r

If the point (x, y) is rotated anti-clockwise over an angle ϑ, then the new coordinates are
(

x↑

y↑

)
=

(
r cos(ε+ ϑ)

r sin(ε+ ϑ)

)
=

(
r cosε cos ϑ → r sinε sin ϑ

r sinε cos ϑ + r cosε sin ϑ

)
(1.2)

or (
x↑

y↑

)
=

(
cos ϑ → sin ϑ

sin ϑ cos ϑ

) (
r cosε

r sinε

)
=

(
cos ϑ → sin ϑ

sin ϑ cos ϑ

) (
x

y

)
. (1.3)

The 2↑ 2 matrix (
cos ϑ → sin ϑ

sin ϑ cos ϑ

)
(1.4)

is for an anti-clockwise rotation over an angle ϑ. The determinant of the matrices is 1. The
matrices for rotations over 0, 2ω/3 en 4ω/3 are denoted as R0, R1 respectively R2. Explicitly:

R0 =

(
1 0

0 1

)
, R1 =

(
→

1
2 →

1
2

↓
3

1
2

↓
3 →

1
2

)
, R2 =

(
→

1
2

1
2

↓
3

→
1
2

↓
3 →

1
2

)
. (1.5)

From matrix multiplication it follows (R1)2 = R2, (R2)2 = R1 and R1R2 = R2R1 = R0. This
means that the group of matrices {R0,R1,R2} is similar to {r0, r1, r2}:

r0 ↔↗ R0

r1 ↔↗ R1

r2 ↔↗ R2

. (1.6)

With this one to one relation the groups have the same group structure: the multiplication
table is similar. The group {R0,R1,R2}, which we will call M3, therefore is isomorphic to
the group C3. The group M3 is just another representation of the group C3: the matrix
representation. The isomorphy between C3 and M3 is expressed as C3

↘= M3.
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1.2 The group C4

Here we consider a square with arrows in the edges, see the figure.

Z

1 2

34

The square has a fourfold rotational symmetry. The anti-clockwise rotations around the
barycenter Z over 0, ω/2, ω en 3ω/2 are denoted as r0, r1, r2 respectively r3. The square
also has point symmetry. That is, reflection in point Z leads to the same square. However, if
you look what happens to the figures at the corners you will notice that the point reflection
is actually the same as the rotation r2. The group {r0, r1, r2, r3} is Abelian with order 4.
The group is generated by r1 which has order 4 heeft. The group is denoted as C4. The
multiplication table is as follows:

r0 r1 r2 r3

r0 r0 r1 r2 r3

r1 r1 r2 r3 r0

r2 r2 r3 r0 r1

r3 r3 r0 r1 r2

As for the triangle the rotations can be described with matrices. The matrices corresponding
to a rotation over 0, ω/2, ω en 3ω/2 are denoted R0, R1, R2 respectively R3:

R0 =

(
1 0

0 1

)
, R1 =

(
0 →1

1 0

)
, R2 =

(
→1 0

0 →1

)
, R3 =

(
0 1

→1 0

)
. (1.7)

The set matrices {R0,R1,R2,R3} form a group which we will call M4. As the reader may
check C4

↘= M4.
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1.3 The group D3

Again we consider an equilateral triangle, but this time without the arrows in the edges, see
the figure. The dashed lines are the medians.

Z

km

l

1 2

3

The triangle has the same rotation symmetry as the triangle in section 1.1. Again, the rotaties
will be denoted as r0,r1 en r2. Because of the absence of arrows the triangle also has mirror
symmetry. For example, reflection in median k leads to the same triangle, except that the
figures 2 and 3 at the corners are interchanged. This reflection will be denoted as s0. The
reflection in l and m is denoted as s1 respectively s2. The complete symmetry group is
{r0, r1, r2, s0, s1, s2} and has order 6. This so called dihedral group is denoted as D3. The
multiplication table is as follows:

r0 r1 r2 s0 s1 s2

r0 r0 r1 r2 s0 s1 s2

r1 r1 r2 r0 s1 s2 s0

r2 r2 r0 r1 s2 s0 s1

s0 s0 s2 s1 r0 r2 r1

s1 s1 s0 s2 r1 r0 r2

s2 s2 s1 s0 r2 r1 r0

The combined actions r1s0 (read: first reflection in k followed by a rotation over 2ω/3) has
the same result as solely s1, thus r1s0 = s1, see the table. Similarly we find s0r1 = s2. Since
r1s0 ≃= s0r1 the group D3 is not Abelian. For the multiplication table it is not necessary to
visualise all combinations of rotations and reflections. Instead one can explore the algebra
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(rules of combined actions). For instance, from r1s0 = s1 it follows r2r1s0 = r2s1. Since
r2r1 = r0 we find r2r1s0 = r0s0 = s0 which results in r2s1 = s0. Convenient rules are:

rirj = ri+j , risj = si+j , sirj = ri→j , sisj = ri→j . (1.8)

Since i+ j and i→ j allways have to be 0, 1 or 2 one has to subtract 3 from i+ j if i+ j > 3

and add 3 to i→ j if i→ j < 0. That is, we count modulo 3.

Since s2 = s0r1 and s1 = s0r2 = s1(r1)2 the group D3 is generated by 2 generators: r1

and s0. Explicitely: D3 = {(r1)0, r1, (r1)2, s0, s0r1, s0(r1)2}. The order of s0 is 2. The group
C2 = {r0, s0} (with generator s0) is a subgroup of D3. The group C3 = {r0, r1, r2} (with gen-
erator r1) is a subgroup of D3. Since {(r1)0, r1, (r1)2, s0, s0r1, s0(r1)2} = {r0, s0}↑ {r0, r1, r2}

one says that D3 is the group product of C3 and C2: D3 = C3 ⇐ C2. The order of D3 is the
product of the order of the 2 generators.

Reflections can also be expressed by matrices. The coordinates (x, y) of a point on a cir-
cle with radius r and its centre at the origin can be written as

(
x

y

)
=

(
r cosε

r sinε

)
(1.9)

If the point (x, y) is reflected in a line which forms an angle ϑ with the horizontal axis, then
the new coordinates are

(
x↑

y↑

)
=

(
r cos(2ϑ → ε)

r sin(2ϑ → ε)

)
=

(
r cosε cos(2ϑ) + r sinε sin(2ϑ)

r cosε sin(2ϑ)→ r sinε cos(2ϑ)

)
(1.10)

or
(

x↑

y↑

)
=

(
cos(2ϑ) → sin(2ϑ)

sin(2ϑ) cos(2ϑ)

) (
r cosε

r sinε

)
=

(
cos(2ϑ) sin(2ϑ)

sin(2ϑ) → cos(2ϑ)

) (
x

y

)
. (1.11)

The 2↑ 2 matrix (
cos(2ϑ) sin(2ϑ)

sin(2ϑ) → cos(2ϑ)

)
(1.12)

is the matrix for reflection in a line which forms an angle ϑ with the horizontal axis. For the
lines k, l and m is ϑ equal to 30↓, 90↓ and 150↓. The corresponding matrices, which we denote
as S0, S1 respectively S2, are:

S0 =

(
1
2

1
2

↓
3

1
2

↓
3 →

1
2

)
, S1 =

(
→1 0

0 1

)
, S2 =

(
1
2 →

1
2

↓
3

→
1
2

↓
3 →

1
2

)
, (1.13)

With matrix multiplication it can be verified that for instance (S0)2 = R0, S0S1 = R1 and
S1S2 = R2 with R0, R1 and R2 as given in the first section. The set {R0,R1,R2,S0,S1,S2}

is a group which we will denote as M6. The multiplication table has the same structure as
the table for D3. thus M6

↘= D3.



1.4. THE GROUP D4 11

1.4 The group D4

We consider a square, but this time without the arrows in the edges, see the figure. The
square has the same rotation symmetry as the square in section 1.2. Because of the absence
of arrows the square also has mirror symmetry. The 4 lines of reflection are shown as dashed
lines.

Z

1 2

34

k l m

n

The rotations are denoted as r0, r1, r2 en r3 and the reflections in the lines k, l, m and n

as s0, s1, s2 respectively s3. The complete symmetry group is {r0, r1, r2, r3, s0, s1, s2, s3} and
has order 8. This non-Abelian group is denoted as D4. The Cayley table is as follows:

r0 r1 r2 r3 s0 s1 s2 s3

r0 r0 r1 r2 r3 s0 s1 s2 s3

r1 r1 r2 r3 r0 s1 s2 s3 s0

r2 r2 r3 r0 r1 s2 s3 s0 s1

r3 r3 r0 r1 r2 s3 s0 s1 s2

s0 s0 s3 s2 s1 r0 r3 r2 r1

s1 s1 s0 s3 s2 r1 r0 r3 r2

s2 s2 s1 s0 s3 r2 r1 r0 r3

s3 s3 s2 s1 s0 r3 r2 r1 r0

The rules in equation 1.8 also hold for D4 if one counts modulo 4. The group D4 is generated
by 2 generators: r1 and s0. Explicitely:
D4 = {(r1)0, r1, (r1)2, (r1)3, s0, s0r1, s0(r1)2, s0(r1)3}. There holds: D4 = C4 ⇐ C2.
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The rotation matrices are as in section 1.2. The matrices for reflection are:

S0 =

(
0 1

1 0

)
, S1 =

(
→1 0

0 1

)
, S2 =

(
0 →1

→1 0

)
, S3 =

(
1 0

0 →1

)
. (1.14)

As can be verified, the group {R0,R1,R2,R3,S0,S1,S2,S3} is isomorphic to D4.

1.5 The group S3

With the rotation r1 of D3 all corners move on one step: 1 moves to 2, 2 moves to 3 and 3
moves to 1. By means of cycles this is written as (1 2 3). For the rotation r2 of D3 corner 1
moves to 3, 3 moves to 2 and 2 moves to 1. This is expressed with the 3-cycle (1 3 2). The
reflection s0 of D3 does interchange corners 2 and 3 while corner 1 is una"ected: 2 moves
to 3, 3 moves to 2 and 1 ‘moves to’ 1. This is the 3-cycle (1)(2 3). The latter is denoted
more briefly with the 2-cycle (2 3), where it is understood that each missing numbers is in a
1-cyle. The unit element r0 is in cyle notation (1)(2)(3) or shortly ( ). As can be verified,
(1 2 3) = (2 3 1) = (3 1 2) and (2 3) = (3 2).

Each element of D3 takes 1 to a, 2 to b and 3 to c, where a, b and c are 1, 2 or 3 such
that a ≃= b, a ≃= c and b ≃= c. For a,b,c there are 6 possibilities: 1,2,3 and 1,3,2 and 2,1,3 and
2,3,1 and 3,1,2 and 3,2,1. Since a, b, c are a permutation of 3 di"erent numbers, we have 3! = 6

di"erent permutations and thus 6 possibilities. The group S3 is the permutation group for 3
di"erent numbers. So, the group S3 has order 3! = 6. To each element of S3 corresponds one
element of D3, see the next table.

a,b,c element of S3 element of D3

1,2,3 ( ) r0

1,3,2 (23) s0

2,1,3 (12) s1

2,3,1 (123) r1

3,1,2 (132) r2

3,2,1 (13) s2
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De cycle (abcdef ...xyz) has the same e"ect as (ab)(bcdef ...xyz). Indeed, (bcdef ...xyz) moves
everything one position except that a ‘moves to’ a and z moves to b. Afterwards the cycle
(ab) moves a to b and z to a. As a consequence the number positions are identical to the ones
after (abcdef ...xyz). Therefore, each n-cycle (n > 2) can be written as a product of 2-cycles:
(abcdef ...xyz) = (ab)(bc)(cd)(de)...(xy)(yz). Furthermore (ab)(ab) = ( ) since two reflections
cancel each other. With these rules it follows for instance that (123) = (12)(23), or r1 = s1s0.
Also (123)(132) = (312)(213) = (31)(12)(21)(13) = (31)(13) = ( ) or r1r2 = r0.

A consequence of the one-to-one correspondence between de cycles of S3 and the elements
of D3 is that S3 and D3 are isomorphic: S3

↘= D3. The regular 2-gon is just a line element
connecting point 1 to point 2. The reflection in the line element coincides with the identity r0

and the reflection in the perpendicular bisector of the line element coincides with a rotation
r1 over ω. So, S2 has two elements. That is just as much as C2. As can be verified, S2

↘= C2.

1.6 The group S4

For n = 4 the permutation group has 4! = 24 elementen, while D4 has 8 elements. Therefore
is D4 one of the subgroups of S4. The Cayley table for S4 will not be shown since it is a 24
↑ 24 table. Instead, in the next table the 24 elements of S4 are shown and, where applicable,
the corresponding element of D4.

a,b,c,d element of S4 element of D4

1,2,3,4 ( ) r0

1,2,4,3 (34)

1,3,2,4 (23)

1,3,4,2 (234)

1,4,2,3 (243)

1,4,3,2 (24) s0

2,1,3,4 (12)

2,1,4,3 (12)(34) s1

2,3,1,4 (123)

2,3,4,1 (1234) r1

2,4,1,3 (1243)

2,4,3,1 (124)
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a,b,c,d element of S4 element of D4

3,1,2,4 (132)

3,1,4,2 (1342)

3,2,1,4 (13) s2

3,2,4,1 (134)

3,4,1,2 (13)(24) r2

3,4,2,1 (1324)

4,1,2,3 (1432) r3

4,1,3,2 (142)

4,2,1,3 (143)

4,2,3,1 (14)

4,3,1,2 (1423)

4,3,2,1 (14)(23) s3

1.7 Klein four-group V

We consider a rectangle without arrows, see the figure. The lines of reflection are dashed.

Z

1 2

34

The rectangle is mapped onto itself by a rotation over 0, a rotation over ω, a reflection in the
horizontal axis and a reflexction in the vertical axis. They are denoted as r0, r1, sx respectively
sy. The group {r0, r1, sx, sy} has order 4 and is known as the Klein four-group, denoted as V .
De Cayley tabel is as follows:
We also consider the set {1, 3, 5, 7}. Multiplication is modulo 8 (that is, subtract multiples of
8 until the result is 0, 1, 2, 3, 4, 5, 6 or 7). As you already saw, modulo is usually abbreviated
to mod . For example, 5↑ 7 mod 8 = 35 mod 8 = 3 . The Cayley table is
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r0 sx sy r1

r0 r0 sx sy r1

sx sx r0 r1 sy

sy sy r1 r0 sx

r1 r1 sy sx r0

1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

The two previous Cayley tables have the same structure. Although rotations and reflections
may seem to have nothing to do with multiplications modulo 8, the Cayley tables learns that
{r0, r1, sx, sy} and {1, 3, 5, 7} are isomorphic.

1.8 The group Z/nZ

The cyclic group Z/nZ (also written as Zn) is the set {0, 1, ...,n→1} where addition is modulo
n. For example, Z/3Z = {0, 1, 2} where addition is modulo 3. The Cayley table for Z/3Z is

0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

The table has the same structure as for C3, so C3
↘= Z/3Z. In general Cn

↘= Z/nZ for all n.

The general linear group GL(n,F) is a group of n ↑ n invertible (non-zero determinant)
matrices with matrix elements in F. F can for instance be the complex numbers C or the reals



16 CHAPTER 1. INTRODUCTION TO GROUP THEORY

R. F can also be Z/nZ. The special linear group SL(n,F) is a group of n↑ n matrices with
determinant equal to 1 and with matrix elements in F. Also here F can be Z/nZ. In words,
modular counting can also be applied to matrix elements. For instance, GL(2,Z/3Z) is a
group of 2 ↑ 2 matrices with matrix elements in Z/3Z. Ignoring the determinant this would
lead to 34 = 81 possible matrices. A non-zero determinant, calculated (mod 3), reduces the
number of possible matrices to 48. For the group SL(2,Z/3Z) this is further reduced to 24.
As another example we consider the group GL(2,Z/2Z), which is identical to SL(2,Z/2Z).
Ignoring the determinant this would lead to 24 = 16 possible matrices. A non-zero deter-
minant, calculated (mod 2), reduces the number of possible matrices to 6. These 6 di"erent
matrices are:

A0 =

(
1 0

0 1

)
, A1 =

(
0 1

1 1

)
, A2 =

(
1 1

1 0

)
, (1.15)

B0 =

(
0 1

1 0

)
, B1 =

(
1 0

1 1

)
, B2 =

(
1 1

0 1

)
. (1.16)

The Cayley table for these matrices have the same structure as C3: GL(2,Z/2Z) ↘= C3. Since
C3

↘= S3 also GL(2,Z/2Z) ↘= S3.

1.9 Number of groups of order n

In all the tables shown an element never occurs more than once in a row (or in a column). The
reason for this is as follows. Consider a group consisting of the di"erent elements {a, b, c, d, ...}.
Suppose that b followed by a has the same result as c followed by a. That would imply ab = ac.
Since each element of a group has an inverse, we have ab = ac ↗ a→1ab = a→1ac ↗ b = c.
The latter contradicts the initial assumption of b and c being di"erent elements.

The question arises: how many groups of order n have a di"erent, not isomorphic, Cayley
table? Without specifying them we denote the elements as e, f , g, etc., where e is the unit
element. For order 1 there is just 1 element: e. So, there is just 1 table possible:

e

e e

For order 2 we have: {e, f}. There is just 1 table possible, isomorphic to the table of Z/2Z:

e f

e e f

f f e

For order 3 there are 3 elements: {e, f , g}. To create the table f2 = e is not possible. The
only possibility, f2 = g, leads to 1 table, which is isomorphic to Z/3Z:
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e f g

e e f g

f f g e

g g e f

For order 4 there are 4 elements: {e, f , g,h}. The table can be partly filled:

e f g h

e e f g h

f f

g g

h h

To complete the row for f we have three options. The first is f2 = g. The requirement that
each element occurs only once in a row or column limits the options for further filling the
table to just one possibility:

e f g h

e e f g h

f f g h e

g g h e f

h h e f g

With e ⇒ 0, f ⇒ 1, g ⇒ 2 and h ⇒ 3 one sees the table is isomorphic to Z/4Z.

For the second option, f2 = h, one is forced to the following table:

e f g h

e e f g h

f f h e g

g g e h f

h h g f e

That the latter table also is isomorphic to Z/4Z can be seen by interchanging the rows and
columns for g and h followed by replacing g for h and h for g. It can also be seen from the
elements following cyclic from f : f = f1, h = f2, g = fh = f3, e = fg = f4.

For the third option, f2 = e, it turns out we have two possibilities for further filling:
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e f g h

e e f g h

f f e h g

g g h f e

h h g e f

e f g h

e e f g h

f f e h g

g g h e f

h h g f e

The left and right table are isomorphic to Z/4Z respectively V . So, there are 2 groups of
order 4: Z/4Z and V . V is the smallest non-cyclic group. Cyclic groups are always Abelian.
Non-cyclic groups are either Abelian or non-Abelian. The non-cyclic group V is Abelian while,
for instance, the non-cyclic group D3 is non-Abelian.

For order 5 one finds only 1 table isomorphic to Z/5Z. For order 6 one finds two tables:
one isomorphic to Z/6Z and one isomorphic to D3. D3 is the smallest non-Abelian group.

If the order of a group is a prime p, there is just 1 table. The table is isomorphic to Z/pZ.

1.10 Subgroups and classes

That V and D3 are not cyclic groups can already be seen from the structure of the table: the
elements seem to be divided in blocks: 2 ↑ 2 blocks for V and 3 ↑ 3 blocks for D3. In V

is {e, f} a subgroup of order 2. Also {e, g} and {e,h} are subgroups of order 2. The unit
element e is a subgroup of order 1. The order of a subgroup is a divisor of the order of the
group. A group whose order is a prime p can only have e as a subgroup. It therefore has only
a single table: a table isomorphic to Z/pZ.

The group D3 has 1 subgroup of order 1: r0, 3 subgroups of order 2: {r0, s0}, {r0, s1},{r0, s2},
and 1 subgroup of order 3: {r0, r1, r2}. For D3 we can calculate the result of gr1g→1, where
g runs through all the elements of D3, thus r0r1r

→1
0 , r1r1r→1

1 , r2r1r→1
2 , s0r1s→1

0 , s1r1s→1
1 and

s2r1s
→1
2 . The result is either r1 or r2. For each g also gr2g→1 is either r1 or r2. The set

{r1, r2} therefore is a conjugacy class. Similarly one finds that {s0, s1, s2} is a conjugacy class.
The unit element, r0, also is a conjugacy class. So, D3 has 3 di"erent conjugacy classes. A
subgroup consisting of complete conjugacy classes is called a normal subgroup. For instance
for D3 is {r0, r1, r2} a normal subgroup, while the subgroup {r0, s0} is not a normal subgroup
since it does not contain the complete conjugacy class {s0, s1, s2}. The subgroup {r0} is a
normal subgroup D3; a unit element always is a normal subgroup. In summary, D3 has 3
classes, 5 subgroups and 2 of the 5 subgroups are normal subgroups.



Chapter 2

Modular Arithmetic

2.1 Some number theory

In number theory an important role is played by the prime numbers. The prime-counting
function ω(x) counts the number of primes smaller than or equal to x. For instance, ω(11) = 5

since there are 5 primes (2, 3, 5, 7 and 11) smaller than or equal to 11. A well known

approximations for ω(x) is ε(x) =
x

lnx
. A better approximation is Li(x) =

∫
x

2

1

ln t
dt, which

requires a numerical evaluation. A convenient approximation is

µ(x) =
x

lnx

(
1 +

1

lnx

)
. (2.1)

In the figure below all four functions are shown or x ⇑ 1000, ε(x) in blue, Li(x) in orange,
µ(x) in green and ω(x) in black.
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For x > 8 · 103 the approximation Li(x) performs on average better than µ(x). For large x

the performance of three approximations are tabulated:

10n ε(x)/ω(x) Li(x)/ω(x) µ(x)/ω(x)

101 1.08574 1.28011 1.55727

102 0.86859 1.16324 1.05720

103 0.86170 1.05098 0.98644

104 0.88343 1.01309 0.97935

105 0.90553 1.00383 0.98419

106 0.92209 1.00164 0.98884

107 0.93355 1.00051 0.99147

108 0.94224 1.00003 0.99339

109 0.94901 0.99996 0.99481

1010 0.95438 0.99995 0.99583

1011 0.95874 0.99992 0.99659

1012 0.96233 0.99993 0.99716

1013 0.96535 0.99994 0.99759

1014 0.96791 0.99994 0.99794

1015 0.97013 0.99995 0.99821

1016 0.97205 0.99992 0.99844

1017 0.97374 0.99992 0.99862

1018 0.97524 0.99993 0.99877

1019 0.97658 0.99993 0.99890

1020 0.97778 0.99994 0.99901

1021 0.97886 0.99994 0.99911

1022 0.97984 0.99995 0.99919

1023 0.98074 0.99995 0.99926

1024 0.98156 0.99995 0.99932

1025 0.98231 0.99995 0.99937

1026 0.98300 0.99996 0.99942
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A well known unsolved problem, one of the so called Landau’s problems, is Legendre’s con-
jecture: there always exist at least one prime between two consecutive perfect squares.
Let us denote the number of primes between two consecutive squares n2 and (n+1)2 as ϖ(n).
An estimate for ϖ(n) is obtained as follows. Between the squares n2 and (n + 1)2 there are

2n numbers. Half of it will be even and therefore not prime. This leaves 2n

(
1→

1

2

)
odd

numbers. Approximately a third of it will be a multiple of 3. This leaves 2n
(
1→

1

2

)(
1→

1

3

)

possible primes. Repeating the argument for multiples of 5, 7, and so on, we obtain

ϱ(n) = 2n
∏

pk↔n

(
1→

1

pk

)
as an estimate for ϖ(n).

From µ(x) another estimate is obtained: µ((n + 1)2) → µ(n2) ⇓ ... ⇓
n+ 1

ln(n+ 1)
. We will

denote it as ς(n), thus ς(n) =
n+ 1

ln(n+ 1)
. In the next figure we have plotted the function ϖ(n)

(black) and its estimates ϱ(n) (orange) and ς(n) (green).
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The function ϱ(n) slightly overestimates. The function ς(n) follows accurately ϖ(n), even for
very large n. From ς(n) we obtain as an estimate for ω(n2):

ω(n2) ⇓
n→1∑

k=1

ς(k) =
n∑

k=2

k

ln k
(2.2)

With the substitution of x for n2 this is

ω(x) ⇓

↗
x∑

k=2

k

ln k
⇓

∫ ↗
x

↗
2

v

ln v
dv ⇓

∫ ↗
x

↗
2

1

ln v2
dv2 =

∫
x

2

1

ln t
dt. (2.3)

This completes the circle since the latter is equal to Li(x). Although still not proven, the
figure above suggests ϖ(n) > 0 for all n > 0. The conjecture might be stated a little stronger.
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A numerical inspection suggests there always is a prime between n2 and n2 + n and a prime
between n2 + n and (n+ 1)2, for n > 1. If true, it implies ϖ(n) > 2 for all n > 0.

Another one of Landau’s problems is the Goldbach conjecture: every even number larger
than 2 can be written as the sum of two primes.
A lot of even numbers can be written as the sum of two primes in multiple ways. For instance,
20 = 3 + 17 and 20 = 7 + 13. Let us denote the number of ways an even number 2n can
be written as a sum of primes as φ(n). In the next figure we have plotted the function φ(n)

(black). The green and orange curves are
1.5n

(lnn)2
respectively

3n

(lnn)2
.
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The figure above clearly suggests φ(n) > 0 for all n > 1. Still, it is not proven.

Another one of Landau’s problems is the twin prime conjecture: there exist infinitely many
primes p such that p+ 2 is prime.
The number of twins smaller than or equal to x will be denoted as ↼(x). An estimate for ↼(x)
is obtained as follows. From ς(n) it follows that the probability for a number x between n2

and (n + 1)2 to be prime approximately is
1

2n

n

lnn
=

1

2 lnn
. Assuming the primes between

n2 and (n+ 1)2 are randomly positioned the probability for a number x+ 2 between n2 and

(n + 1)2 to be prime approximately is
1

2 lnn
. The probability for a twin between n2 and

(n+1)2 therefore is
1

4(lnn)2
. For the expected number of primes between n2 and (n+1)2 we

then have 2n ·
1

4(lnn)2
=

n

2(lnn)2
. This leads to the following estimate:

↼(x) ⇓

↗
x∑

k=2

k

2(ln k)2
⇓

∫ ↗
x

↗
2

v

2(ln v)2
dv =

∫
x

2

1

(ln t)2
dt (2.4)
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By means of partial integration we find
∫

x

2

1

(ln t)2
dt =

∫
x

2

1

ln t
dt→

[
t

ln t

]x

2

= Li(x)→
x

lnx
+

2

ln 2
(2.5)

Neglecting the 2/ ln 2 and approximating Li(x) by µ(x) we obtain

↼(x) ⇓
x

lnx

(
1 +

1

lnx

)
→

x

lnx
=

x

(lnx)2
(2.6)

In the next figure ↼(x) is plotted against x (black). The green curve is the estimate
1.63x

(lnx)2

for ↼(x). For increasing x a smaller value than 1.63 is required for a good approximation
(ultimately to 1.32 for extremely large x).
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The figure above suggests ↼(x) is not limited. Still, it is not proven.

2.2 Some modular arithmetic

Modular arithmetic is a sort of cyclic counting; counting modulo a number. For instance, 49
mod 11 means: subtract from 49 a multiple of 11 such that the result is a number larger than
or equal to zero and smaller than 11; 49 mod 11 = 5. We also say that 49 is congruent to 5
modulo 11: 49 ↘= 5 mod 11.

Modular arithmetic can be very powerful. To verify that 67108 → 1 is divisible by 165 we
have to check that 67108 ↘= 1 mod 165. Since 165 is 3 · 5 · 11 we proceed as follows:

67 ↘= 1 mod 3 ↗ 67108 ↘= 1108 ↘= 1 mod 3.
67 ↘= 2 mod 5 ↗ 674 ↘= 24 ↘= 1 mod 5 ↗ 67108 ↘= (674)27 ↘= 127 ↘= 1 mod 5.
67 ↘= 1 mod 11 ↗ 67108 ↘= 1108 ↘= 1 mod 11.

Now if a number is equal to 1 modulo 3, equal to 1 modulo 5 and equal to 1 modulo 11 it
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must be 1 modulo the product of 3, 5 and 11 since 3, 5 and 11 have no factor in common.
Hence, 67108 → 1 is divisible by 165.

Another powerful result is Fermat’s ‘little theorem’: if p is a prime number then ap ↘= a

mod p for any integer a. One way to prove it is by means of induction.
Firstly, ap ↘= a mod p is obviously true for a = 0 and for a = 1.

Secondly, if p is a prime and 0 ⇑ k ⇑ p the numerator of
(
p

k

)
=

p!

(p→ k)!k!
contains a

factor p not cancelled out by a number in the denominator. As a consequence, the identity

(a+ 1)p =
p∑

k=0

(
p

k

)
ap→k is reduced to (a+ 1)p ↘= ap + 1 mod p. Then ap ↘= a mod p implies

(a+ 1)p ↘= (a+ 1) mod p.

A little investigation learns that a5 ↘= a mod 30 for all a. This can be understood with
Fermat’s little theorem. For example, modulo 3 we have a5 = a3 · a2 ↘= a · a2 = a3 ↘= a

mod 3. Similarly, one finds a5 ↘= a mod 2. Together with a5 ↘= a mod 5 this implies a5 ↘= a

mod 2 · 3 · 5 since 2, 3 and 5 have no common factors. For each n we will search for the
largest value m for which an ↘= a mod m. It is not necessary to look for values of m larger
than 2n → 2 since they will violate 2n ↘= 2 mod m. So, m is a divisor of 2n → 2. Now if
ap ↘= a mod p for some prime p than also ap+k(p→1) ↘= a mod p. Thus in 2n → 2 occurs
the factor 2 for n = 2, 3, 4, ..., 2 + k, ..., the factor 3 for n = 3, 5, 7, ..., 3 + 2k, ..., the factor
5 for n = 5, 9, 13, ..., 5 + 4k, ...,etc. That is, a prime factor p occurs in pn → p for n ↘= 1

mod (p→ 1). In other words: a prime p is a factor of 2n → 2 if p→ 1 divides n→ 1. It quickly
delivers the factors 2, 3, 5, 7 and 13 for n = 13. Since 2 · 3 · 5 · 7 · 13 = 2730 we obtain
a13 ↘= a mod 2730 for all a. In a similar way one finds for instance a37 ↘= a mod 1 919 190

or a421 ↘= a mod 446 617 991 732 222 310. It is just a consequence of plain modular arithmetic.

For each n we denote the largest value m for which an ↘= a mod m as ↽(n), and the largest
value m for which an→1 ↘= 1 mod m as ⇀(n). For the first 25 values of n the values of ↽(n)
and ⇀(n) are shown in the next table. Always is ⇀(n) a divisor of ↽(n). The numbers ↽(n) for
successive n is known as the sequence A027760 of the OEIS [6].

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

↽(n) 2 6 2 30 2 42 2 30 2 66 2 2730 2 6 2 510 2 798 2 330 2 138 2 2730

⇀(n) 1 3 1 5 1 7 1 5 1 11 1 13 1 3 1 17 1 19 1 11 1 23 1 13

The relation ap ↘= a mod p is always true if p is a prime and sometimes true when p is
composite. For example, a561 ↘= a mod 561 for all a, while the number 561 = 3 · 11 · 17 is
composite. Such a number is a Carmichael number.
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Since p → 1 divides 560 for p = 2, 3, 5, 11, 17, 29, 41, 71, 113 and 281, and since 2 · 3 · 5 ·

11 · 17 · 29 · 41 · 71 · 113 · 281 = 15 037 922 004 270 we obtain a561 ↘= a mod 15 037 922 004 270.
Since the primes 3, 11 and 17 are factors of 15 037 922 004 270 we also have a561 ↘= a mod 561.
Alternatively, n is a Carmichael number if it is a product of primes p for which p→ 1 divides
n → 1. Thus 561 is a Carmichael number because 3 · 11 · 17 = 561 while 2, 10 and 16 are
divisors of 560. In this way the next Carmichael numbers are easily found: 1105 = 5 · 13 · 17,
1729 = 7 · 13 · 19, etc. The smallest Carmichael number with 4 factors is 41041 = 7 · 11 · 13 · 41

and the smallest with 5 factors is 825265 = 5 · 7 · 17 · 19 · 73, etc. For each number of factors
there are infinitely many Carmichael numbers.

An equivalent form of Fermat’s little theorem is:
if p is a prime number then ap→1 ↘= 1 mod p for any integer a not divisible by p.

If ap→1
≃↘= 1 mod p for some a ≃↘= 0 mod p it is certain that p is composite. However, if

ap→1 ↘= 1 mod p the number p is either prime or composite. Suppose we want to use Fer-
mat’s little theorem as a test for primality of 3281. If we try it for a = 43 we get 433280 ↘= 1

mod 3281. Let us try a = 150, then we get 1503280 ↘= 1 mod 3281, still not conclusive. If
we try a = 2 we get 23280 ↘= 3197 ≃↘= 1 mod 3281 and we finally know 3281 is composite:
3281 = 17 · 193. Among the values 0 through 3280 for a there are 256 values for which
a3280 ↘= 1 mod 3281. For the Carmichael number 560 there even are 320 values for a < 561

for which a560 ↘= 1 mod 561. To know for sure that p is prime ap→1 ↘= 1 mod p has to be
tested for all numbers a < p. For large p this is time consuming. One can do better with
Lehmer’s theorem: if there exists an a such that ap→1 ↘= 1 mod p and a(p→1)/q

≃↘= 1 mod p

for all primes q dividing p→ 1, then p is prime. Now one can stop testing as soon as an a has
been found which satisfies Lehmer’s theorem.

2.3 A small excursion

As a small side step we consider the value of ⇁(n) :=
n→1∑

k=1

n mod k. For example, for n = 41

we have ⇁(41) = 297, the values n mod k are shown in the next table

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ... 39 40

41 mod k 0 1 2 1 1 5 6 1 5 1 8 5 2 13 11 9 7 5 3 1 20 19 18 ... 2 1

If all the values of the bottom row run from 1 through 40 the sum would be 1
2 · 40 · 41 = 820.

The value ⇁(41) = 297 is a fraction 0.35357... of it. With the table for n = 41 at hand we
can derive an estimation for ⇁(n) for large n. For n = 41 we see for k = 21 through 40 the
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values of 41 mod k run from 1 through 20. It contributes to ⇁(41) with
1

2
· 20 · 21 = 210.

For large n this contribution to ⇁(n) would be approximately
1

2

(n
2

)2
. For k = 14 through

20 the values of 41 mod k run from 1 through 13 with step size 2. For large n it would run
from 1 through about n/3 with step size 2. If it would run from 1 through n/3 with step size

1 it would contribute to ⇁(n) approximately with
1

2

(n
3

)2
. Since it runs with step size 2, the

contribution is about the half of it: ⇓
1

2
·
1

2

(n
3

)2
. For k = 11 through 13 the values of 41

mod k run from 2 through 8 with step size 3. Its contribution to ⇁(n) therefore approximately

is: ⇓
1

3
·
1

2

(n
4

)2
. Continuing the line of reasoning we obtain

⇁(n) ⇓
1

2
n2

((
1

2

)2

+
1

2

(
1

3

)2

+
1

3

(
1

4

)2

+
1

4

(
1

5

)2

+ ...

)
=

1

2
n2

↘∑

k=1

1

k(k + 1)2
. (2.7)

With the substitution of
1

k(k + 1)
=

1

k
→

1

k + 1
the latter can be rearranged to

↘∑

k=1

1

k(k + 1)2
=

↘∑

k=1

1

k(k + 1)
→

1

(k + 1)2
=

↘∑

k=1

1

k
→

1

k + 1
→

1

(k + 1)2
= 2→

↘∑

k=1

1

k2
. (2.8)

The latter sum is the Riemann-zèta function ζ(2), and its value is ω2/6.
As a result we therefore have

lim
n≃↘

⇁(n)

n2
= lim

n≃↘

1

n2

n→1∑

k=1

n mod k =
1

2
·

(
2→

ω2

6

)
=

(
1→

ω2

12

)
. (2.9)

In the next diagram the ratio ⇁(n)/n2 is scattered against n. The limit value 1 → ω2/12 is
shown as a green line.
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2.4 Euler’s theorem

Two numbers m and n are ‘relatively prime’ if they have no common factors or, alternatively,
if gcd(m,n) = 1. An important function in number theory is Euler’s totient function ϕ. For
a number n Euler’s totient function counts the integers k (1 ⇑ k ⇑ n) which are relatively
prime to n. For example, ϕ(15) = 8 since there are 8 integers relatively prime to 15: 1, 2,
4 , 7, 8, 11, 13 and 14. Other examples: ϕ(3) = 2 (1 and 2 are relatively prime to 3) and
ϕ(5) = 4 (1, 2, 3 and 4 are relatively prime to 5). In general ϕ(p) = p → 1 if p is a prime.
We see ϕ(3) · ϕ(5) = ϕ(15). In general ϕ(m) · ϕ(n) = ϕ(mn) if m and n are relatively prime.

Another property is ϕ(pk) = pk → pk→1 = pk
(
1→

1

p

)
. Any number n can be written as a

product of powers of primes (fundamental theorem of arithmetic): n = pk11 · · · pkrr . From the
latter is obtained Euler’s product formula:

ϕ(n) = ϕ(pk11 )ϕ(pk22 ) · · · ϕ(pkrr ) = n

(
1→

1

p1

)(
1→

1

p2

)
· · ·

(
1→

1

pr

)
. (2.10)

Another property is:
∑

ϕ(d) = n, where the summation is over all the divisors d of n.
Euler’s theorem reads: aω(n) ↘= 1 mod n for any integer a relatively prime to n. If n is a
prime p it is reduced to a(p→1) ↘= 1 mod p.

Writing x as the sum of y and a multiple of ϕ(n) we have ax = ay+ω(n)k = ay
(
aω(n)

)k ↘=

ay1k ↘= ay mod n. A consequence of Euler’s theorem therefore is: if x ↘= y mod ϕ(n), then
ax ↘= ay mod n. If n is a prime p it is reduced to: if x ↘= y mod (p→1), then ax ↘= ay mod p.
The latter relation has been applied already in the second section when we searched for the
largest value m for which an ↘= a mod m for all a.
Here we will search for the smallest value m which for a given n satisfies am ↘= 1 mod n for
all a relatively prime to n. For each n these values of m is denoted as φ(n). φ(n) is known
as the Carmichael function. For the first 28 values of n the Carmichael function and Euler’s
totient function are shown in the next table. See also A002322 and A000010 of the OEIS [6].

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

φ(n) 1 1 2 2 4 2 6 2 6 4 10 2 12 6 4 4 16 6 18 4 6 10 22 2 20 12 18 6

ϕ(n) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8 12 10 22 8 20 12 18 12

φ(n) is equal to or a fraction of ϕ(n). If n is a power of an odd prime or twice the power of
an odd prime φ(n) = ϕ(n). If n is 2 or 4 φ(n) = ϕ(n). If n is a power of 2 larger than 4

φ(n) =
1

2
ϕ(n). For other composite numbers n other fractions occur.

Carmichael’s theorem reads: aε(n) ↘= 1 mod n for any integer a relatively prime to n. If n is
a prime p it is reduced to ap→1 ↘= 1 mod p.
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2.5 Rings and fields

A set is a semigroup for a given operation ( + or · or whatever) if it satisfies associativity. A
set is a monoid if it satisfies associativity and contains a neutral element. A set is a group if it
satisfies associativity, contains a neutral element and each element has an inverse. To numbers
we can apply addition and multiplication. For both they can be a group. For instance, the
set of real numbers R is a group for addition:

1. R contains a neutral element, 0: a+ 0 = 0 + a = a.

2. each element a of (R, +) has an inverse, →a: a+ (→a) = (→a) + a = 0.

3. associativity is satisfied: (a+ b) + c = a+ (b+ c).

The set of real numbers R also is a group for multiplication:

1. R contains a neutral element, 1: a · 1 = 1 ·+a = a.

2. each element a (except 0) of (R, ·) has an inverse, 1/a: a · 1/a = 1/a · a = 1.

3. associativity is satisfied: (a · b) · c = a · (b · c).

The next two tables show the Z/5Z structure for addition respectively multiplication.

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

We see Z/5Z is a group for addition and, if we forget the 0, a group for multiplication . The
situation changes for Z/6Z, see the next tables.

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

· 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

The set Z/6Z is a group for addition. However, it is not a group for multiplication since 2, 3
and 4 have no inverse.
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When both operations are considered together one obtains, depending on properties satisfied,
rings or fields. To this end it is clarifying to enumerate properties (which should hold for every
a, for every pair a, b and for every triple a, b, c) in the following order:

P1: associativity for (+): a+ (b+ c) = (a+ b) + c.
P2: neutral element for (+): a+ 0 = 0 + a = a.
P3: inverse for (+): a+ (→a) = (→a) + a = 0.
P4: commutative (Abelian) for (+): a+ b = b+ a.
P5: associativity for (·): a · (b · c) = (a · b) · c.
P6: distributivity: a · (b+ c) = a · b+ a · c; (a+ b) · c = a · c+ b · c.
P7: neutral element for (·): a · 1 = 1 · a = a.
P8: commutative (Abelian) for (·): a · b = b · a.
P9: no divisors of 0: if a · b = 0 then a = 0 or b = 0.
P10: inverse (except for 0) for (·): a · (1/a) = (1/a) · a = 1.

Then we have the following nomenclature:
A set is a semigroup if P1 is satisfied.
A set is a monoid if P1 and P2 are satisfied.
A set is a group if P1, P2 and P3 are satisfied.
A set is a commutative (Abelian) group if P1, P2, P3 and P4 are satisfied.
A set is a semiring, SR, if P1, P2, P4, P5 and P6 are satisfied.
A set is a ring, R, if P1, P2, P3, P4, P5 and P6 are satisfied.
A set is a unitary ring, UR, if P1, P2, P3, P4, P5, P6 and P7 are satisfied.
A set is a commutative unitary ring, CUR, if P1 through P8 are satisfied.
A set is an integral domain, ID, if P1 through P9 are satisfied.
A set is a field, F , if P1 through P10 are satisfied.

As a consequence: F ⇔ ID ⇔ CUR ⇔ UR ⇔ R ⇔ SR.

Some examples: the set of real numbers R satisfies P1 through P10 and therefore is a field.
The same holds for the set of complex numbers C. Also the set of rational numbers Q is a
field. The set of integers Z is an integral domain (the inverse of for instance 3 is 1

3 ≃↖ Z). In
general Z/nZ is a ring. For instance, Z/6Z is a ring. The subset {0, 2, 4} of Z/6Z also is a
ring (with 4 as neutral element); it is a subring of the ring Z/6Z. We are more specific when
we say that Z/6Z is a CUR. Similarly, since {0, 2, 4} ↖ Z/6Z satisfies P9 we are more specific
when we say that {0, 2, 4} ↖ Z/6Z is an ID. Z/5Z is a field. In general, the ring Z/pZ is a
field if p is a prime.

A ‘unit’ is an element of a ring which has a multiplicative inverse. For R every element,
except 0, has an inverse; every element of R except 0 is a unit. Z has 1 and →1 as units. The
‘unit group’ of Z therefore is {1,→1}. For Z/6Z is {1, 5} the unit group. For {0, 2, 4} ↖ Z/6Z
is {4} the unit group. For Z/pZ with p a prime is every element except 0 a unit.
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2.6 Polynomials

An expression of the form K[x] = anxn + an→1xn→1 + ... + a1x+ a0 is a polynomial. In short
n∑

i=0

aix
i is a polynomial (an infinite series such as a Taylor series of sinx is not a polynomial).

The largest power of x, n, is the degree of the polynomial. If the largest power is 0, the
polynomial is a constant: a0. If the coe!cients ai are in a ring R, a UR, a CUR or an ID,
then the polynomial also is a ring R, a UR, aCUR or a ID respectively. If the coe!cients
ai are in a field F , then the polynomial is an ID; a polynomial in a field requires for the
multiplicative inverse a fractional power of x which is outside the definition of a polynomial.
Thus, although R is a field, R[x] is an ID.

A polynomial is reducible if it can be written as a product of factors, where a factor may
not be a unit. Some examples:
The polynomial x2+x+1 over C can be factored : x2+x+1 = (x+

1

2
+
1

2
i
↓
3)(x+

1

2
→
1

2
i
↓
3),

while it can not be factored (is irreducible) over R.

The polynomial x2→x→1 over R can be factored : x2+x+1 = (x→
1

2
+

1

2

↓
5)(x+

1

2
→

1

2

↓
5),

while it is irreducible over Q.
The polynomial x2 + 1

6x→
1
6 over Q can be factored: x2 +

1

6
x→

1

6
= (x+

1

2
)(x→

1

3
).

The polynomial x2 → 3x+ 2 over Z is reducible: x2 → 3x+ 2 = (x→ 1)(x→ 2).
The polynomial 3x + 1 over Z is irreducible, 3(x + 1

3) is not allowed since 1
3 /↖ Z. The poly-

nomial 3x+ 1 also is irreducible over Q, 3(x+ 1
3) is not allowed since 3 is a unit of Q.

If a polynomial is irreducible over Z it is irreducible over Q. The reverse may not be true:
The polynomial 3x+3 over Z is reducible: 3x+3 = 3(x+1), while it is irreducible over Q; 3 is
a unit (invertible) in Q, while not a unit in Z. The greatest common divisor of the coe!cients
of the latter polynomial is 3. Therefore 3 can be separated without causing a fraction in the
other factor. Hence, if a polynomial is irreducible over Q and the greatest common divisor of
the coe!cients is equal to 1, then it is irreducible over Z. A polynomial for which the greatest
common divisor of the coe!cients is equal to 1 is called a primitive polynomial.

Some modular arithmetic examples: The polynomial x2 + x + 1 over Z/2Z is irreducible.
Indeed, for x = 0 we have 02+0+1 ↘= 1 ≃↘= 0 mod 2 and for x = 1 we have 12+1+1 ↘= 1 ≃↘= 0

mod 2; there are no roots. For the polynomial x2 + x + 1 over Z/3Z we find for x = 1

that 12 + 1 + 1 ↘= 0 mod 3. Hence, the polynomial x2 + x + 1 over Z/3Z is reducible:
(x → 1)2 = x2 → 2x + 1 ↘= x2 + x + 1 mod 3. The next value for n for which x2 + x + 1

is reducible over Z/nZ is n = 7: (x → 2)(x → 4) = x2 → 6x + 8 ↘= x2 + x + 1 mod 7.
The list goes on for n = 13, 19, 21, 31, .... The polynomial x2 + x + 1 over Z/91Z can
be factored in two ways: (x → 9)(x → 81) = x2 → 90x + 729 ↘= x2 + x + 1 mod 91 and
(x → 16)(x → 74) = x2 → 90x + 1184 ↘= x2 + x + 1 mod 91. Notice that 91 is not a prime
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number. There are more examples for which the polynomial x2 + x + 1 over Z/nZ can be
factored in multiple ways if n is not a prime. If for a prime p the polynomial x2 + x+ 1 over
Z/pZ is reducible, it can be factored in only one way.

As another example we consider the polynomial x2 + 1 over Z/nZ. It is reducible for n = 2:
(x → 1)2 = x2 → 2x + 1 ↘= x2 + 1 mod 2. Other values for n for which the polynomial
x2 + 1 over Z/nZ is reducible are 5, 10, 13, 17, 25, .... For the composite number n = 65 we
have the first value for which the polynomial x2 + 1 over Z/nZ can be factored in two ways:
(x→8)(x→57) = x2→65x+456 ↘= x2+1 mod 65 and (x→18)(x→47) = x2→65x+846 ↘= x2+1

mod 65. Again, for a prime p the polynomial x2 + 1 over Z/pZ can be factored, if it is re-
ducible, in only one way. The reducibility of the polynomial x2 + 1 over Z/pZ for a prime p,
thus x2 + 1 ↘= 0 mod p for some x, implies that x2 + 1 is equal to p or a multiple of p for
some x. This brings us to the fourth Landau problem: are there infinitely many primes of
the form k2 + 1 with k ↖ N. Let us denote the number of such primes smaller than n2 + 1 as
▷(n). An estimate for ▷(n) is obtained as follows. In the first section we saw the probability

for a number between n2 and (n+ 1)2 to be prime approximately is
1

2 lnn
. This leads to the

following estimate:

▷(n) ⇓
n∑

k=2

1

2 ln k
⇓

∫
n

2

1

2 ln t
dt =

1

2
Li(n) ⇓

1

2
µ(n) ⇓

0.5n

lnn

(
1 +

1

lnn

)
(2.11)

In the next figure we have plotted the function ▷(n) (black). The green curve is
0.71n

lnn

(
1 +

1

lnn

)
.

0 2000 4000 6000 8000 10000
0

200

400

600

800

n

γ(
n)

The estimate suggests ▷(n) will not stop growing. Still, it is an open problem.
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2.7 The Riemann zeta function

As another small excursion we consider the Taylor expansion of sinx/x: s

sinx

x
= 1→

x2

3!
+

x4

5!
→

x6

7!
+

x8

9!
→ ... (2.12)

Since sinx has zero’s for x = nω, n ↖ Z, (sinx)/x also has zero’s for x = nω except for n = 0.
Knowing its roots the function (sinx)/x can be approximated as follows

sinx

x
⇓ (1→

x

ω
)(1 +

x

ω
)(1→

x

2ω
)(1 +

x

2ω
)(1→

x

3ω
)(1 +

x

3ω
)... (2.13)

or
sinx

x
⇓ (1→

x2

ω2
)(1→

x2

4ω2
)(1→

x2

9ω2
)... (2.14)

Euler already proved the latter equation is exact. That is, the approximation symbol ⇓

actually is an equality symbol =. For our purpose we write the latter equation as

sinx

x
= (1→ y1)(1→ y2)(1→ y3)... =

↘∑

k=1

(1→ yk), (2.15)

where yk = x2/(kω)2. Removing the brackets and grouping similar products, we obtain

sinx

x
= 1→ (y1 + y2 + ...) + (y1y2 + y1y3 + ... + y2y3 + ...)→ (y1y2y3 + ...), (2.16)

which can be systematically denoted as

sinx

x
= S0 → S1 + S2 → S3 + ... = 1 +

↘∑

n=1

(→1)nSn, (2.17)

where S0 = 1, S1 =
↘∑

i=1

yi, S2 =
↘∑

i=1

↘∑

j>i

yiyj , S3 =
↘∑

i=1

↘∑

j>i

↘∑

k>j

yiyjyk, etc.

The factors Sn can be systematically expressed as follows:

Sn =
1

n

n∑

k=1

(→1)k+1Sn→kTk , (2.18)

where Tn =
↘∑

k=1

ynk . Solving for Sn we obtain

S0 = 1,
S1 = T1,
S2 =

(
T 2
1 → T2

)
/2!,

S3 =
(
T 3
1 → 3T1T2 + 2T3

)
/3!,

S4 =
(
T 4
1 → 6T 2

1 T2 + 3T 2
2 + 8T1T3 → 6T4

)
/4!,

and so on.
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Since yk = x2/(kω)2 we have Tn =
x2n

ω2n

↘∑

k=1

1

k2n
, and since

↘∑

k=1

1

k2n
is equal to the Riemann

zeta function ζ(2n), we can write Tn =
x2n

ω2n
ζ(2n). As a result we have

sinx

x
= 1→

x2

ω2
ζ(2) +

x4

2!ω4

(
ζ2(2)→ ζ(4)

)
→

x6

3!ω6

(
ζ3(2)→ 3ζ(2)ζ(4) + 2ζ(6)

)
+

+
x8

4!ω8

(
ζ4(2)→ 6ζ2(2)ζ(4) + 3ζ2(4) + 8ζ(2)ζ(6)→ 6ζ(8)

)
→ ...

Comparison with the series (2.12) gives

1

3!
=

1

ω2
ζ(2)

1

5!
=

1

2!ω4

(
ζ2(2)→ ζ(4)

)

1

7!
=

1

3!ω6

(
ζ3(2)→ 3ζ(2)ζ(4) + 2ζ(6)

)

1

9!
=

1

4!ω8

(
ζ4(2)→ 6ζ2(2)ζ(4) + 3ζ2(4) + 8ζ(2)ζ(6)→ 6ζ(8)

)
,

and so on. Successively solving for ζ(2), ζ(4), ζ(6) and ζ(8), we obtain

ζ(2) =
ω2

6

ζ(4) =
ω4

90

ζ(6) =
ω6

945

ζ(8) =
ω8

9450
,

and so on.

We can also consider finite sums of positive powers of integers such as
n∑

k=1

k =
1

2
n2 +

1

2
n

n∑

k=1

k2 =
1

3
n3 +

1

2
n2 +

1

6
n

n∑

k=1

k3 =
1

4
n4 +

1

2
n3 +

1

4
n2

n∑

k=1

k4 =
1

5
n5 +

1

2
n4 +

1

3
n3

→
1

30
n.
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In general,
n∑

k=1

km =
1

m+ 1

m∑

j=0

(
m+ 1

j

)
Bj n

m+1→j , (2.19)

with Bj the j-th the Bernoulli number. The first Bernoulli numbers are shown in the next
table.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Bj 1 1
2

1
6 0 →

1
30 0 1

42 0 →
1
30 0 5

66 0 →
691
2730 0 7

6 0 →
3617
510 0 43867

798

The Bernoulli numbers are related to the Riemann zeta functions. One of the relations is

ζ(2n) =
(→1)n+1B2n(2ω)2n

2(2n)!
, n ↙ 0. (2.20)

2.8 Divisor sum

The sum of the divisors of an integer n is denoted as ◁(n):

◁(n) =
∑

d|n

d , (2.21)

where d|n means d is a divisor of n.
For instance 12 has 1, 2, 3, 4, 6 and 12 as divisors, so ◁(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28.
Similarly, ◁(7) = 1 + 7 = 8. If m and n have no common divisors then ◁(mn) = ◁(m)◁(n).
Thus ◁(84) = ◁(12)◁(7) = 28 · 8 = 224. If p is prime then

◁(pk) = 1 + p+ p2 + ... + pk = (pk+1
→ 1)/(p→ 1) . (2.22)

If n =
∏

i

pki
i

is the prime factorization of n, then

◁(n) =
∏

i

◁(pki
i
) =

∏

i

pki+1
i

→ 1

pi → 1
. (2.23)

Perfect numbers are numbers for which ◁(n) = 2n. According to the Euclid-Euler theorem a
number n = 2p→1 (2p → 1) is perfect if p is a prime and 2p→1 is prime. Primes of the type 2p→1

are known as Mersenne primes. It then follows that ◁(n) = ◁(2p→1)◁(2p→1) = (2p→1)2p = 2n.
The smallest perfect number is 21(22 → 1) = 6, the second is 22(23 → 1) = 28, the third is
24(25 → 1) = 496, the fourth is 26(27 → 1) = 8128, the fifth is 212(213 → 1) = 33 550 336. The
number 210(211 → 1) = 2 096 128 is not perfect since 211 → 1 = 2047 = 23 · 89 is not prime.
A number n is multiperfect if ◁(n) is a multiple (larger than 2) of n. Examples, for which
◁(n) = 3n are 120, 672, 523 776, .... ◁(n) = 4n for 30 240, 32 760, ....
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If we add ◁(1) through ◁(41) the result is 1384. In section 3 we saw the sum of 41 mod 1

through 41 mod 41 is equal to 297. It is no coincidence that 1384 + 297 = 1681 = 412. In
general, there holds the following identity

n∑

k=1

n mod k +
n∑

k=1

◁(k) = n2. (2.24)

As before, we denote the sum of the remainders as ⇁. The identity then reads

⇁(n) +
n∑

k=1

◁(k) = n2 , (2.25)

where ⇁(n) =
n∑

k=1

n mod k and where ◁(k) is the sum of the divisors of k.

A proof of the relation is as follows. Since n = 1 + ((n→ 1) mod k) if k is not a divisor
of n and n = 0 = 1 + ((n→ 1) mod k)→ k if k is a divisor of n it follows that

n∑

k=1

(n mod k) =
n∑

k=1

(1 + ((n→ 1) mod k)))→
∑

k|n

k

=
n∑

k=1

1 + ((n→ 1) mod n) +
n→1∑

k=1

((n→ 1) mod k)→ ◁(n)

= 2n→ 1 +
n→1∑

k=1

((n→ 1) mod k)→ ◁(n).

Hence
⇁(n)→ ⇁(n→ 1) = 2n→ 1→ ◁(n) . (2.26)

A repetitive application of the latter leads to

⇁(n) = ⇁(1) +
n∑

k=2

(⇁(k)→ ⇁(k → 1)) = 0 + 2
n∑

k=2

k →

n∑

k=2

1→
n∑

k=2

◁(k)

=
(
n2 + n→ 2

)
→ (n→ 1) + ◁(1)→

n∑

k=1

◁(k) = n2
→

n∑

k=1

◁(k). ↭ (2.27)

For convenience a self explanatory scheme for n = 9 is given below.
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k ↗ 1 2 3 4 5 6 7 8 9 sum of divisors

divisors of 1 1 ◁(1) = 1

divisors of 2 1 2 ◁(2) = 3

divisors of 3 1 3 ◁(3) = 4

divisors of 4 1 2 4 ◁(4) = 7

divisors of 5 1 5 ◁(5) = 6

divisors of 6 1 2 3 6 ◁(6) = 12

divisors of 7 1 7 ◁(7) = 8

divisors of 8 1 2 4 8 ◁(8) = 15

divisors of 9 1 3 9 ◁(9) = 13

9 mod k 0 1 0 1 4 3 2 1 0 ⇁(9) = 12

sum 9 9 9 9 9 9 9 9 9 81

From the relation lim
n≃↘

⇁(n)

n2
= 1→

ω2

12
and the relation ⇁(n) +

n∑

k=1

◁(k) = n2 we obtain

lim
n≃↘

1

n2

n∑

k=1

◁(k) =
ω2

6
. (2.28)



Chapter 3

Elliptic curves

3.1 Rational points on a circle

As a start we consider rational points on a circle.

OA(→1, 0)

B

C(u, v)

OA(→1, 0)

B(0, t)

C

In the left side of the figure a line is drawn through A(→1, 0) and C(u, v) where A and C are

both on a unit circle. As can be calculated the line intersects the y axis in B

(
0,

v

u+ 1

)
. This

implies that the coordinates of B are rational if the coordinates u and v of C are rational. In
the right side of the figure a line is drawn through A(→1, 0) and B(0, t). The line intersects

the circle at C

(
1→ t2

1 + t2
,

2t

1 + t2

)
. This implies that the coordinates of C are rational if the

y coordinate t of B is rational. As a consequence, every rational point C on the circle is
parameterised by a rational parameter t. If we write the rational number t as t =

m

k
, such

that gcd(m, k) = 1, then the coordinates of C read u =
k2 →m2

k2 +m2
and v =

2mk

k2 +m2
. Therefore

we can find all right triangles with integer sides a, b and c (Pythagorean triples, satisfying
a2 + b2 = c2) by taking a = k2 → m2, b = 2km and c = k2 + m2 and substituting integer
values for k and m. The important conclusion is that there are rational points on the circle

37
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x2+y2 = 1. This is not the case for the curves xn+yn = 1 for n = 3, 4, .... (Fermat’s theorem,
proven by Wiles). There are no rational points on, for instance, the circle x2 + y2 = 3. So,
the occurrence of rational points on a circle x2 + y2 = a depends on a. The possibilities are
extended if we apply modular counting. For instance, x2+y2 ↘= 3 mod 7 is satisfied for x ↘= 1

mod 7 and y ↘= 4 mod 7. There are more x, y pairs satisfying x2 + y2 ↘= 3 mod 7, see the
next figure.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

x

y

3.2 Right triangles with integer area

As a small excursion we consider right triangles with rational sides for which the area is an in-
teger. This is always the case for Pythagorean triples. For instance, the Pythagorean (3, 4, 5)

triangle has area 6. The Pythagorean (9, 40, 41) triangle has area 180. Since 180 = 5·62 we can
obtain a smaller integer area by dividing the sides by 6. Then the right triangle (11

2 , 6
2
3 , 6

5
6)

has area 5. Another example with area 5 is (3 43
492 , 3

363
1519 , 4

354769
747348), see next figure.

62
3

11
2

65
6

3 363
1519

3 43
492

4354769
747348
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For right triangles with rational sides the smallest integer area is 5. Examples of right triangles
with area 6 are shown below.

4

3
5

171
7

7
10

1711
70

5398
851

2 302
1551

51176980
1319901

The integer area n for right triangles with rational sides are known as ‘integer congruent num-
bers’. The sequence of integer congruent numbers starts with 5, 6, 7, 13, 14, 15, 20, 21, 22, 23,

24, 28, 29, 30, 31, 34, ... It is sequence A003273 of the OEIS [6]. If we denote the rational sides
of a right triangle as a, b and c, with c the hypothenuse, we have the Pythagorean relation

a2 + b2 = c2 and for the area n the relation n = 1
2ab. Setting x =

nb

c→ a
and y = ±

2n2

c→ a
it

follows that x and y satisfy the equation y2 = x3 → n2x, which is an equation for an elliptic
curve. If a, b, c and thus n are rational, then x and y are rational and (x, y) is a rational point
on the elliptic curve.

Two n = 5 examples: for (a, b, c) = (11
2 , 6

2
3 , 6

5
6) we obtain (61

4 , 9
3
8) and (61

4 ,→93
8) as a

rational point on the elliptic curve y2 = x3 → 25x. By changing roles of a and b we obtain for
(a, b, c) = (62

3 , 1
1
2 , 6

5
6) the rational point (45, 300) and (45,→300). Moreover, taking opposite

sign for c leads to additional rational points: (→4,→6), (→4, 6), (→5
9 ,→319

27) and (→5
9 , 3

19
27).

In a similar way we find from the (3 43
492 , 3

363
1519 , 4

354769
747348) right triangle the following ratio-

nal points on the curve y2 = x3 → 25x: (11 97
144 , 36

71
1728), (11 97

144 ,→36 71
1728), (12473

961 , 40
13760
29791),

(12473
961 ,→4013760

29791), (→2 238
1681 ,→642174

68921), (→2 238
1681 , 6

42174
68921), (→2 3

2401 ,→6 56706
117649) and

(→2 3
2401 , 6

56706
117649). These are not the only rational points on the curve y2 = x3 → 25x. Other

rational points are, for instance, the zero’s (→5, 0), 0, 0) and (5, 0).

Two n = 6 examples: from the (3, 4, 5) triangle we obtain (12, 36), (12,→36), (18, 72),
(18,→72), (→3,→9), (→3, 9), (→2,→8) and (→2, 8) as rational points on the curve y2 = x3→36x.
From the (171

7 ,
7
10 , 17

11
70) triangle we obtain (61

4 , 4
3
8), (61

4 ,→43
8), (294, 5040), (294,→5040),

(→519
25 ,→4 4

125), (→519
25 , 4

4
125), (→ 6

49 ,→2 34
343) and (→ 6

49 , 2
34
343) as rational points on the curve

y2 = x3 → 36x.

3.3 Elliptic curves

Third degree equations in two variables are in general given by

c1y
3 + c2y

2x+ c3yx
2 + c4x

3 + c5y
2 + c6yx+ c7x

2 + c8y + c9x+ c10 = 0,

where the coe!cients ci are elements of a field. If the equation is not singular, its curve is
called an elliptic curve. For our purpose we restrict to the situation where the ci are elements
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of Q, Z or Z/pZ. For these fields the elliptic curve can, by means of change of variables and
coordinate transformations, be rewritten in the Weierstrass form: y2 = x3 + ax+ b.

For b = 0 and a = →25 respectively a = →36 we obtain the elliptic curves from the pre-
vious section. They are shown, together with some of their rational points, in the next figure.

→5 0 5 10 15

→40

→20

0

20

40
y2 = x3 → 25x

x

y

→10 →5 0 5 10 15 20

→80

→60

→40

→20

0

20

40

60

80
y2 = x3 → 36x

x

y

Figure 3.1: Left: the curve y2 = x3→25x and some rational points found from the (11
2 , 6

2
3 , 6

5
6)

right triangle (green) and the (3 43
492 , 3

363
1519 , 4

354769
747348) right triangle (orange). Right: the curve

y2 = x3 → 36x and some rational points found from the (3, 4, 5) right triangle (green) and the
(171

7 ,
7
10 , 17

11
70) right triangle (orange).

For the curve y2 = x3 →n2x the zeros are: y = 0 ↗ x(x2 →n2) = 0 ↗ x = 0, x = →n, x = n.
For →n ⇑ x ⇑ 0 and x ↙ n the curve has a real value for y; outside these ranges the value of
y is complex.

The shape of the elliptic curve depends on the coe!cients a and b. This is illustrated in
the next nine figures. For y2 = x3 → 3x → 18 there is a single real zero at (3, 0) (upper left).
If the value of b is increased the zero moves to the left. For y2 = x3 → 3x→ 2 there are three
real zero’s: one at (2, 0) and a twofold one at (→1, 0) (upper middle). For y2 = x3 → 3x there
are three real zero’s: (→

↓
3, 0), (0, 0) and (

↓
3, 0) (upper right).

For y2 = x3 → 3x + 2 there are three real zero’s: one at (→2, 0) and a twofold one at (1, 0)

(middle left). For y2 = x3 → 3x + 81
8 there is a single real zero at (→21

2 , 0) (central figure).
For y2 = x3 there is a threefold zero at (0, 0) (middle right). For y2 = x3 + 8 there is a single
zero at (→2, 0) (lower left). For y2 = x3 +3x→ 4 there is a single zero at (1, 0) (lower middle)
and for y2 = x3 + 3x+ 4 there is a single zero at (→1, 0) (lower right).
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The curve for y2 = x3+ax+b is singular if a twofold or threefold zero is present. A singularity
occurs if 4a3 + 27b2 = 0. A twofold singularity is the case for a = →3, b = →2 (upper middle)
and a = →3, b = 2 (middle left). A threefold singularity is the case for a = 0, b = 0 (middle
right). The points of singularity are denoted as S.

→4 →2 0 2 4

→4

→2

0

2

4 x3 → 3x→ 18

→4 →2 0 2 4

→4

→2

0

2

4 x3 → 3x→ 2

S

→4 →2 0 2 4

→4

→2

0

2

4 x3 → 3x

→4 →2 0 2 4

→4

→2

0

2

4 x3 → 3x+ 2

S

→4 →2 0 2 4

→4

→2

0

2

4 x3 → 3x+ 81
8

→4 →2 0 2 4

→4

→2

0

2

4 x3

S

→4 →2 0 2 4

→4

→2

0

2

4 x3 + 8

→4 →2 0 2 4

→4

→2

0

2

4 x3 + 3x→ 4

→4 →2 0 2 4

→4

→2

0

2

4 x3 + 3x+ 4

3.4 Arithmetic on elliptic curves

A point P and a point Q on an elliptic curve can be composed (‘added’) to a point P +Q as
follows: draw a vertical line through the intersection point of the line through P and Q with
the elliptic curve, the intersection point of the vertical line with the elliptic curve is P +Q. It
is illustrated in the left diagram of the next figure. Now let Q approach P . In the limit that
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Q ↗ P the line through P and Q becomes the tangent line at P . This is illustrated in the
right diagram of the next figure.

→4 →2 0 2 4

→8

→4

0

4

8

P
Q

P +Q

x

y

→4 →2 0 2 4

→8

→4

0

4

8

P

2P

x
y

For the line through P (xP , yP ) and Q(xQ, yQ) we have the equation y = φ(x→xP )+yp where
the slope is φ =

yQ→yP

xQ→xP
. Substituting it in the equation y2 = x3 + ax + b for the curve, we

obtain a third order equation for x:

x3 → φ2x2 + (a+ 2φ2xP → 2φyP )x+ b→ φ2x2P + 2φxP yP → y2P = 0 . (3.1)

From the comparison with

(x→ xP )(x→ xQ)(x→ xP+Q) = x3 → (xP + xQ + xP+Q)x
2 + ...x+ ... = 0 (3.2)

we see that xp + xQ + xP+Q has to be equal to φ2. For the addition of P and Q we obtain:

xP+Q = φ2
→ xP → xQ , yP+Q = φ(xP → xP+Q)→ yP , with φ =

yQ → yP
xQ → xP

. (3.3)

For the tangent line through P (xP , yP ) we also have the equation y = φ(x → xP ) + yp while

now the slope is the derivative in P : φ =
3x2

P
+ a

2yP
. For the tangent line the point Q is equal

to the point P . For the doubling of P we therefore obtain:

x2P = φ2
→ 2xP , y2P = φ(xP → x2P )→ yP , , with φ =

3x2
P
+ a

2yP
. (3.4)

If P and Q have rational coordinates then P +Q has rational coordinates and if P has ratio-
nal coordinates then 2P has rational coordinates. So, starting with a rational point one can
obtain a chain of other rational points.

For a point R on the curve where y = 0, a root, the tangent line is a vertical. As a con-
sequence 2R is a point at infinity, denoted as O, thus 2R = O. Since the elliptic curve is
reflected in the y axis to every point P (x, y) corresponds a mirror point →P (x,→y). In par-
ticular for a root R there holds R = →R, which is the same as saying that 2R = O.
Finally, since P +Q = Q+ P the group of points on an elliptic curve is abelian.
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3.5 Torsion

For a root R of an elliptic curve we saw 2R = O. The group {R,O} is a cyclic group of
order 2. Cyclic groups on elliptic curves are called torsion groups. Elliptic curves always have
two points of inflection. The two points of inflection form, together with O, a torsion group
of order 3. Di"erentiating twice the equation y2 = x3 + ax + b gives yy↑↑ = 3x → y↑y↑. The
inflection condition, y↑↑ = 0, leads to 3x = (y↑)2. Substitution of y↑ = (3x2 + a)/2y gives
12xy2 = (3x2+ a)2. The substitution of y2 = x3+ ax+ b leads to 3x4+6ax2+12bx→ a2 = 0.
The four solutions of this equation are

x =
1

6

↓
6

(√
→2a→

3
↓

2D ±



→4a+
3
↓

2D ±
6
↓
6b

→2a→
3
↓
2D

)
, (3.5)

where D = →4a3 → 27b2. Since the solution already looks complicated we restrict ourselves
to the case where b = 0. Then the equation is reduced to 3x4 + 6ax2 → a2 = 0, which can be
solved by hand:

x = ±


→a±

2

3
a
↓
3 , (3.6)

To visualise the result we take a = 25 and a = →25. For a = 25 the equation of the curve
is y2 = x3 + 25x and has one real root R0 = (0, 0). The equation for the point of inflection,
3x4 + 150x2 → 625 = 0, has four solutions. The only solution for which both the x and y

coordinate are real (in the sense of not complex) is for x = 5
√
→1 + 2

3

↓
3. If we denote the

starting point as P then P =

(
5


→1 +

2

3

↓
3,

5

3

↓
30

√
→3 + 2

↓
3

)
. Numerically this is

P ⇓ (1.9666, 7.5346).

For a = →25 the equation of the curve is y2 = x3→25x and has three real roots R→ = (→5, 0),
R0 = (0, 0) and R+ = (5, 0). The equation for the point of inflection, 3x4 → 150x2 → 625 = 0,
has four solutions. The only solution for which both the x and y coordinate are real is

P =

(
5


1 +

2

3

↓
3,

5

3

↓
30

√
3 + 2

↓
3

)
. Numerically this is P ⇓ (7.3394, 14.5558).

In the foregoing analysis we ‘assumed’ a point of inflection is part of a group of order 3.
If one wants to be sure there is no other group of order 3, one can apply the arithmetic of the
previous section in a straightforward manner. For a = 25 it goes as follows.

Start with a point P and double it to 2P : x2P =

(
3x2

P
+ 25

2yP

)2

→ 2xP . If P has order 3, then

2P = →P and since x→P = xP we obtain the condition x2P = xP . Hence
(
3x2

P
+ 25

2yP

)2

→ 2xP → xP = 0 or
(
3x2

P
+ 25

2yP

)2

→ 3xP = 0

The y coordinate of P is eliminated by substitution of the equation for the elliptic curve:
y2
P

= x3
P
+ 25xP . The elimination of yP leads to the equation 3x4

P
+ 150x2

P
→ 625 = 0 as
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found above. It is a matter of inspection to identify the solution with an inflection point. For
y2 = x3+25x and y2 = x3→25x the curves and the inflection points are shown in respectively
the left and right diagram of the next figure.

→6 →4 →2 0 2 4 6 8 10 12
→40

→30
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→40
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→10

0
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P

2P

y2 = x3 → 25x

order 3

x
y

Hereafter we restrict to the situation with a = 25 and a = →25. A cyclic group of order 4 is
found as follows: take a line through a root point R and tangent to the curve in a point P .
This means that the slope of the tangent line has to equal the slope of the line through R and

P . For a = 25 this means
3x2 + 25

2y
=

y

x
. The latter can be elaborated to 3x3 + 25x = 2y2.

Substituting y2 = x3+25x we obtain x3→25x = 0, which factors in x(x→5)(x+5) = 0. From
the three solutions only x = 5 is a valid x coordinate for P . The corresponding y coordinate is
5
↓
10. For a = →25 a similar analysis leads to the condition x3→15x2+25x+125 = 0. There

are two solutions. The first, which is on the ‘egg’ of the curve, is
(
5(1→

↓
2), 5

↓
5(2→

↓
2)
)
.

The second, which is on the rounded cusp, is
(
5(1 +

↓
2),→5

↓
5(2 +

↓
2)
)
. Again, the solution

could also have been obtained by equating x3P with xP and y3P with →yP and determine the
geometrical structure afterwards. The results are shown in the next figure.
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Notice that we could have started as well with 3P . We could not have started with R+ since
2R+ = O. That is, {R+,O} is a subgroup of {P , 2P , 3P ,O}, in the same way as C2 is a
subgroup of C4.

For a = 25 fivefold torsion leads to the equation x8+300x6→16250x4→812500x2+390625 = 0

with the solution

xP = 5

√
→3 + 2

↓
5→ 2


5→ 2

↓
5 and yP = 5

↓
10

√
→133 + 62

↓
5 + 6


1025→ 458

↓
5.

Numerically it is P ⇓ (8.55164, 28.9685).
For a = →25 the equation is x8 → 300x6 → 16250x4 +812500x2 +390625 = 0 with the solution

xP = 5

√
3 + 2

↓
5 + 2


5 + 2

↓
5 and yP = 5

↓
10

√
133 + 62

↓
5 + 6


1025 + 458

↓
5.

Numerically it is P ⇓ (18.4577, 76.334). Since 5 is a prime, one can start any of the four
points.

→6 →4 →2 0 2 4 6 8 10 12
→40

→30
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Sixfold torsion: for a = 25 we obtain the equation x4 → 150x2 → 1875 = 0 with the solution

xP = 5


3 + 2
↓
3 and yP = 5

↓
10

√
45 + 26

↓
3. Numerically this is P ⇓ (12.7123, 48.705).

The points 2P and 4P are points of inflection. For a = →25 we obtain three equations. For the
first equation, x4→20x3→150x2→500x+625 = 0, the solution is xP = 5

(
1 +

↓
3 +


3 + 2

↓
3
)

and yP = 5
↓
10

√
18 + 10

↓
3 +


627 + 362

↓
3. Numerically this is P ⇓ (26.3726, 132.978).

The group is shown in green in the right diagram of the next figure. For the second equation,

x4 +150x2 → 1875 = 0, the solution is xP = →5

→3 + 2

↓
3 and yP = 5

↓
10

√
→45 + 26

↓
3.

Numerically this is P ⇓ (→3.40625, 6.75538). The group is shown in brown. For the third equa-
tion, x4+20x3→ 150x2+500x+625 = 0, the solution is xP = →5

(
1 +

↓
3→


3 + 2

↓
3
)

and

yP = 5
↓
10

√
→18→ 10

↓
3 +


627 + 362

↓
3. Numerically this is P ⇓ (→0.947955, 4.77986).

The group is shown in red, see next figure. In all three cases the points 2P and 4P are points
of inflection. Notice that the group {3P ,O} and the group {2P , 4P ,O} are subgroups of each
sixfold torsion group (in the same way as C2 and C3 are subgroups of C6).
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Sevenfold torsion: we obtain the equation 7X12

±308X11
→2954X10

∝19852X9
→35321X8

∝82264X7
→ 111916X6

∝ 42168X5 + 15673X4
± 14756X3 + 1302X2

± 196X2
→ 1 = 0, where

X =
(
1
5x

)2. The upper and lower part of the plusminus symbols is for a = 25 and a = →25

respectively. For a = 25 the starting point is P ⇓ (17.5386, 76.3763). For a = →25 the starting
point is P ⇓ (35.7759, 211.886). The results are shown in the next figure.
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Eightfold torsion: for a = 25 the equation is x4 → 20x3 → 50x2 → 500x+ 625 = 0.

A solution is xP = 5
(
1 +

↓
2 +


2 + 2

↓
2
)

and yP = 5
↓
10

√
13 + 9

↓
2 + 2


82 + 58

↓
2. Nu-

merically this is (23.0579, 113.294). The result is drawn in the left diagram of the next figure.
For a = →25 the equation is x8 → 40x7 → 300x6 → 1000x5 + 23750x4 + 25000x3 → 187500x2 +

625000x+ 390625 = 0. There are two solutions. The first starts with P = (46.6517, 316.805)

and is shown in green. The second starts with P = (→0.535886, 3.63913) and is shown in
brown. All solutions have {4P ,O} as an order 2 subgroup and {2P , 4P , 6P ,O} as an order
4 subgroup (as C2 and C4 are subgroups of C8). If you follow the tangent lines you will see
interesting geometrical properties which are not a priori obvious.
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Ninefold torsion: we obtain the equation →3814697265625± 407409667968750X

+1666717529296875X2
±10463378906250000X3+14066674804687500X4

±9546767578125000X5

+ 3351823242187500X6
± 1089921093750000X7 + 388437363281250X8

± 86779382812500X9

+7773391406250X10
∝277076250000X11

→132156562500X12
∝12528675000X13

→170842500X14

∝ 15174000X15
→ 284625X16

± 1710X17+3X18 = 0, where X =
(
1
5x

)2. The upper and lower
part of the plusminus symbols is for a = 25 and a = →25 respectively. For a = 25 the starting
point is P ⇓ (29.2843, 160.765). For a = →25 the starting point is P ⇓ (58.9924, 451.47). The
solutions have {3P , 6P ,O} as an order 3 subgroup (as C3 is a subgroup of C9). The results
are shown in the next figure.
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The geometry of the green solutions becomes evident by now. Just to illustrate a more in-
teresting geometry a torsion group of order 12 for y2 = x3 → 25x is shown in the next figure.
In this illustration as well as in the illustrations shown above there is no torsion point with
both the x and the y coordinate rational. For rational points we should consider other elliptic
curves.
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3.6 Torsion lines

If we take the situation for sixfold torsion at hand we have six points: P , 2P , 3P , 4P , 5P ,O.
For y2 = x3+25x the line from P to 4P was tangent in P . Since P is twofold for its tangent we
can denote the line as (1, 1, 4). That is, it hits twice P and once 4P . The line which intersects
3P , 2P and P is (3, 2, 1). The line tangent to the root hits twice the root 3P and once O:
(3, 3, 0). The vertical line through the inflection points is (2, 4, 0). The line intersecting 5P ,
4P and 3P is (5, 4, 3). The tangent line in the point of inflection is threefold in 2P : (2, 2, 2).
The line tangent to 5P is (5, 5, 2). The line tangent to 5P can also be regarded as starting in
5P , going to 2P and returning in 5P : (5, 2, 5). Alternatively, the order of the numbers do not
matter. If we add the three numbers identifying a line we either obtain 0, 6 or 12. That is, for
line (a, b, c), c ↘= (12 → a → b) mod 6. For n-fold torsion a line is (a, b, (2n→ a→ b) mod n).
This can be seen as follows. If we add the points aP and bP we obtain the point (a+ b)P . So,
the line through aP and bP goes through →(a+b)P = (→a→b)P . Since the points are mod n

we get for the line: (a, b, (→a→ b) mod n), which is identical to (a, b, (2n→ a→ b) mod n).
We can now generate all the lines: run a from 0 to n→ 1 and b from 0 to n→ 1 and calculate
c = 2n → a → b mod n. This leads to n2 lines. However, the line (a, b, c) is the same line as
(a, c, b). If a, b and c all three di"er from each other we have 6 combinations for the same line.
If two out of a, b and c are equal we have 3 combinations for the same line. This reduces the
number of lines. Before we successively consider the situation for increasing order, we first
will distinguish lines by their nature. The line (a, b, c) with a ≃= 0, b ≃= 0 and c ≃= 0 all three
di"erent from each other is a line intersecting the elliptic curve in three di"erent points. We
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will denote it as type S. The line (0, b, c) with b ≃= 0 and c ≃= 0 di"erent from each other is
a vertical line intersecting the elliptic curve in b, c and O. We will denote it as type V . The
line (a, b, b) with a ≃= 0 and b di"erent from a is a line tangent in b and intersecting the elliptic
curve in a. We will denote it as type T . The line (0, b, b) with b ≃= 0 is a vertical line tangent
in a root b. We will denote it as type R. The line (a, a, a) with a ≃= 0 is a line tangent in a
point of inflection a. We will denote it as type I. The line (0, 0, 0) is a line through O. We
will denote it as type O. For order n the number of lines will be denoted as L(n). The number
of lines of type O, I,R,T ,V ,S will be denoted as LO(n),LI(n),LR(n),LT (n),LV (n),LS(n).
Their sum will be denoted as L(n).

The results are tabulated.

type n = 1 Ltype(1)
O (0,0,0) 1
I 0
R 0
T 0
V 0
S 0

sum 1

type n = 2 Ltype(2)
O (0,0,0) 1
I 0
R (0,1,1) 1
T 0
V 0
S 0

sum 2

type n = 3 Ltype(3)
O (0,0,0) 1
I (1,1,1) (2,2,2) 2
R 0
T 0
V (0,1,2) 1
S 0

sum 4

type n = 4 Ltype(4)
O (0,0,0) 1
I 0
R (0,2,2) 1
T (1,1,2) (2,3,3) 2
V (0,1,3) 1
S 0

sum 5

type n = 5 Ltype(5)
O (0,0,0) 1
I 0
R 0
T (1,1,3) (3,3,4) (1,2,2) (2,4,4) 4
V (0,1,4) (0,2,3) 2
S 0

sum 7

For instance, from the table for n = 4 we read of that 2 is root, that a line tangent in 1
intersects de curve in the root 2, that a line tangent in 3 intersects de curve in the root 2,
that there is a vertical line through 1 and 3 and that there is a vertical line tangent to 2. This
determines the geometry. In case of 3 roots one still has to find out for which root this is
possible. One also has to find out if there is more than one possibility. Nevertheless, the tables
can be of help for the understanding of the geometry of all the lines involved, in particular for
increasing n.
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type n = 6 Ltype(6)
O (0,0,0) 1
I (2,2,2) (4,4,4) 2
R (0,3,3) 1
T (1,1,4) (2,5,5) 2
V (0,1,5) (0,2,4) 2
S (1,2,3) (3,4,5) 2
sum 10

type n = 7 Ltype(7)
O (0,0,0) 1
I 0
R 0
T (1,1,5) (2,2,3) (4,4,6) (1,3,3) (2,6,6) (4,5,5) 6
V (0,1,6) (0,2,5) (0,3,4) 3
S (1,2,4) (3,5,6) 2
sum 12

type n = 8 Ltype(8)
O (0,0,0) 1
I 0
R (0,4,4) 1
T (1,1,6) (2,2,4) (5,5,6) (2,3,3) (2,7,7) (4,6,6) 6
V (0,1,7) (0,2,6) (0,3,5) 3
S (1,2,5) (1,3,4) (3,6,7) (4,5,7) 4
sum 15

type n = 9 Ltype(9)
O (0,0,0) 1
I (3,3,3) (6,6,6) 2
R 0
T (1,1,7) (2,2,5) (5,5,8) (1,4,4) (2,8,8) (4,7,7) 6
V (0,1,8) (0,2,7) (0,3,6) (0,4,5) 4
S (1,2,6) (1,3,5) (2,3,4) (3,7,8) (4,6,8) (5,6,7) 6
sum 19

type n = 10 Ltype(10)
O (0,0,0) 1
I 0
R (0,5,5) 1
T (1,1,8) (2,2,6) (3,3,4) (6,6,8) (2,4,4) (2,9,9) (4,8,8) (6,7,7) 8
V (0,1,9) (0,2,8) (0,3,7) (0,4,6) 4
S (1,2,7) (1,3,6) (1,4,5) (2,3,5) (3,8,9) (4,7,9) (5,6,9) (5,7,8) 8
sum 22
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type n = 11 Ltype(11)
O (0,0,0) 1
I 0
R 0
T (1,1,9) (2,2,7) (3,3,5) (6,6,10) (7,7,8) (1,5,5) (2,10,10) (3,4,4) (4,9,9) (6,8,8) 10
V (0,1,10) (0,2,9) (0,3,8) (0,4,7) (0,5,6) 5
S (1,2,8) (1,3,7) (1,4,6) (2,3,6) (2,4,5) (3,9,10) (4,8,10) (5,7,10) (5,8,9) (6,7,9) 10
sum 26

type n = 12 Ltype(12)
O (0,0,0) 1
I (4,4,4) (8,8,8) 2
R (0,6,6) 1
T (1,1,10) (2,2,8) (3,3,6) (7,7,10) (2,5,5) (2,11,11) (4,10,10) (6,9,9) 8
V (0,1,11) (0,2,10) (0,3,9) (0,4,8) (0,5,7) 5
S (1,2,9) (1,3,8) (1,4,7) (1,5,6) (2,3,7) (2,4,6) (3,4,5) (3,10,11) (4,9,11) (5,8,11)

(5,9,10) (6,7,11) (6,8,10) (7,8,9)
14

sum 31

The number of lines of type O, I,R and T together will be denoted as LTRIO. If we look
at the sum of the number of lines of type O, I,R and T , then LTRIO(n) = n. The number
of lines of type V and S together will be denoted as LV S . If we compare LV S(n) with L(n)

then LV S(n) = L(n → 3). Since LV S(n) = L(n) → LTRIO(n) = L(n) → n we obtain L(n) =

L(n→3)+n. Starting with n = 4 we have L(4) = L(1)+4 = 1+4, L(7) = L(4)+7 = 1+4+7,
L(10) = L(7) + 10 = 1 + 4 + 7 + 10 and so on. Hence, L(n) = 1

6n
2 + 1

2n+ 1
3 if n ↘= 1 mod 3.

Starting with n = 5 we have L(5) = L(2) + 5 = 2 + 5, L(8) = L(5) + 8 = 2 + 5 + 8,
L(11) = L(8) + 11 = 2 + 5 + 8 + 11 and so on. Hence, L(n) = 1

6n
2 + 1

2n + 1
3 if n ↘= 2

mod 3. Starting with n = 6 we have L(6) = L(3) + 6 = 4 + 6, L(9) = L(6) + 9 = 4 + 6 + 9,
L(12) = L(9) + 12 = 4 + 6 + 9 + 12 and so on. Hence, L(n) = 1

6n
2 + 1

2n+ 1 if n ↘= 0 mod 3.

3.7 Generating rational points

As an example of an elliptic curve with rational points we consider the curve given by
y2 = x3 → 5x + 12. The single root R(→3, 0) is an integer torsion point of order 2. Next
to the root R(→3, 0) the curve has P (→1, 4), →P (→1,→4), S(8,→22) and S(8, 22) as integer
points, where S = R + P . Starting with P we can calculate 2P with the ‘doubling’ formula.
Thereafter we can calculate 3P = 2P + P . We can calculate 4P either by regarding it as
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4P = 2P + 2P and apply the doubling formula or by regarding it as 4P = P + 3P and apply
the addition formula, etc. Either way, we obtain 2P = (3316 ,→

207
64 ), for 3P = (108472401 ,

1062860
117649 ),

4P = (→7363967
2742336 ,→

11182515137
4541308416 ), etc. Notice that the denominator of the x coordinate is the

square of a number while the denominator of the y coordinate is the cube of that number.
The rational point P and some of its multiples are shown in the next figure.
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y2 = x3 → 5x+ 12

From S(8,→22) we obtain for 2S the coordinates (3316 ,→
207
64 ), for 3S (→ 664

9025 ,→
3015166
857375 ), for 4S

(→7363967
2742336 ,→

11182515137
4541308416 ), etc. Since S = R+P the points generated by S are not independent

of the points generated by P . It also follows that 2S = 2R + 2P = O + 2P = 2P and thus
4S = 4P , 6S = 6P , etc. The points S, P and their multiples are shown in the figure. For
clarity, the mirror points →P , →2P ,...,→kP , →S, →2S,..., →kS,.. are not shown.

The points on an elliptic curve form an abelian group, E(R). The subgroup of rational points
is denoted as E(Q). The rank of an elliptic curve is the number of generators, ‘starting points’,
needed to generate all the rational points. For instance, for the elliptic curve y2 = x3→5x+12

the rational points are generated (whether or not with the help of the torsion point R(→3, 0))
by P (→1, 4). Since there are no other rational points (just take it for granted because rank
determination is complicated), the rank is 1. According to a theorem of Mordell the number
of generators of rational points always is finite.

As another example we consider the curve y2 = x3 → 15x + 22. Next to the root (2, 0)

the curve has (→1, 6), (→1,→6), (3, 2) and (3,→2) as integer points. If we denote (→1, 6) as
P , then 2P = (3,→2), 3P = (2, 0), 4P = →2P = (3, 2), 5P = →P = (→1,→6) and 6P = O.
The situation is shown in the next figure.



3.7. GENERATING RATIONAL POINTS 53

→6 →4 →2 0 2 4 6

→12

→8

→4

0

4

8

12

P

2P

3P

4P

5P

y2 = x3 → 15x+ 22

The order of P is 6: P is cyclic with cycle length 6. There is no rational point which generates
an infinite number of rational points, so the rank is 0.

In general, if nP = O then n is the order of point P . For a point P with order n there
holds (n + 1)P = P . That is, the point P is cyclic with cycle length n. A cyclic point P is
called a torsion point. An elliptic curve is denoted as E. The group of all points on the curve
as E(R). The group of torsion points ETORS is a subgroup of E(R).
The group of rational torsion points is called E(Q)TORS. For the order n of a rational torsion
point there holds n ⇑ 12 and n ≃= 11; a theorem of Mazur. Only the neutral point O has
order 1. Roots, points on the y = 0 axis, have order 2. There are 3 root points (of which 2
may be complex). Together with the neutral point we have 4 points of order 2. The points of
inflection have order 3. The inflection equation, y↑↑ = 0, is a fourth degree equation in x with 4
(of which 3 complex) solutions for x. For every solution x, y there also is a solution x,→y. So,
we have 8 solutions. Together with the neutral point we have 9 points of order 3. In a similar
way we have n2 points (possibly complex) of order n. In general, torsion points are not ratio-
nal. However, if the coe!cients of the elliptic equation are integer, the torsion points also are
integer. The group of torsion points ETORS is infinite. However, the group of rational torsion
points E(Q)TORS is finite. The group E(Q) of rational points is generated by a finite number
of generators. Every element Q of E(Q) can be written as Q = m1P1+m2P2+...+mrPr+T ,
where P1, ...,Pr are the generators, where m1, ...,mr ↖ Z, where r is the rank and where
T ↖ E(Q)TORS. The group E(Q) is isomorphic to Zr

′ E(Q)TORS.
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3.8 Rational points on y2 = x3 → 25x

The elliptic curve E : y2 = x3 → 25x has (→5, 0), (0, 0), (5, 0), (→4, 6), (→4,→6), (45, 300)
and (45,→300) as integer points. The roots (→5, 0), (0, 0) and (5, 0) are three points each
with order 2. Earlier we found that (→4, 6) corresponds to the (11

2 , 6
2
3 , 6

5
6) right triangle

with area 5. Denoting (→4, 6) as P we obtain 2P = (11 97
144 ,→36 71

1728). Earlier we found it
corresponds to the (3 43

492 , 3
363
1519 , 4

354769
747348) right triangle. For the present purpose we write it

as a = 12519
492 , b = 4920

1519 and c = 3344161
492·1519 . Multiplication by 747348 leads to the Pythagorean

triple: (15192,10·4922,3344161). By means of 3P = 2P+P we obtain 3P = (→2439844
5094049 , 3

5109762975
11497268593).

From the correspondence x =
nb

c→ a
and y = ±

2n2

c→ a
we obtain a =

x2 → n2

y
, b =

2nx

y
and

c =
x2 + n2

y
. For the coordinates of 3P it leads to a right triangle with rational sides a =

25353117
3525434 , b = 35254340

25353117 and c = 654686219104361
89380740677778 . Multiplication by 89380740677778=3525434·25353117

leads to the Pythagorean triple: (253531172,10·35254342,654686219104361). For 4P we find the co-
ordinates (5 12832131841

2234116132416 ,
1791076534232245919
3339324446657665536). It corresponds to a right triangle with ratio-

nal sides a = 535583225279
4998504070056 , b = 49985040700560

535583225279 and c = 249850594047271558364480641
2677114931410801046145624 . Multipli-

cation by 2677114931410801046145624 =4998504070056·535583225279 leads to the Pythagorean triple:
(5355832252792,10·49985040700562,249850594047271558364480641).

coordinates (x, y) of nP Pythagorean triangle An,Bn,Cn generating (kn,mn)

xP = →22, yP = 2 · 3 A1 = 32, B1 = 23 · 5, C1 = 41 k1 = 5, m1 = 22

x2P =
412

24 · 32
A2 = 74 · 312, B2 = 25 · 32 · 5 · 412 k2 = 412

y2P = →
72 · 31 · 41

26 · 33
C2 = 3344161 m2 = 24 · 32 · 5

x3P = →
ε2

372 · 612
A3 = 34 · 5872 · 47992 k3 = 5 · 372 · 612

y3P =
ε · 32 · 587 · 4799

373 · 613
B3 = 23 · 5 · 112 · 372 · 612 · 712 m3 = 22 · 112 · 712

where ε := 2 · 11 · 71 C3 = 41 · 15967956563521

x4P =
ϱ2

26 · 32 · 74 · 312 · 412
A4 = 1132792 · 47280012 k4 = 33441612

y4P =
113279 · ϱ · 4728001

29 · 33 · 76 · 313 · 413
B4 = 27 · 32 · 5 · 74 · 312 · 412 · ϱ2 m4=26·33·5·74·312·412

where ϱ := 3344161 C4 = 545834881 · 457740248460360961
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In the previous table coordinates for nP and the integer sides of the corresponding Pythagorean
triangle and its generating numbers (k,m) (a = k2 → m2, b = 2km, c = k2 + m2 remember)
are shown in factorised form. We see the generating (k2j ,m2j) for (2j)P follows from the
(Aj ,Bj ,Cj) for jP via k2j = C2

j
and m2j = 2AjBj . In conclusion, we can construct an

infinite number of Pythagorean triangles for which AB/2 is 5 times a square.

Denoting the roots (→5, 0), (0, 0) and (5, 0) respectively as R→, R0 and R+ and denoting
(45,→300) as S we find R→ + P = S. Also here 2P = 2S, so only odd multiples of S are new
points. The first two of them are shown in the next table.

coordinates (x, y) of nS Pyth. triangle An,Bn,Cn generating kn,mn

xS = 32 · 5, yS = 22 · 3 · 52 B1 = 32, A1 = 23 · 5, C1 = 41 k1 = 5, m1 = 22

x3S =
ε2

· 5

47992
B3 = 34 · 5872 · 47992 k3 = 5 · 372 · 612

y3S = →
ε · 22 · 52 · 11 · 37 · 71

47993
A3 = 23 · 5 · 112 · 372 · 612 · 712 m3 = 22 · 112 · 712

where ε := 32 · 587 C3 = 41 · 15967956563521

We see that changing from (2j + 1)P to (2j + 1)S is a matter of changing roles of A2j+1 and
B2j+1. Not a surprise because this was the way we constructed S from P earlier.

Next we consider V = R0 + P . We find for V the coordinates (61
4 , 9

3
8), from which we

can find new points 3V , 5V , etc. The first two are shown in the next table.

coordinates (x, y) of nV Pyth. triangle An,Bn,Cn generating kn,mn

xV =
52

22
, yV =

3 · 52

23
A1 = 32, B1 = 23 · 5, C1 = 41 k1 = 5, m1 = 22

x3V =
ε2

22 · 112 · 712
A3 = 34 · 5872 · 47992 k3 = 5 · 372 · 612

y3V =
ε · 32 · 5 · 587 · 4799

23 · 113 · 713
B3 = 23 · 5 · 112 · 372 · 612 · 712 m3 = 22 · 112 · 712

where ε := 5 · 37 · 61 C3 = 41 · 15967956563521
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Finally we consider W = R+ +P . We find for W the coordinates (→5
9 ,→319

27), from which we
can find new points 3W , 5W , etc. The first two are shown in the next table. The coordinates
and the Pythagorean triangle sides of, for instance, 3P are governed by the prime numbers
2,3,5,11,37,61,71,587,4799 . For the coordinates of 3S, 3V and 3W some of these prime num-
bers are moved from denominator to numerator and vice versa in comparison with 3P .

coordinates (x, y) of nW Pyth. triangle An,Bn,Cn generating kn,mn

xW = →
52

22
, yW = →

3 · 52

23
A1 = 32, B1 = 23 · 5, C1 = 41 k1 = 5, m1 = 22

x3W = →
ε2

34 · 5872
B3 = 34 · 5872 · 47992 k3 = 5 · 372 · 612

y3W = →
ε · 22 · 5 · 11 · 37 · 61 · 71

36 · 5873
A3 = 23 · 5 · 112 · 372 · 612 · 712 m3 = 22 · 112 · 712

where ε := 5 · 4799 C3 = 41 · 15967956563521

From the addition of two points P , S, V and W we obtain new points:

P+S = V +W =

(
→
5 · 312

74
,
2 · 3 · 52 · 31 · 41

76

)
, P+W = S+V =

(
5 · 74

312
,
23 · 3 · 52 · 72 · 41

313

)
,

P + V = S + W =

(
→
24 · 32 · 52

412
,→

22 · 3 · 52 · 72 · 31

413

)
and so on. Notice that W is not an

‘independent’ point since W = S + V → P . The roots R→, R0, R+ are torsion points, each of
order 2. Together with the rational point P all the other rational points are generated. So,
the rank is 1.

One might wonder if there is a point, say H, such that its double is P (→4, 6). Using the
doubling formula in reversed order we obtain fourth degree equations for the coordinates of
H. The four solutions are complex: (2 + i,→1 + 7i), (2→ i,→1→ 7i), (→10 + 5i, 25 + 25i) and
(→10→ 5i, 25→ 25i). Often H is denoted as 1

2P for obvious reasons: 2 · 1
2P = P . Application

of the doubling formula in reversed order to 2P = (11 97
144 ,→36 71

1728) leads to the following four
solutions: (→4, 6), (45,→300), (61

4 , 9
3
8) and (→5

9 ,→319
27). That is, P , S, V and W as expected

since 2S = 2V = 2W = 2P .

In the next figure a number of multiples of P , S, V and W are shown (the mirror points
are left).



3.9. MODULAR COUNTING ON ELLIPTIC CURVES 57

→6 →4 →2 0 2 4 6 8

→20

→15

→10

→5

0

5

10

15

20

R→ R0 R+

W

3W

5W

7W

9W11W

V

7V

9V

3S

5S

11S

P

3P

4P

5P
7P

9P

11P 12P

y2 = x3 → 25x

x

y

The positions of rational points nP in the figure above are such that nP is close to (n+ 8)P .
A similar observation can be made for the points nS, nV and nW . The reason for this is
that the generator (→4, 6) of the rational points on the curve E : y2 = x3 → 25x is close to
the non-rational torsion point (→4.03198, 5.93736) (see the brown 3P in the eightfold torsion
figure two sections earlier).

3.9 Modular counting on elliptic curves

As we did for a circle equation in the first section, we will apply modular counting on elliptic
curves. As an example we will consider the curve E : y2 = x3+ax+b modulo a prime number.
Alternatively, we consider y2 = x3 + ax + b over the field Z/pZ with p prime. The group of
integer points on an elliptic curve E over Z/pZ is usually denoted as E(Fp). The prime should
not be 2 or 3 for reasons we will not go into. In addition we can only take prime numbers for
which the curve does not become singular. A singularity occurs if the discriminant D becomes
0. The discriminant of an n→th degree equation is defined as the product of the squares of
the distances between the roots times a2n→2

n , where an is the leading coe!cient, the coe!cient
of xn. Thus

D = a2n→2
n

∏

i>j

(xi → xj)
2 . (3.7)
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For the quadratic equation y = ax2 + bx + c the leading coe!cient is a. Since the two roots
are

x1 =
→b→

↓
b2 → 4ac

2a
and x1 =

→b+
↓
b2 → 4ac

2a
, the distance between them is x2 → x1 =

↓
b2 → 4ac

a
. Hence, D = a2(x2 → x1)

2 = b2 → 4ac.
For the cubic equation y = x3 + ax + b the leading coe!cient is 1. If we denote the three
roots as x1, x2 and x3 then D = 14(x2 → x1)

2(x3 → x1)
2(x3 → x2)

2. The calculation of the
roots of the cubic equation is standard in complex function theory. We just give the result:

x1 =
a

T
+

T

3
, x2 =

1 + i
↓
3

2

a

T
→

1→ i
↓
3

2

T

3
and x2 =

1→ i
↓
3

2

a

T
→

1 + i
↓
3

2

T

3
, where

T =
3


→27b+ 3

↓
3
↓
4a3 + 27b2

2
. From these expressions one obtains the following expression

for the discriminant: D = →(4a3 + 27b2).

If we consider an elliptic equation modulo a prime p, then the curve is singular if the
discriminant is 0 mod p. For example for y2 = x3 → 5x + 12 the discriminant is D =

→(4·→53+27·123) = →3388. Modulo 7 we have D = →3388 mod 7 = 0. Since 3388 = 22·7·112

the discriminant will also be 0 for p = 11: D mod 11) = 0. Therefore p = 7 and p = 11

are not allowed for modulo counting on the curve y2 = x3 → 5x + 12. With this in mind we
consider modular counting on some elliptic curves.

3.10 Modular counting on y2 = x3 → 5x+ 12

In this section we will consider the curve y2 = x3 → 5x+ 12 modulo a prime number.
For instance, for p = 13 the integer points on ‘the curve’ are (10, 0), (11, 1), (4, 2), (6, 4),
(8, 4), (12, 4), (0, 5), (2, 6), (2, 7), (0, 8), (6, 9), (8, 9), (12, 9), (4, 11) and (11, 12). Together
with O the group of 16 points is E(F13). If we denote (4, 2) as P the doubling formula gives
2P = (6, 9). The calculation is as follows. First the slope of the tangent line in P :

φ =
3x2

P
+ a

2yP
=

3 · 42 → 5

2 · 2
=

43

4
↘=

4

4
↘= 1 mod 13 . (3.8)

Having obtained the slope we proceed: x2P = φ2
→ 2xP = 12 → 2 · 4 = →7 ↘= 6 mod 13 and

y2P = φ(xP → x2P )→ yP = 1(4→ 6)→ 2 = →4 ↘= 9 mod 13. Indeed 2P = (6, 9).

Since the tangent line through P = (4, 2) has slope 1 it arrives in integer point: (6, 4).
The latter point is mirrored with respect to y = 61

2 , similar to the y = 0 mirror for continuous
curves. The final point is 2P = (6, 9). The doubling of P is illustrated in the next figure.
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Next we apply the addition formula to obtain 3P :

φ =
y2P → yP
x2P → xP

=
9→ 2

6→ 4
=

7

2
= 2→1

· 7 ↘= 7 · 7 ↘= 49 ↘= 10 mod 13 . (3.9)

Notice that 7 is the inverse of 2 since 7 · 2 = 14 ↘= 1 mod 13. This makes clear that unique
inverses require the modulo counting with a prime number. Having obtained the slope of the
line connecting P and 2P we proceed: x3P = φ2

→xP →x2P = 102→ 4→ 6 = 90 ↘= 12 mod 13

and y2P = φ(xP → x3P ) → yP = 10(4 → 12) → 2 = →82 ↘= 9 mod 13. Hence 3P = (12, 9).
Continuing the addition we obtain 4P = (0, 8), 5P = (8, 4), 6P = (11, 1), 7P = (2, 7),
8P = (10, 0), 9P = (2, 6), 10P = (11, 12), 11P = (8, 9), 12P = (0, 5), 13P = (12, 4),
14P = (6, 4), 15P = (4, 11) and 16P = O. So, P is of order 16. Since 1, 3, 5, 7, 9, 11, 13 and
15 are relative prime to 16 (recall ϕ(16) = 8 with ϕ Euler’s totient function), the 8 points
P , 3P , 5P , 7P , 9P , 11P , 13P , 15P have order 16. The point 2P has order 8, and since 1, 3, 5

and 7 are relative prime to 8, the 4 points 2P , 6P , 10P , 14P have order 8. The point 4P has
order 4, and since 1 and 3 are relative prime to 4, the 2 points 4P , 12P have order 4. The
point 8P has order 2. The point 16P has order 1, 16P = O is the single element with order
1. The full group P , 2P , ..., 16P is isomorphic to the cyclic group C16. Subgroups are C8, C4,
C2 and C1.

The line through P and 2P goes through (71
7 , 13) where it is wrapped to (71

7 , 0). From
there it goes to (106

7 , 13) where it is wrapped to (106
7 , 0) after which it arrives at the integer
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point (12, 4). The latter point is mirrored with respect to y = 61
2 to (12, 9). So, 3P = (12, 9).

The addition of P + 2P = 3P is illustrated in the next figure.
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Since 15P = →P we see that going from P to →P is a matter of reflection of the y coordinate
with respect to the y = 61

2 line. For an elliptic curve over the field Z/pZ the points are
mirrored in y = p/2.

For the next prime, p = 17, we find 13 integer points. Together with the neutral element
O the points forms a group of order 14: P , 2P , ..., 14P = O. The subgroup 2P , 4P , ...,O has
order 7, and the element 7P has order 2. The largest order of the elements is 14. The full
group P , 2P , ..., 14P is isomorphic to the cyclic group C14. Subgroups are C7, C2 and C1.

For p = 19 we obtain the following 17 points: (16, 0), (8, 3), (7, 4), (13, 4), (18, 4), (15, 5),
(5, 6), (14, 8), (3, 9), (3, 10), (14, 11), (5, 13), (15, 14), (7, 15), (13, 15), (18, 15) and (8, 16).
Together with O we have 18 elements; the order of the group is 18. Denoting (7, 4) as P

we obtain 2P = (3, 10), 3P = (16, 0), 4P = (3, 9), 5P = (7, 15), 6P = O. Denoting (8, 3)

as Q, we obtain 2Q = (8, 16) and 3Q = O. The other points now are P + Q = (5, 13),
2P +Q = (13, 4), 3P +Q = (18, 15), 4P +Q = (14, 8), 5P +Q = (15, 5), P + 2Q = (15, 14),
2P + 2Q = (14, 11), 3P + 2Q = (18, 4), 4P + 2Q = (13, 15), 5P + 2Q = (5, 6). The group
structure is C6 ↑ C3. The largest order of the elements of the group is 6.
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The number of integer points E(Fp) including O is the order of E(Fp). The order of each
element of E(Fp) is a divisor of the order of E(Fp). For a di"erent elliptic curve such as
E : y2 = x3→ 25x we obtain 20 for the order of E(F13), E(F17) and E(F19). They are not far
away from the corresponding values for the elliptic curve E : y2 = x3 → 5x + 12. They also
are not far away from the prime p. That this is even more so for larger primes is illustrated in
the next figure where the order of E(Fp) for the elliptic curves E : y2 = x3 → 5x+ 12 (green
dots) and E : y2 = x3 → 25x (red dots) is plotted against p for p < 1000.
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3.11 Modular counting on y2 = x3 → 25x

In this section we will consider the curve y2 = x3 → 25x modulo a prime number.
For p = 7 there are 8 points (group structure C4 ↑C2). For p = 11 there are 12 points. They
are generated by two elements, one of order 6 and one of order 2 (C6 ↑ C2) . For p = 13, 17
and 19 there are 20 points. In all three cases the group structure is C10 ↑ C2. For p = 13,
17 and 19 the corresponding points (except O) are shown as respectively red, green and blue
dots in the next figure.
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A common point for red and blue is (10, 3). Common points for all three colours are the
roots (0, 0) and (5, 0). For the third root, (→5, 0), we find di"erent values for di"erent p:
(→5, 0) ↘= (8, 0) mod 13), (→5, 0) ↘= (12, 0) mod 17) and (→5, 0) ↘= (14, 0) mod 19). The
number of points with y = 0 is either 0 (if there is no integer root), 1 (in case of one integer
root) or 3 (in case of three integer roots). For a group E(Fp) the sum of the y coordinates of
points with the same x coordinate is p, because of the reflection with respect to the horizontal
line y = p/2. If there are three points with the same y coordinate, the sum of the x coordinates
is p or 2p.

For p = 13 (red points) there are eight x values with 2 points. We will denote it as X2 = 8.
For p = 13 there are two x values with no points. We will denote it as X0 = 2. In general we
will denote the number of x values with k points as Xk and the number of y values with k

points as Yk. For p = 13, 17 and 19 the Xk and Yk values are tabulated

p X1 X2 Y1 Y2 Y3 #E(Fp)
13 3 8 8 4 1 20
17 3 8 4 0 5 20
19 3 8 8 0 3 20

Taking O into account there holds X1 + 2X2 + 1 = Y1 + 2Y2 + 3Y3 + 1 = #E(Fp). The X0

and Y0 are not shown in the table since X0 = p→X1 →X2 and Y0 = p→ Y1 → Y2 → Y3.
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For E : y2 = x3 → 25x the largest order of the elements of E(F13), E(F17) and E(F19) is
10, while the order of these three groups is 20. In all three cases the largest order of the
elements is half the order of the group. In the next figure the largest order of the elements of
the group E(Fp) is plotted against p, p < 1000, for the elliptic curves E : y2 = x3 → 5x+ 12

(green dots) and E : y2 = x3→25x (red dots). We see that for the curve E : y2 = x3→5x+12

the largest order of the elements of the group E(Fp) is in most cases as large as the order of
the group E(Fp), while for the curve E : y2 = x3 → 25x the largest order of the elements of
the group E(Fp) is at most half the order of the group E(Fp).
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3.12 A ratio in E(Fp)

Let us define µ as the following ratio:

µ(p;E) =
order of E(Fp)

largest order of the elements of E(Fp)
. (3.10)

The set of di"erent µ values depends on the elliptic curve and on p. For p < 1000 (and p not
a divisor of the discriminant) the ratio µ takes on the values:
1, 2, 3, 4, 5, 6 for E : y2 = x3 → 5x+ 12,
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 16 for E : y2 = x3 → 15x+ 22,
1, 2, 3, 4, 6 for E : y2 = x3 → 3x+ 18,
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1, 2, 4, 5, 6, 7, 10, 12, 14, 23, 24 for E : y2 = x3 → 3x,
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28 for E : y2 = x3 + 8,
1, 2, 4, 6 for E : y2 = x3 + 3x→ 4,
1, 2, 3, 4, 6 for E : y2 = x3 + 3x+ 4,
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 for E : y2 = x3 → x,
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 for E : y2 = x3 → 16x,
2, 4, 6, 8, 10, 12, 14, 20, 26 for E : y2 = x3 → 25x,
2, 4, 6, 8, 10, 12, 14, 22, 24 for E : y2 = x3 → 36x.

The set of µ’s for E : y2 = x3→x and the set of µ’s for E : y2 = x3→16x are identical. In gen-
eral the sets for E : y2 = x3→ t4x are the same for any t. Moreover, for E : y2 = x3→ t4x the
order of E(Fp) as well as the largest order of the elements of E(Fp) only depend on p and not
on t. In fact, for E : y2 = x3 → t4x the group structures of E(Fp) only depend on p. This can
be understood as follows. If we start with y2 = x3 → x and perform the linear transformation
y↑ =

y

t3
, x↑ =

x

t3
we obtain y↑2 = x↑3→t4x↑. Since the group structure is not changed by a linear

transformation, the group for E : y↑2 = x↑3 → t4x↑ is identical to the one for E : y2 = x3 → x.
In general, the group for E : y2 = x3+at4x+bt6 is identical to the one for E : y2 = x3+ax+b.

For E : y2 = x3 → x the order of the group E(Fp) against p is shown by the red dots
and the largest order of the elements of E(Fp) against p is shown by the green dots in the
next figure.
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Chapter 4

Modular elliptic curves

4.1 Modular counting on y2 = x3 + 7

For elliptic curves with integer coe!cients the integer torsion points can be systematically
found by means of Nagel-Lutz theorem: if an elliptic curve with integer coe!cients contains a
torsion point the y coordinate of the point is either 0 or its square is a divisor of the discrim-
inant: y2|D. The reverse does not have to be true: an integer (x, y) for which y2|D it is not
necessarily a torsion point. There also are integer points which are part of an infinite series
of rational points generated by a generator. For each y satisfying y2|D one has to test if it
belongs to a finite cyclic group or an infinite group.

For example, for y2 = x3 → 25x we have for y = 0 the integer roots x = →5, x = 0 and x = 5;
(→5, 0), (0, 0) and (5, 0) are torsion points of order 2. The discriminant is D = →(4 ·→253) =

62500. The possible values for y2 such that y2|D are y2 = 1, 52, 54, 56, 22 · 52, 22 · 54, 22 · 56.
Since each of these values for y do not correspond to an integer value for x there are no further
torsion points (except for the trivial O). Integer points (→4, 6) and (45, 300) are part of an
infinite series of rational points.
As another example, for y2 = x3 → 5x+12 we have for y = 0 the integer root x = →3; (→3, 0)

is a torsion point of order 2. The discriminant is D = →(4 · →53 + 27 · 122) = →3388. The
only possible values for y2 such that y2|D are y2 = 1, 22, 112, 22 · 112. Only y2 = 222 does
correspond to an integer value for x, namely x = 8. However, the doubling of (8, 22) does lead
to a non-integer rational point. Therefore is (8, 22) not a torsion point.
As a third example, for y2 = x3 → 15x + 22 we have for y = 0 the integer root x = 2; (2, 0)
is a torsion point of order 2. The discriminant is D = →(4 ·→153 + 27 · 222) = 432 = 24 · 33.
The possible values for y2 such that y2|D are y2 = 1, 22, 24, 32, 32 · 22, 32 · 24. This leads to
the following integer points: (3, 2), (3,→2), (→1, 6), (→1,→6). Starting with P = (→1, 6) we
obtain 2P = (3,→2), 3P = (2, 0), 4P = →2P = (3, 2), 5P = →P = (→1,→6) and 6P = O.
Since the points are part of a finite cyclic group of integer points they are torsion points.

65
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Now we consider the elliptic curve E : y2 = x3+7, which is used in the bitcoin blockchain. As
for all curves of the type y2 = x3+ b it has the property that y↑ = 0 and y↑↑ = 0 for x = 0. For
x = 0 we have y(0) =

↓
7 which is not rational. The single root is for x = 3

↓
→7 which is not

rational. The discriminant is D = →1323 = →33 · 72. The y2|D are y2 = 1, 3, 7, 21. None of
these y values leads to an integer point. This means there are no torsion points (except for the
trivial O). In fact, there are no rational points at all; the rank is 0. The curve E : y2 = x3+7

is shown in the next figure.
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Integer points come into existence if we apply modulo counting on E : y2 = x3 + 7. For
the prime we can not take p = 7 because it would make the curve singular. For p = 5 we
obtain E(F5) = {(4, 1), (3, 3), (2, 0), (3, 2), (4, 4),O} with order 6. Denoting (4, 1) as P the
successive elements are P , 2P , 3P , 4P , 5P , 6P . The group is C6. There are two points of order
6, two of order 3, one of order 2 and one of order 1. The largest order of the elements is 6.
Therefore, µ(5) = 1. For p = 11 the group is C12. So, the largest order of the elements is
12 and µ(11) = 1. For p = 13 the group is C7 and µ(13) = 1. For p = 17 the group is C18

and µ(17) = 1. For p = 19 the group is C6 ↑ C2 and µ(19) = 2. For p = 23 the group is
C24 and µ(23) = 1. For p = 29 the group is C30 and µ(29) = 1. For p = 31 the group is C21

and µ(31) = 1. For p = 37 the group is C39 and µ(37) = 1. For p = 41 the group is C42 and
µ(41) = 1. The second time where µ > 1 is for p = 73. Then the group is C8 ↑C8 and µ = 8.
We see the values of p for which µ ≃= 1 are sparse. In the next figure the order of the group
E(Fp) (red dots) and the largest order of the elements of the group E(Fp) (green dots) are
plotted against p for p < 1000.
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The order of E(Fp) is in approximately half the cases equal to p + 1. For these cases the
largest order of the elements of E(Fp) equals the order of E(Fp), see the green dots on top
of the red dots. For the other cases the largest order of the elements of E(Fp) sometimes
does not equal the order of E(Fp); µ ≃= 1. For p < 1000 the ratio µ takes on the values
1, 2, 3, 4, 6, 7, 8, 9, 10, 22, 25 or 27. For p = 5, 11 and 13 the points of the group E(Fp) are
shown as respectively red, green and blue dots in the next figure.
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The red and green points have (4, 4) in common and the green and blue points have (7, 8)

in common. For p = 5 there are 3 di"erent x and 5 di"erent y coordinates, 1 point for each
y value. For p = 11 there are 6 di"erent x and 11 di"erent y coordinates, 1 point for each
y value. For p = 13 there are 3 di"erent x and 2 di"erent y coordinates, 3 points for each
occupied y value.

For p = 17, 19 and 23 the points are shown as respectively red, green and blue dots in the
next figure.
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Also for p = 17, 19 and 23 we see x values with 0, 1 or 2 points and y values with 0, 1 or 3
points. From inspection it is found for any p < 1000 that for every 0 ⇑ x ⇑ p → 1 there are
0, 1 or 2 points and for every 0 ⇑ y ⇑ p → 1 there are 0, 1 or 3 points. For E : y2 = x3 + 7

somehow y values with 2 points do not occur for p < 1000. As in the previous chapter we
denote the number of x values with k points as Xk and the number of y values with k points
as Yk. The order of the group now is: #E(Fp) = Y1+3Y3+1 or #E(Fp) = X1+2X2+1. The
addition with 1 is to account for the neutral element O. In the next table we have tabulated
for each prime p (first column) the value of X1 (second column), X2 (third column), Y1 (fourth
column), Y3 (fifth column), the order of the group E(Fp) (sixth column) and µ(p) (seventh
column). The table is for p < 200 and E; y2 = x3 + 7.



4.1. MODULAR COUNTING ON y2 = x3 + 7 69

p X1 X2 Y1 Y3 #E(Fp) µ(p)
5 1 2 5 0 6 1
11 1 5 11 0 12 1
13 0 3 0 2 7 1
17 1 8 17 0 18 1
19 3 4 2 3 12 2
23 1 11 23 0 24 1
29 1 14 29 0 30 1
31 0 10 2 6 21 1
37 0 19 2 12 39 1
41 1 20 41 0 42 1
43 0 15 0 10 31 1
47 1 23 47 0 48 1
53 1 26 53 0 54 1
59 1 29 59 0 60 1
61 0 30 0 20 61 1
67 0 39 0 26 79 1
71 1 35 71 0 72 1
73 3 30 0 21 64 8
79 0 33 0 22 67 1
83 1 41 83 0 84 1
89 1 44 89 0 90 1
97 0 39 0 26 79 1
101 1 50 101 0 102 1
103 0 55 2 36 111 1
107 1 53 107 0 108 1
109 0 64 2 42 129 1
113 1 56 113 0 114 1
127 0 63 0 42 127 1
131 1 65 131 0 132 1
137 1 68 137 0 138 1
139 0 73 2 48 147 1
149 1 74 149 0 150 1
151 0 66 0 44 133 1
157 3 84 0 57 172 2
163 0 69 0 46 139 1
167 1 83 167 0 168 1
173 1 86 173 0 174 1
179 1 89 179 0 180 1
181 3 102 0 69 208 4
191 1 95 191 0 192 1
193 0 109 2 72 219 1
197 1 98 197 0 198 1
199 0 94 2 62 189 3
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In the table di"erent categories can be distinguished. For instance, each time when X1 = 1

then Y3 = 0. The cases with X1 = 1 and Y3 = 0 belong to a categorie. For E : y2 = x3 + 7

over Fp we have the following five categories:

1. X1 = 1 and Y3 = 0

2. X1 = 3 and Y1 = 2

3. X1 = 3 and Y1 = 0

4. X1 = 0 and Y1 = 2

5. X1 = 0 and Y1 = 0 .

4.2 Categories for y2 = x3 + b mod p

For every b (integer of course) the elliptic curves E : y2 ↘= x3 + b mod p can be divided
in the same 5 categories as E : y2 ↘= x3 + 7 mod p. It should be noted that in general
for E : y2 ↘= x3 + ax + b mod p with a ≃= 0 also categories do occur with Y2 ≃= 0. In the
table below the category, the order #E(Fp) and the ratio µ(p) are given for b = 1, 2, ..., 8 and
p = 5, 7, 11, 13, 17, 19, 23, 29, 31, 37.

p

b
1 2 3 4 5 6 7 8

5 1,6,1 1,6,1 1,6,1 1,6,1
7 2,12,2 4,9,3 5,13,1 4,3,1 5,7,1 3,4,2
11 1,12,1 1,12,1 1,12,1 1,12,1 1,12,1 1,12,1 1,12,1 1,12,1
13 2,12,2 5,19,1 4,9,3 4,21,1 3,16,4 5,7,1 5,7,1 3,16,4
17 1,18,1 1,18,1 1,18,1 1,18,1 1,18,1 1,18,1 1,18,1 1,18,1
19 2,12,2 5,13,1 5,13,1 4,21,1 4,27,3 4,21,1 2,12,2 3,28,2
23 1,24,1 1,24,1 1,24,1 1,24,1 1,24,1 1,24,1 1,24,1 1,24,1
29 1,30,1 1,30,1 1,30,1 1,30,1 1,30,1 1,30,1 1,30,1 1,30,1
31 2,36,6 2,36,6 5,43,1 2,36,6 4,39,1 5,43,1 4,21,1 2,36,6
37 2,48,4 5,49,1 4,39,1 4,39,1 5,37,1 3,28,2 4,39,1 3,28,2

For instance, for p = 19 and b = 8 we read of the numbers 3,28,2. This means that the points
of E : y2 ↘= x3 + 8 mod 19 are in category 3, that #E8(F19) = 28 and that µ8(19) = 2. For
b ↘= 0 mod p the curve is singular and for b > p the numbers can be read of at the column
for b mod p. This is the reason why for p = 5 and p = 7 the cells are left empty for b ↙ 5

respectively b ↙ 7.
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We see that for primes of the type p ↘= 5 mod 6 the category is 1, #E(Fp) = p + 1 and
µ = 1. To save space we will confine to primes of the type p ↘= 1 mod 6, see the next table.

p
b 1 2 3 4 5 6 7 8

7 2,12,2 4,9,3 5,13,1 4,3,1 5,7,1 3,4,2
13 2,12,2 5,19,1 4,9,3 4,21,1 3,16,4 5,7,1 5,7,1 3,16,4
19 2,12,2 5,13,1 5,13,1 4,21,1 4,27,3 4,21,1 2,12,2 3,28,2
31 2,36,6 2,36,6 5,43,1 2,36,6 4,39,1 5,43,1 4,21,1 2,36,6
37 2,48,4 5,49,1 4,39,1 4,39,1 5,37,1 3,28,2 4,39,1 3,28,2
43 2,36,6 3,52,2 5,49,7 2,36,6 5,49,7 4,39,1 5,31,1 3,52,2
61 2,48,4 5,61,1 2,48,4 4,75,5 4,63,3 5,61,1 5,61,1 3,76,2
67 2,84,2 5,73,1 3,52,2 4,57,1 3,52,2 4,63,3 5,79,1 3,52,2
73 2,84,2 4,81,9 2,84,2 4,57,1 5,91,1 4,81,9 3,64,8 2,84,2
79 2,84,2 4,63,3 5,97,1 4,93,1 4,93,1 5,67,1 5,67,1 2,84,2
97 2,84,2 4,117,3 4,117,3 4,93,1 5,79,1 4,93,1 5,79,1 2,84,2
103 2,84,2 4,117,3 3,124,2 4,111,1 5,97,1 5,91,1 4,111,1 2,84,2
109 2,108,6 3,112,4 4,129,1 2,108,6 4,129,1 5,91,1 4,129,1 3,112,4
127 2,108,6 2,108,6 5,127,1 2,108,6 3,148,2 5,127,1 5,127,1 2,108,6
139 2,156,2 5,163,1 5,133,1 4,147,1 4,147,1 2,156,2 4,147,1 3,124,2
151 2,156,2 4,171,3 3,148,2 4,129,1 4,171,3 5,133,1 5,133,1 2,156,2
157 2,144,12 3,172,2 4,183,1 2,144,12 5,133,1 5,133,1 3,172,2 3,172,2
163 2,156,2 5,139,1 5,181,1 4,147,1 3,172,2 2,156,2 5,139,1 3,172,2
181 2,156,2 5,175,5 4,201,1 4,201,1 2,156,2 3,208,4 3,208,4 3,208,4
193 2,192,8 4,171,3 2,192,8 4,219,1 5,217,1 4,171,3 4,219,1 2,192,8
199 2,228,2 4,189,3 5,211,1 4,183,1 2,228,2 5,217,1 4,189,3 2,228,2
211 2,228,2 5,199,1 5,199,1 4,183,1 2,228,2 4,183,1 5,199,1 3,196,14
223 2,252,6 2,252,6 5,247,1 2,252,6 5,229,1 5,247,1 2,252,6 2,252,6
229 2,252,6 3,208,4 4,237,1 2,252,6 4,201,1 5,223,1 5,259,1 3,208,4
241 2,228,2 4,225,15 4,273,1 4,273,1 2,228,2 2,228,2 5,259,1 2,228,2
271 2,300,10 4,243,9 3,244,2 4,273,1 4,273,1 5,301,1 4,243,9 2,300,10
277 2,252,6 3,304,4 4,309,1 2,252,6 5,283,1 5,247,1 4,273,1 3,304,4
283 2,252,6 3,316,2 5,277,1 2,252,6 5,259,1 4,291,1 4,309,1 3,316,2
307 2,324,18 3,292,2 3,292,2 2,324,18 5,343,1 2,324,18 4,327,1 3,292,2
313 2,336,4 4,279,3 4,327,1 4,327,1 3,292,2 2,336,4 3,292,2 2,336,4
331 2,300,10 5,331,1 5,331,1 4,363,11 4,363,11 4,363,11 3,364,2 3,364,2
337 2,372,2 4,333,3 4,309,1 4,309,1 3,304,4 2,372,2 2,372,2 2,372,2
349 2,336,4 5,313,1 4,327,1 4,327,1 4,327,1 3,364,2 5,313,1 3,364,2
349 2,336,4 5,313,1 4,327,1 4,327,1 4,327,1 3,364,2 5,313,1 3,364,2
367 2,372,2 4,333,3 3,364,2 4,399,1 3,364,2 5,403,1 2,372,2 2,372,2
373 2,336,4 5,361,1 4,387,3 4,399,1 5,361,1 5,349,1 2,336,4 3,412,2
379 2,372,2 5,409,1 5,343,7 4,417,1 2,372,2 2,372,2 5,343,7 3,388,2
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Of course the table is just a small part of what is intended to show. To the right the rows
should be thought to run through b = p→1. An order may occur more than once. For example
#E(Fp) = 273 for (p, b) equal to (241, 3), (241, 4), (271, 4), (271, 5) and (277, 7). However,
it is always accompanied by the same category and the same µ. This suggests that #E(Fp)

uniquely determines the category and µ.

By inspection of the tables we make the following observation: µ is a divisor of p → 1. Since
µ is a divisor of #E(Fp), it also is a divisor of gcd(p → 1,#E(Fp)). This limits the values
µ can possibly take on. If we apply it to, for instance, p = 223, then #E(Fp) = 252 for
E : y2 = x3 + 7. Since gcd(222, 252) = 6 the value of µ is 1,2,3 or 6. For this case µ = 6.

4.3 Characteristics of categories

Category 1: X1 = 1 and Y3 = 0.
Characteristics category 1: p ↘= 5 mod 6), #E(Fp) = p + 1, µ = 1, X2

↘= 2 mod 3) and
Y1 ↘= 5 mod 6. The set of all y values is {0, 1, 2, ..., p→ 1} and ∞ (for point O). Since µ = 1

the points on E(Fp) are cyclic of order p + 1. Elliptic curves for which #E(Fp) = p + 1 are
called supersingular (although it has nothing to do with a singularity). So, category 1 is the
supersingular category.

In general, the order of a modular elliptic curve can be written as #E(Fp) = p + 1 → d.
According to a theorem of Hasse |d| ⇑ 2

↓
p. Thus d = 0 for category 1. For E : y2 = x3 + b

the cases with d ≃= 0 occur for p = 1 mod 6. This is the situation for categories 2 through 5.

Category 2: X1 = 3 and Y1 = 2.
Characteristics category 2: p ↘= 1 mod 6, #E(Fp) ↘= 0 mod 12, µ ↘= 0 mod 2, X2

↘= 4

mod 6 and Y3 ↘= 1 mod 2.

Category 3: X1 = 3 and Y1 = 0.
Characteristics category 3: p ↘= 1 mod 6, #E(Fp) ↘= 4 mod 12, µ = 0 mod 2, X2

↘= 0

mod 6 and Y3 ↘= 1 mod 2.

Category 4: X1 = 0 and Y1 = 2.
Characteristics category 4: p ↘= 1 mod 6, #E(Fp) ↘= 3 mod 6, µ = 1 mod 2, X1

↘= 0 mod 3

and Y3 ↘= 2 mod 6.

Category 5: X1 = 0 and Y1 = 0.
Characteristics category 5: p ↘= 1 mod 6, #E(Fp) ↘= 1 mod 6, µ = 1 mod 2, X2

↘= 0 mod 3

and Y3 ↘= 0 mod 2.
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4.4 Limitations for ETORS(Q).

The elliptic curve E : y2 = x3 + 1 has 5 integer points: (→1, 0), (0, 1), (0,→1), (2, 3) and
(2,→3) which form (together with O) a torsion group of order 6: start with P = (2, 3) then
2P = (0, 1) (a point of inflection), 3P = (→1, 0) (the root), 4P = (0,→1), 5P = (2,→3) and
6P = O. There are no other rational points; the rank is 0.

If we start with P = (2, 3) on the modular curve E : y2 = x3 + 1 mod 5 then 2P = (0, 1),
3P = (4, 0), 4P = (0, 4), 5P = (2, 2) and 6P = O. If we start with P = (2, 3) on the modular
curve E : y2 = x3 + 1 mod 7 then 2P = (0, 1), 3P = (6, 0), 4P = (0, 6), 5P = (2, 4) and
6P = O. The two examples illustrate that a torsion group on an elliptic curve E is present
in E(Fp), except for a change of the coordinates because of the modulair counting. As a
consequence the order of the torsion group is a divisor of the order of the modular group:
#ETORS(Q) divides #E(Fp). Since the latter holds for any p it holds for the greatest com-
mon divisor of di"erent #E(Fp). For E : y2 = x3+1 we have #E(F5) = 6 and #E(F7) = 12.
Since gcd(6, 12) = 6 it follows that #ETORS(Q) has to be a divisor of 6. There are no other
rational points, so the rank is 0. Below follow some additional examples.

For the elliptic curve E : y2 = x3 + 2 we have #E(F7) = 9 and #E(F13) = 19. Since
gcd(9, 19) = 1 it follows that #ETORS(Q) = 1. The elliptic curve E : y2 = x3 + 2 has
(→1, 1) and (→1,→1) as integer points. Both generate an infinite sequence of rationals. In
conclusion, O is the single torsion point and the rank is 1.

For the elliptic curve E : y2 = x3 + 3 we have #E(F7) = 13 and #E(F13) = 9. Since
gcd(13, 9) = 1 it follows that #ETORS(Q) = 1. The elliptic curve E : y2 = x3 + 3 has (1, 2)

and (1,→2) as integer points. Both generate an infinite sequence of rationals; the rank is 1.

For the elliptic curve E : y2 = x3 + 4 we have for p ↘= 5 mod 6: #E(Fp) = p+ 1 ↘= 0 mod 6

and for p ↘= 1 mod 6 we see from the tables that #E(Fp) ↘= 0 mod 3. Since gcd(6, 3) = 3 it
follows that #ETORS(Q) divides 3. The elliptic curve E : y2 = x3 + 4 has (0, 2) and (0,→2)

as integer points. It are the points of inflection and form an integer torsion group of order 3.
There are no other rationals; the rank is 0.

For the elliptic curve E : y2 = x3 + 5 we have #E(F13) = 16 and #E(F19) = 27. Since
gcd(16, 27) = 1 it follows that #ETORS(Q) = 1. The elliptic curve E : y2 = x3 + 5 has
(→1, 2) and (→1,→2) as integer points. Either one of them generates an infinite sequence of
rationals; the rank is 1.

For the elliptic curve E : y2 = x3 + 6 we have #E(F7) = 4 and #E(F13) = 7. Since
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gcd(4, 7) = 1 it follows that #ETORS(Q) = 1. The elliptic curve E : y2 = x3 + 6 has no
rational points; the rank is 0.

For the elliptic curve E : y2 = x3 + 7 we have #E(F13) = 7 and #E(F19) = 12. Since
gcd(7, 12) = 1 it follows that #ETORS(Q) = 1. As mentioned before, the elliptic curve
E : y2 = x3 + 7 has no rational points; the rank is 0.

As a final example, for the elliptic curve E : y2 = x3 + 8 we have for p ↘= 5 mod 6:
#E(Fp) = p + 1 ↘= 0 mod 6 and for p ↘= 1 mod 6 we see from the tables that #E(Fp) ↘= 0

mod 2. Since gcd(6, 2) = 2 it follows that #ETORS(Q) divides 2. The elliptic curve
E : y2 = x3 + 8 has 1 integer point (→2, 0) of order 2 and 6 integer points, (1, 3), (1,→3),
(2, 4), (2,→4), (46, 312) and (46,→312), which generate infinite sequences of rationals. The
latter 6 integer points follow from addition of the torsion point (→2, 0) and the integer point
(1, 3). In conclusion, #ETORS(Q) = 2 and the rank is 1.

In the foregoing examples we took the gcd (#E(Fp1),#E(Fp2)) for two di"erent primes p1

and p2. In general, one should consider more primes to obtain the smallest gcd. For the
elliptic curve E : y2 = x3 + b the rank r, #ETORS(Q) and the smallest gcd are tabulated
for b = 1 through 30, see next table (where #ETORS(Q) is abbreviated to t).

b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

r 0 1 1 0 1 0 0 1 1 1 1 1 0 0 2 0 2 1 1 0 0 1 0 2 0 1 0 1 0 1

t 6 1 1 3 1 1 1 2 3 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 2 1 1 1

gcd 6 1 1 3 1 1 1 2 3 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 2 1 1 1

If one takes the gcd of the set {#E(Fp)} for a su!ciently large number of primes p, then:

t = gcd =






6 if b is a sixth power
3 if b is a square
2 if b is a cube
1 otherwise

4.5 Polynomials for y2 = x3 + ax+ b over Fp

The elliptic curve y2 = x3+ ax mod p can be investigated in a similar way as for y2 = x3+ b

mod p. One of the observations will be that y2 = x3 + ax mod p is supersingular if p ↘= 3
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mod 4. In this section our concern will be the more general equation y2 = x3+ax+ b mod p.
Usually it is written as y2 = x3 + ax+ b over Fp or as E : y2 = x3 + ax+ b over Fp. For the
present purpose it is convenient to use the following notation: E(Fp, a, b) is the elliptic curve
y2 = x3 + ax + b over Fp. The group order, usually denoted as #E(Fp), will be denoted as
N(p, a, b). The di"erence between N(p, a, b) and p+ 1 will be denoted as d(p, a, b):

N(p, a, b) = p+ 1 + d(p, a, b) . (4.1)

The di"erences d(p, a, b) are congruent (mod p) with a two dimensional polynomial P in a

and b: d(p, a, b) ↘= P (p, a, b) mod p. Thus N(p, a, b) ↘= 1 + P (p, a, b) mod p. For the first few
prime numbers the polynomials P (p, a, b) are shown in the table.

p P (p, a, b)

5 3a

7 4b

11 2ab

13 6a3 + 11b2

17 15a4 + 2ab2

19 9a3b+ 11b3

23 13a4b+ 14ab3

29 19a7 + 21a4b2 + 24ab4

31 29a6b+ 30a3b3 + 4b5

37 35a9 + 31a6b2 + 8a3b4 + 10b6

41 31a10 + 38a7b2 + 11a4b4 + 36ab6

43 a9b+ 7a6b3 + 33a3b5 + 35b7

47 10a10b+ 20a7b3 + 15a4b5 + 14ab7

53 14a13 + 10a10b2 + 40a7b4 + 44a4b6 + 2ab8

59 26a13b+ 37a10b3 + 2a7b5 + 53a4b7 + 3ab9

61 51a15 + 39a12b2 + 55a9b4 + 31a6b6 + 9a3b8 + 47b10

67 23a15b+ 64a12b3 + 46a9b5 + 41a6b7 + 66a3b9 + 16b11

71 10a16b+ 7a13b3 + 35a10b5 + 59a7b7 + 21a4b9 + 68ab11

73 6a18 + 20a15b2 + 45a12b4 + 63a9b6 + 49a6b8 + 24a3b10 + 10b12

Table 4.1: Polynomials P (p, a, b) for which N(p, a, b) ↘= 1 + P (p, a, b) mod p.
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According to a theorem of Hasse there holds

|d(p, a, b)| ⇑ 2
↓
p . (4.2)

As a consequence, the polynomials uniquely determine the group order N(p, a, b) if p > 4
↓
p

↗ p > 16. For example, if we want to know the group order for y2 = x3+5x+7 over F19, we
obtain P (19, 5, 7) = 9·53 ·7+11·73 = 11648, N(19, 5, 7) ↘= 1+11648 ↘= 2 mod 19. Of the num-
bers {...,→17, 2, 21, 40, 59, ...} only 21 satisfies Hasse’s theorem. Therefore N(19, 5, 7) = 21.

The powers n and m of the terms anbm in the polynomials have the property 4n+6m = p→1.
We can write the polynomials as

P (p, a, b) =






m∑

k=0

cka
p→1
4 →3kb2k if p ↘= 1 mod 4

m∑

k=0

cka
p→3
4 →3k→1b2k+1 if p ↘= 3 mod 4 ,

(4.3)

where m =
p→ (p mod 12)

12
= ∈

p

12
∋.

For b = 0 the latter polynomials are reduced to

P (p, a, 0) =





c0a

p→1
4 if p ↘= 1 mod 4

0 if p ↘= 3 mod 4
(4.4)

We can write the polynomials also as

P (p, a, b) =






m∑

k=0

cm→ka
3kb

p→1
6 →2k if p ↘= 1 mod 6

m∑

k=0

cm→ka
3k+1b

p→5
6 →2k if p ↘= 5 mod 6 .

(4.5)

Also here m =
p→ (p mod 12)

12
= ∈

p

12
∋.

For a = 0 the latter polynomials are reduced to

P (p, 0, b) =





cmb

p→1
6 if p ↘= 1 mod 6

0 if p ↘= 5 mod 6
(4.6)

For the supersingular case b ↘= 0 mod p and p ↘= 3 mod 4 we have P (p, a, 0) = 0. For the
supersingular case a ↘= 0 mod p and p ↘= 5 mod 6 we have P (p, 0, b) = 0. For the singular
case a ↘= b ↘= 0 mod p we have P (p, 0, 0) = 0. For these cases the group order is equal to p+1.
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For b = a the polynomials reduce to

P (p, a, a) =
m∑

k=0

cka
ε→k (4.7)

where m =
p→ (p mod 12)

12
= ∈

p

12
∋ and φ =

p→ (p mod 4)

4
= ∈

p

4
∋.

The coe!cients ck of the polynomials can be obtained by solving the following system of
equations

N(p, a, a) ↘= 1 +
m∑

k=0

cka
ε→k mod p , a = 1, 2, ...,m+ 1 . (4.8)

The group orders N(p, a, a) in the system equations are calculated numerically.

Patterns are present in the coe!cients ck. Every prime p satisfying p ↘= 1 mod 4 can be
written uniquely as p = (±2n)2 + (±m)2 with n and m integers. Taking the signs such
that ±(2n) ±m ↘= 1 mod 4 then the group order follows from (see page 115 of the book of
Washington [1] ):

N(p, a, 0) =






p+ 1→ 2m, if p→ a is a fourth power mod p

p+ 1 + 2m, if p→ a is a square but not a fourth power mod p

p± 4n, otherwise.

(4.9)

For p = 17, for example, the squares mod 17 are {1, 4, 9, 16, 8, 2, 15, 13}. The fourth powers
mod 17 are {1, 16, 13, 4}. The squares which are not a fourth power are {9, 8, 2, 15}. Since
17 = 42 + 12 we have

N(17, a, 0) =






17 + 1→ 2 = 16, if p→ a mod p ↖ {1, 4, 13, 16}

17 + 1 + 2 = 20, if p→ a mod p ↖ {2, 8, 9, 15}

17 + 1± 8, if p→ a mod p ↖ {3, 5, 6, 7, 10, 11, 12, 14}.

(4.10)

For b = 0 the polynomial for p = 17 reduces to P (17, a, 0) = 15a4, which also leads to
N(17, a, 0) = 16 for a = 1, 4, 13, 16, to N(17, a, 0) = 20 for a = 2, 8, 9, 15, to N(17, a, 0) = 26

for a = 3, 5, 12, 14 and to N(17, a, 0) = 10 for a = 6, 7, 10, 11. A single value for a is su!cient
to derive the coe!cient c0 from the group order theorem. For a = 1 it means that

c0 =






→2m, if p→ 1 is a fourth power mod p

+2m, if p→ 1 is a square but not a fourth power mod p

±4n, otherwise.

(4.11)

If we apply the latter to for example p = 29 = 22+(→5)2, we find that p→ 1 = 28 is a square:
122 ↘= 28 mod 29 and that p → 1 = 28 is not a fourth power. Hence, c0 = 2m = 2 · →5 =
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→10 ↘= 19 mod p. You can apply it yourself to the c0 for p = 5, 13, 37, 41, etc.

As another example we consider a pattern in some of the coe!cients guiding the terms b
p→1
6 .

If p ↘= 1 mod 6 then for the coe!cient cm of the term cmb
p→1
6 there holds:

cm ↘= 4 mod p if the prime p has the form 12k2 + 12k + 7 with k = 0, 1, 2, 3, .....
cm ↘= 10 mod p if p = 12k2 + 25 with k = 0, 1, 2, 3, ....
cm ↘= 16 mod p if p = 12k2 + 12k + 67 with k = 0, 1, 2, 3, ....
cm ↘= 22 mod p if p = 12k2 + 121 with k = 0, 1, 2, 3, ....
cm ↘= 28 mod p if p = 12k2 + 12k + 199 with k = 0, 1, 2, 3, ....
cm ↘= 34 mod p if p = 12k2 + 289 with k = 0, 1, 2, 3, ....
cm ↘= 40 mod p if p = 12k2 + 12k + 403 with k = 0, 1, 2, 3, ....
cm ↘= 46 mod p if p = 12k2 + 529 with k = 0, 1, 2, 3, ...,
and so on.
If p ↘= 1 mod 12 the pattern can be summarized as
cm ↘= 10 + 12n mod p if p = 12k2 + (6n+ 5)2 with k = 0, 1, 2, 3, ...,
and if p ↘= 7 mod 12 the pattern can be summarized as
cm ↘= 4 + 12n mod p if p = 12k2 + 12k + (6n+ 2)2 + 3 with k = 0, 1, 2, 3, ....
If we apply the latter to for example p = 73 = 12 · 22 + (6 · 0 + 5)2, we find cm =

c6 = 10. As a consequence, N(73, 0, b) ↘= 1 + 10b12 mod 73. Thus N(73, 0, 1) ↘= 1 + 10

mod 73 = ..., 11, 84, 157, ... of which 84 is within the Hasse bounds; N(73, 0, 1) = 84. And
N(73, 0, 2) ↘= 1 + 10 · 212 mod 73 = ..., 8, 81, 154, ... of which 81 is within the Hasse bounds;
N(73, 0, 2) = 81. You can apply it yourself to the cm for p = 7, 31, 37, 67, 73, etc.

4.6 Congruence relations for N(p, a, 0) and N(p, 0, b)

Group orders are usually determined by numerical methods. A basic method consists in mak-
ing a list of squares of the numbers 1 through (p → 1)/2. Start with n = 0. Increase n by 2
for every 0 ⇑ x < p for which x3 + ax+ b mod p is an element of the list. Increase n by 1 for
every 0 ⇑ x < p for which x3+ax+ b ↘= 0 mod p. When you are finished N(p, a, b) = n. The
method is slow. Faster methods are more complicated. A fast method is Schoof’s algorithm.
Very briefly, Schoof’s algorithm consists in finding a point of which the order is larger than
4
↓
p. Then there is only one value for the group order (which is a multiple of the order of the

point) satisfying Hasse’s theorem. Since the evaluation of approximately p/12 expressions is
time consuming the polynomials are not of practical use. An exception occurs for the case
b = 0 and the case a = 0.

We first consider the case b = 0. From the equation (4.4) we obtain the following congruence
relation:

d(p, a, 0) · (a↑)
p→1
4 ↘= d(p, a↑, 0) · a

p→1
4 mod p . (4.12)
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For p is a prime number the substitution of a↑ = p→ a in eq. (4.12) yields

d(p, a, 0) = d(p, p→ a, 0) , if p ↘= 1 mod 8 (4.13)

and
d(p, a, 0) + d(p, p→ a, 0) = 0 , if p ↘= 5 mod 8 . (4.14)

Alternatively,
N(p, a, 0) = N(p, p→ a, 0) , if p ↘= 1 mod 8 (4.15)

and
N(p, a, 0) +N(p, p→ a, 0) = 2(p+ 1) , if p ↘= 5 mod 8 . (4.16)

From eq. (4.12) it follows

(N(p, a, 0)→ 1) · (a↑)
p→1
4 ↘= (N(p, 1, 0)→ 1) · a

p→1
4 mod p . (4.17)

That is, if N(p, a↑, 0) has been found numerically then one obtains N(p, a, 0) almost instantly.
We only have to check the two smallest values larger than zero. As an example we consider
p = 53 for which N(53, 1, 0) = 68. Suppose we want to know N(53, 11, 0). From eq. (4.17) it
follows N(53, 11, 0)→1 ↘= 67·1113 ↘= 39 mod 53. From the two smallest values for N(53, 11, 0),
40 and 93, the first satisfies Hasse’s theorem. Hence, N(53, 11, 0) = 40.

Next we consider the case a = 0. From the equation (4.6) we obtain the following congruence
relation:

d(p, 0, b) · (b↑)
p→1
6 ↘= d(p, 0, b↑) · b

p→1
6 mod p . (4.18)

In particular for b↑ = 1 it is reduced to

d(p, 0, b) ↘= d(p, 0, 1) · b
p→1
6 mod p . (4.19)

Since p is a prime number the substitution of b↑ = p→ b in eq. (4.18) yields

d(p, 0, b) = d(p, 0, p→ b) , if p ↘= 1 mod 12 (4.20)

and
d(p, 0, b) + d(p, 0, p→ b) = 0 , if p ↘= 7 mod 12 . (4.21)

Alternatively,
N(p, 0, b) = N(p, 0, p→ b) , if p ↘= 1 mod 12 (4.22)

and
N(p, 0, b) +N(p, 0, p→ b) = 2(p+ 1) , if p ↘= 7 mod 12 . (4.23)

From eq. (4.18) it follows

(N(p, 0, b)→ 1) · (b↑)
p→1
6 ↘= (N(p, 0, 1)→ 1) · b

p→1
6 mod p . (4.24)
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If N(p, 0, b↑) has been found numerically then one obtains N(p, 0, b) almost instantly. We only
have to check the two smallest values larger than zero. As an example we consider p = 67

for which N(67, 0, 1) = 84. Suppose we want to know N(67, 0, 12). From eq. (4.24) it follows
N(67, 0, 12) → 1 ↘= 83 · 1211 ↘= 11 mod 67. From the two smallest values for N(67, 0, 12), 12
and 79, the second satisfies Hasse’s theorem. Hence, N(67, 0, 12) = 79.

Congruence relations related to the ones given before are

N(p ↘= 1 mod 8, a, 0) ↘=






0 mod 8 if a is a fourth power
0 mod 8 if a is 4 times a fourth power
0, 4 mod 8 if a is a square
0, 4 mod 8 if a is 2 times a square
0, 2, 4 mod 8 otherwise ,

N(p ↘= 5 mod 8, a, 0) ↘=






0 mod 8 if a is 4 times a fourth power
4 mod 8 if a is a fourth power
2 mod 8 if a is 2 times a square
0, 4 mod 8 if a is a square
0, 2, 4 mod 8 otherwise

and

N(p ↘= 1 mod 6, 0, b) ↘=






0 mod 12 if b is a sixth power
0, 4 mod 12 if b is a cube
0, 3, 9 mod 12 if b is a square
0, 1, 3, 4, 7, 9 mod 12 otherwise .

4.7 Moments for N(p, a, 0) and N(p, 0, b)

For p ↘= 5 mod 8 a consequence of eq. (4.16) is
p→1∑

a=1

N(p, a, 0) = (p→ 1)(p+ 1) = p2 → 1 (4.25)

By inspection it is found it also holds for p ↘= 1 mod 8. Therefore the identity
p→1∑

a=1

N(p, a, 0) = p2 → 1 (4.26)
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holds for all p ↘= 1 mod 4.

The k-th moment N(p, a, 0) is defined as

p→1∑

a=1

Nk(p, a, 0) (4.27)

For the supersingular case, p ↘= 3 mod 4, there holds for all k:
p→1∑

a=1

Nk(p, a, 0) = (p→ 1)(p+ 1)k . (4.28)

For k ↙ 0 this can also be written as
p→1∑

a=1

Nk(p, a, 0) = (p→ 1)
j=k∑

j=0

(
k

j

)
pj . (4.29)

For p ↘= 1 mod 6 we found by inspection for 0 ⇑ k ⇑ 3:

p→1∑

a=1

Nk(p, a, 0) = (p→ 1)
j=k∑

j=0

(
k

j

)2

pj (4.30)

For k ↙ 4 the latter identity is violated. However, for k ↙ 4 we have

p→1∑

a=1

Nk(p, a, 0) = (p→ 1)



0(k, p) +
j=k∑

j=0

(
k

j

)2

pj



 , (4.31)

where the integer 0(k, p) is the deviation. That is, p→ 1 still is a divisor of
p→1∑

a=1

Nk(p, a, 0).

For p ↘= 7 mod 12 a consequence of eq. (4.23) is

p→1∑

b=1

N(p, 0, b) = (p→ 1)(p+ 1) = p2 → 1 . (4.32)

From inspection it is found that it also holds for p ↘= 1 mod 12. Therefore, the identity
p→1∑

b=1

N(p, 0, b) = p2 → 1 . (4.33)

holds for all p ↘= 1 mod 6.

The k-th momentum of N(p, 0, b) is defined as

p→1∑

b=1

Nk(p, 0, b) . (4.34)
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For the supersingular case, p ↘= 5 mod 6, there holds for all k:

p→1∑

b=1

Nk(p, 0, b) = (p→ 1)(p+ 1)k . (4.35)

For k ↙ 0 this can also be written as

p→1∑

b=1

Nk(p, 0, b) = (p→ 1)
j=k∑

j=0

(
k

j

)
pj . (4.36)

For primes p ↘= 1 mod 6 we found by inspection for 0 ⇑ k ⇑ 5:

p→1∑

b=1

Nk(p, 0, b) = (p→ 1)
j=k∑

j=0

(
k

j

)2

pj (4.37)

For k ↙ 6 the latter identity is violated. However, for k ↙ 6 we have

p→1∑

b=1

Nk(p, 0, b) = (p→ 1)



0(k, p) +
j=k∑

j=0

(
k

j

)2

pj



 , (4.38)

where the integer 0(k, p) is the deviation. That is, p→ 1 is still a divisor of
p→1∑

b=1

Nk(p, 0, b).

4.8 Generating function

For the determination of the order of the elliptic curve Y 2
→ Y = X3

→X2 over the field Fp

with p a prime, one can apply the following infinite product:

F (q) = q
↘∏

m=1

(1→ qm)2
(
1→ q11m

)2
. (4.39)

Expansion of the product and elimination. of the brackets leads to

F (q) = q (1→ q)2
(
1→ q11

)2 (
1→ q2

)2 (
1→ q22

)2 (
1→ q3

)2 (
1→ q33

)2
...

= q → 2q2 → q3 + 2q4 + q5 + 2q6 → 2q7 → 2q9 → 2q10 + q11 → 2q12

+4q13 + 4q14 → q15 → 4q16 → 2q17 + 418 + ... (4.40)

We can write

F (q) =
↘∑

n=1

dnq
n . (4.41)

The sequence of successive coe!cients dn is the sequence A006571 of the OEIS [6]. The
coe!cient dp is the deviation of the order from p+ 1:

#E(Fp) = p+ 1→ bp , (4.42)
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comparable with the equation (4.1).
Since it generates the series with coe!cients dp the product equation (4.39) is the generating
function for the order of E : Y 2

→Y = X3
→X2 over Fp. The equation (4.39) has been derived

from the theory of modular forms [7].

We give three examples and compare things with the order determination on the basis of
the polynomial P (p, a, b).

Example 1
To find the order of E : Y 2

→Y = X3
→X2 over the field F13 one takes the coe!cient d13 = 4

and subtract it from p+ 1. The result is #E(F13) = 13 + 1→ 4 = 10. We thus obtain 10 for
the order of the elliptic curve Y 2

→ Y = X3
→ X2 over F13. The 10 points are (0, 0), (0, 1),

(1, 0), (1, 1), (2, 6), (2, 8), (8, 3), (8, 11), (10, 7) and infinity O.
To find the order we could also have used the polynomial P (13, a, b) = 6a3 + 11b2 from the
table in section 4.5. To this end we have perform a linear transform of the elliptic curve
Y 2

→ Y = X3
→X2 to the Weierstrass form y2 = x3 + ax+ b. By means of the substitution

X =
x+ 12

36
, Y =

y + 108

216
(4.43)

the equation Y 2
→ Y = X3

→X2 is transformed to the Weierstrass form

y2 = x3 → 432x+ 8208 . (4.44)

For a = →432 and b = 8208 the discriminant is D = →2831211. Over F13 the constants
a and b are reduced to a = →432 ↘= 10 mod 13 and b = 8208 ↘= 5 mod 13. Substitution
of the latter in P (13, a, b) = 6a3 + 11b2 gives P (13, a, b) ↘= 9 mod 13. Of the set {...,→17,

→4, 9, 22, 35, ...} only 9 satisfies the Hasse bounds. In this way we also obtain 10 for the order
of E : y2 = x3→432x+8208 over F13. Now, the 10 points are (1, 4), (1, 9), (3, 6), (3, 7), (8, 5),
(8, 8), (10, 0), (11, 4), (11, 9) and infinity O. The (x, y) coordinates on E : y2 = x3→432x+8208

over F13 are related to the (X,Y ) coordinates of E : Y 2
→ Y = X3

→X2 over F13 via

x ↘= 36X → 12 mod 13 , y ↘= 216Y → 108 mod 13 . (4.45)

Example 2
For the order of E : Y 2

→Y = X3
→X2 over the field F17 one can take the coe!cient d17 = →2

and subtract it from p+1. The result is #E(F17) = 17+ 1→→2 = 20. We thus obtain 20 for
the order of the elliptic curve Y 2

→ Y = X3
→ X2 over F17. The 20 points are (0, 0), (0, 1),

(1, 0), (1, 1), (2, 9), (7, 8), (7, 10), (8, 3), (8, 13), (9, 2), (9, 16), (11, 5), (11, 13), (12, 5), (12, 13),
(13, 8), (13, 10), (15, 8), (15, 10) and O.
We could also have used the polynomial P (17, a, b) = 15a4 + 2ab2 from the table in section
4.5. For y2 = x3 → 432x+ 8208 over F17 the constants a and b are reduced to a = →432 ↘= 10
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mod 17 and b = 8208 ↘= 14 mod 17. Substitution of the latter in P (17, a, b) = 15a4 + 2ab2

gives P (17, a, b) ↘= 2 mod 17. Of the set {...,→32,→15, 2, 19, 36, ...} only 19 satisfies the Hasse
bounds. In this way we also obtain 20 for the order.

Example 3
For the order of E : Y 2

→ Y = X3
→ X2 over the field F43 we take the coe!cient d43 = →6

and subtract it from p+1. The result is #E(F43) = 43+ 1→→6 = 50. We thus obtain 50 for
the order of the elliptic curve Y 2

→ Y = X3
→ X2 over F43. The 50 points are (0, 0), (0, 1),

(1, 0), (1, 1), (2, 10), (2, 34), (4, 18), (4, 26), (5, 17), (5, 27), (7, 20), (7, 24), (9, 12), (9, 32),
(11, 3), (11, 41), (12, 20), (12, 24), (16, 8), (16, 36), (18, 10), (18, 34), (19, 18), (19, 26), (20, 22),
(21, 18), (21, 26), (24, 10), (24, 34), (25, 20), (25, 24), (28, 4), (28, 40), (29, 13), (29, 31), (30, 7),
(30, 37), (31, 5), (31, 39), (32, 14), (32, 30), (36, 15), (36, 29), (37, 3), (37, 41), (39, 3), (39, 41),
(42, 19), (42, 25) and O. To get an impression the 49 finite integer points are shown in the
next figure.
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→ Y ↘= X3

→X2 mod 43
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For the determination of the order we could also have used the polynomial P (43, a, b) =

a9b+7a6b3 +33a3b5 +35b7 from the table in section 4.5. For y2 = x3 → 432x+8208 over F43

the constants a and b are reduced to a = →432 ↘= 41 mod 43 and b = 8208 ↘= 38 mod 43.
Substitution of the latter in P (43, a, b) = a9b + 7a6b3 + 33a3b5 + 35b7 gives P (43, a, b) ↘= 6

mod 43. Of the set {...,→80,→37, 6, 49, 92, ...} only 49 satisfies the Hasse bounds. In this way
we also obtain 50 for the order.



Chapter 5

Cryptography

5.1 Introduction

Cryptography is the art of encrypting and decoding messages. The goal of the encryption is
to keep a message secret. It is e"ective as long as others are not able to decode. Suppose
Alice sends to Bob the following encrypted message: KRZEXJ JAFIWEMRCA. It is a bit
di!cult to decipher because the length of the message is very small. For a large message,
say a page, you can count the frequency of characters and compare it with general frequen-
cies. The leading character, the character which occurs most, probably is an encrypted E.
The next to leading character probably is an encrypted T, etc. After a view trials you will
obtain the original message. The encryption method for the given message is simple: Denote
the characters A, B, ..., Z as ε(1),ε(2), ...,ε(26). If ε(m) is a character in the message,
then the encrypted character is ε(2m mod 27). For example, E= ε(5) ↗ ε(10) =J, and
T= ε(20) ↗ ε(40 mod 27) = ε(13) =M. For the encryption with 2m mod 27 the de-
coding key is ε(2→1m mod 27) = ε(14m mod 27). For example, M=ε(13) ↗ ε(13 · 14

mod 27) = ε(182 mod 27) = ε(20) =T. Knowing the decryption key one easily finds the
original message: SIMPLE ENCRYPTION. Alice and Bob could also have encrypted the mes-
sage by ε(m) ↗ ε(4m mod 27): VIYJUT TBLRSJZIFB. Or by ε(m) ↗ ε(5m mod 27):
NRKZFY YPOIQZSRUP. Or by ε(m) ↗ ε(k · m mod 27) for any 1 < k < 27 for which
gcd(k, 27) = 1. Of course, the method is extremely weak and in general keys are much larger
numbers. Nevertheless, the example illustrates Alice and Bob somehow have to exchange the
common key k. It makes the method vulnerable for eavedroppers. The exchange of a common
key can be avoided by means of the Di!e-Hellman key exchange. It is based on modular
elliptic curves and briefly works as follows: Alice and Bob use an elliptic curve E(Fp) and a
point P on the curve. Both E(Fp) and P are not secret, it is the public key. Alice chooses a
secret number a, Alice’s private key, and Bob chooses a secret number b, Bob’s private key.
Alice computes the point aP and sends it to Bob. Bob computes the point bP and sends it
to Alice. Alice computes the point abP and Bob computes baP . Both use abP = baP for

85
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their common key. They just have to convert the point abP to a number. For instance, by
taking the x coordinate of abP as the common key. Anyway, Alice and Bob have established
a common key without exchanging it.

Another property of the given encryption example is that the characters of the message are
encrypted. Elliptic curves also are used for message encryption. A message can be represented
as a point on an elliptic curve over Fp with p a large prime. A simple way is for instance to
write A as 01, b as 02 though Z as 26, and a space delimiter as 00. Then the message SIMPLE
ENCRYPTION is converted to a number m: m = 1909131612050005140318251620091514. A
famous method to send m is RSA (Rivest-Shamir-Adleman). Alice tells Bob she wants to
sent him a secret message. Bob chooses two large primes, p and q, and computes the prod-
ucts: n = pq and k = (p → 1)(q → 1). Bob also chooses two integers d and e such that
de ↘= 1 mod k. Bob sends n and e to Alice; n and e are public. In return Alice computes
c = me mod n and sends it to Bob. With his secret number d Bob computes cd mod n.
Since cd ↘= (me)d ↘= m mod n Bob recovers m. One should use very large primes to have
n > m and to make the factorisation of n di!cult. The message can also be sent by means
of elliptic curves. Then one uses m as the x coordinate of a point on an elliptic curve. If
there is no point on the curve for x = 1909131612050005140318251620091514, on tries x =

190913161205000514031825162009151401, x = 190913161205000514031825162009151402, etc.
until it is the x coordinate of a point M on the curve. Alice can send the message to Bob by
means of Massey-Omura encryption. Alice chooses a secret number a, her private key, and
Bob chooses a secret number b, his private key. Alice computes the point aM and sends it to
Bob. Bob computes the point baM and sends it to Alice. Alice computes the point a→1baM

and sends it to Bob. Bob computes b→1a→1baM = M , which he converts to characters to
obtain the message.

Often the message or document itself is not confidential. Bob just wants to be sure the
document is send by Alice. It requires an algorithm to verify the digital signature is valid
and belongs to Alice. An algorithm based on elliptic curves is ECDSA (Elliptic Curve Dig-
ital Signature Algortihm). Alice and Bob use an elliptic curve E(Fp) with group order N .
Alice chooses a secret number a, her private key. Alice chooses a point P on the curve of
order N , and computes Q = aP . Alice and Bob also use a function f which converts a point
(x, y) on the curve to a number. The function f(x, y) = x, as mentioned above, is an exam-
ple. The set (E(Fp),N ,P ,Q) is the public key. For each message Alice chooses a random
integer k and computes R = kP . The message or document is represented as an integer m

by means of a hash function (hash functions will be considered further on). Alice computes
g = k→1(m + axR) mod N , where xR is the x coordinate of point R. Alice sends the three
numbers m, R and g to Bob. Bob computes u = g→1m mod N , v = g→1xR mod N and
verifies if uP + vQ is equal to R. If the document is really signed by Alice, thus with the use
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of a, then uP + vQ = g→1mP + g→1xRQ = g→1(mP + xRaP ) = g→1kgP = kP = R. If it is
signed by someone else with g↑ = k→1(m+ a↑xR) mod N , then uP + vQ ≃= R.

In the foregoing examples a lot of technical details are omitted for brevity and simplicity.
For instance, one should use elliptic curves for which it is supposed to be di!cult to deter-
mine the secret key a from the public points P and aP . To achieve the latter one should at
least use large values for a and p. We also did not give a complete survey of existing methods.
Instead, we will focus on the ECDSA as used in the bitcoin blockchain. Before we turn to the
bitcoin ECDSA we first consider number bases.

5.2 Number bases

Our usual numbers are expressed in a decimal system by means of ten characters: 0,1,2,3,4,...,9.
For example, 374 means 3·102+7·101+4·100 and 405.6 means 4·102+0·101+5·100+6·10→1.
For the decimal system the base is 10. One can also use other bases. Suppose we want to
count in base 7. Then we only use the characters 0,1,2,3,4,5 and 6. The number 532 in base
7 has the value 5 · 72 + 3 · 71 + 2 · 70 = 268. That is, 532 in base 7 equals 268 in base 10.
We see a number obtains its proper value if you know its base. Numbers should therefore be
expressed together with their base. For example, 532 in base 7 equals 268 in base 10 is written
as (532)7 = (268)10. Suppose we want to count in base 12. Then we need two additional
characters. Usually one takes a for 10 and b for 11. The number 5ab in base 12 has the value
5 · 122 + 10 · 121 + 11 · 70 = 851 in base 10. Thus (5ab)12 = (851)10. In daily life one writes
the numbers without the base since we just know the base is 10. Hereafter, a number in base
10 will be written without its base. Thus, (532)7 = 268 and (5ab)12 = 851.

In computers a bit is either a 0 or a 1. A group of 8 bits make a byte. The first bit of
the byte represents the sign of a number. With the other 7 bytes we can for instance make
(0001011)2 = 23 + 21 + 20 = 11 or (1111111)2 = 26 + 25 + 24 + 23 + 22 + 21 + 20 = 127.
Since (1111111)2 + (0000001)2 = (10000000)2 = 27, the latter can be briefly written as
(1111111)2 = 27 → 1 = 127. The base 2 system is known as the binary system.

For example, the number 447 in the bases 2 through 16 is: (110111111)2, (121120)3, (12333)4,
(3242)5, (2023)6, (1206)7, (677)8, (546)9, (447)10, (377)11, (313)12, (285)13, (23d)14, (1ec)15
and (1bf)16. The base 16 system is called the hexadecimal system.

If a number in base 10 ends on 0, 2, 4, 5, 6 or 8 we know it is not a prime number, since 2 and 5
are divisors of 10. Similarly, if a number in base 12 ends on 0, 2, 3, 4, 6, 8, 9 or a we know it is
not a prime number, since 2 and 3 are divisors of 12. For example, for the number 188321739
it is not immediately clear if it is a prime or composite. In base 12 it reads (5309a5a3)12.
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Since it ends on a 3 the number 188321739 must be divisible by 3 and is therefore com-
posite. Similarly, for the number (3199467)12 it is not immediately clear if it is a prime or
composite. In base 10 it reads 9409615. Since it ends on a 5 we immediately see it is composite.

It may be illuminating to show the first 32 integers in di"erent bases, see the next table.

(base 10) number
base 2 4 8 12 16

1 1 1 1 1 1
2 10 2 2 2 2
3 11 3 3 3 3
4 100 10 4 4 4
5 101 11 5 5 5
6 110 12 6 6 6
7 111 13 7 7 7
8 1000 20 10 8 8
9 1001 21 11 9 9
10 1010 22 12 a a
11 1011 23 13 b b
12 1100 30 14 10 c
13 1101 31 15 11 d
14 1110 32 16 12 e
15 1111 33 17 13 f
16 10000 100 20 14 10
17 10001 101 21 15 11
18 10010 102 22 16 12
19 10011 103 23 17 13
20 10100 110 24 18 14
21 10101 111 25 19 15
22 10110 112 26 1a 16
23 10111 113 27 1b 17
24 11000 120 30 20 18
25 11001 121 31 21 19
26 11010 122 32 22 1a
27 11011 123 33 23 1b
28 11100 130 34 24 1c
29 11101 131 35 25 1d
30 11110 132 36 26 1e
31 11111 133 37 27 1f
32 100000 200 40 28 20
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5.3 Bitcoin ECDSA

The bitcoin digital signatures uses the elliptic curve E(Fp) : y2 = x3 + 7 mod p, where p is
the prime

115792089237316195423570985008687907853269984665640564039457584007908834671663

Its value is equal to p = 2256 → 232 → 29 → 28 → 27 → 26 → 24 → 1. In base 16 it reads
p = """" """" """" """" """" """" """fe ""fc2f. For this value of p the integer points
on the curve E(Fp) : y2 = x3 + 7 mod p form a cyclic group of order #E(Fp) = N =

115792089237316195423570985008687907852837564279074904382605163141518161494337.

In base 16 the order reads """" """" """" """fe baaedce6 af48a03b bfd25e8c d0364141.
The order, which is somewhat smaller than p, is a prime. The bitcoin base point is P =

(55066263022277343669578718895168534326250603453777594175500187360389116729240,

32670510020758816978083085130507043184471273380659243275938904335757337482424).

In base 16 the base point reads P =

(79be667e f9dcbbac 55a06295 ce870b07 029bfcdb 2dce28d9 59f2815b 16f81798,
483ada77 26a3c465 5da4fbfc 0e1108a8 fd17b448 a6855419 9c47d08f fb10d4b8).

The base point P is an element of E(Fp) and its order is equal to the aforementioned group
order N . The modular elliptic curve E(Fp) : y2 = x3 + 7 mod p with p and base point P as
given above is called secp256k1 by the Standards for E!cient Cryptography Group.

The signature process is as follows. Alice chooses (of course the computer software ran-
domly chooses) a secret number a, her private key. Alice computes Q = aP , her public key.
Since the order of P is a prime there is precisely one value for a for which aP = Q. Q can
be calculated e!ciently as will be shown below. However, the reconstruction of a from the
public points Q and P is extremely time consuming; billions of years with the presently known
algorithms. For each message Alice chooses a random integer k and computes R = kP . The
message or document m is represented as an integer h by means of a hash function (hash
functions will be considered further on). Alice computes s = k→1(h+ r · a) mod N , where r

is the x coordinate of point R. The signature of the hashed message h is the pair (r, s). To
check if the signature is legal one computes u = s→1h mod N , v = s→1r mod N and verifies
if uP + vQ is equal to R. If the document is really signed by Alice, thus with the use of a,
then uP + vQ = s→1hP + s→1rQ = s→1(hP + r · aP ) = s→1k · sP = kP = R. If it is signed
by someone else with s↑ = k→1(h + a↑ · r) mod N , then uP + vQ ≃= R. That is, there is an
extremely small probability (1 out of 1078) that a↑ happens to equal a.
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Since the numbers are extremely large it is very time consuming to do calculations explic-
itly. To show explicitly the calculation of aP for some a < N we take a smaller prime: p = 43.
For this value of p the integer points on the curve E(Fp) : y2 = x3 + 7 mod p form a cyclic
group of order #E(Fp) = N = 31. Let P = (20, 3) be the base point and let 19 be the
value for a. Thus, Q = 19P . It can be computed by successively calculating 2P , 3P , 4P ,
..., 19P . That would take 18 steps. However, it is more e!cient to calculate 2P = (13, 21),
4P = (12, 31), 8P = (42, 36) and 16P = (40, 25) with the doubling formula and than compute
16P +2P +P with the addition formula. Then we obtain 19P = (38, 21) in 6 steps. Another
way is to compute 9P = (37, 36) from 8P+P , double it to 18P = (25, 25) and add P to obtain
19P = (38, 21). The latter also takes 6 steps. Either way one arrives at Q = (38, 21). Suppose
the hashed message is h = 15 and suppose further that k = 26 for the signature of the message.

The first computation is R = kP = 26P = (34, 40). So, r = 34. The second computa-
tion is k→1 mod 31 for k = 26. Since 6 · 26 = 156 ↘= 1 mod 31 we have 26→1 ↘= 6 mod 31.
The third computation is s = k→1(h + r · a) mod N . Substituting the values we obtain
s = 6(15 + 34 · 19) ↘= 3966 ↘= 29 mod 31. So, s = 29. The signature therefore is (34, 29).

Next we consider the verification. The first computation is s→1 mod 31. Since 15 ·29 = 435 ↘=

1 mod 31 we have 29→1 ↘= 15 mod 31. The second computation is u = s→1h ↘= 15·15 ↘= 225 ↘=

8 mod 31. The third computation is v = s→1r ↘= 15 · 34 ↘= 510 ↘= 14 mod 31. The fourth
computation is uP + vQ = 8P + 14Q = 8(20, 3) + 14(38, 21) = (42, 36) + (25, 25) = (34, 40).
Since R = (34, 40) we have verified uP + vQ indeed is equal to R and the signature is valid.

5.4 Hash function

In the foregoing example we just took h = 15 and did not worry about the hash function.
What is denoted as h is actually a hash of a key or a message m and is usually denoted as
h(m) ↘= H(m) mod N . For bitcoin signatures and keys the function H is an operational
combination of hashing and conversion. In the end the result is Base58 encoded: a string
consisting of 34 alphanumeric characters: 1 through 9, a through z except l (small L) and A
through Z except O and I (capital i). We will not show how the SHA256 works. We will just
illustrate what it does. As a first example we consider the following string: "message". After
the application of SHA256 we obtain the following number in hexadecimal system:

ab530a13e45914982b79f9b7e3fba994cfd1f3fb22f71cea1afbf02b460c6d1d.

The number contains 32 bytes (64 characters). To consider the hashing of other messages
we add a counter; in the blockchain world it is called a nonce. Let us consider the string
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"message1". After the application of SHA256 we obtain the following number in hexadecimal
system:

97d035e32036a670058f2be4e008a7c56355489750a5da6f2af342db4a968e99.

Next we increase the nonce: "message2". After SHA256 we obtain in hexadecimal system:

e09b16811444401b35c94081ee8c82a761bcd3cfd7260cf063e3fec520f5f5e9.

We see that a very small change of the string leads to a completely di"erent number. In
summary, no matter the length of the string the hash result of SHA2565 always is a 32 byte
number in hexagonal base. Furthermore, if two messages di"er by just a single word or even
a single character the two hash results will be completely di"erent. It therefore is practically
impossible to find a string which leads to a given hash.

Now we make a jump in the nonce and consider the string "message15". Then we obtain
that SHA256(message15) is equal to:

08ddaf8df28d5eee382f1b9ba191aec331260df321c5a715c5f39bc3a59c0cad.

We see the hash starts with a zero. For "message169" the hash even starts with two zero’s:

009c5abcd3a674c926ec880886ab57f226e2cb981a2fc43e00b47b92a8e528b1.

There seems to be no structure or relation between the message string and the number of
starting zero’s of the hash. If the zero’s and ones appear in a random order, one expects n

starting zero’s in a fraction 16→n of the occasions. It will take on average 16n attempts to find
a SHA256 hash starting with n zero’s. To find a hash starting with, say, 10 zero’s requires
about 1610 ⇓ 1012 attempts. That is a lot of work and it is an essential part of the blockchains
technology.

5.5 Blockchain and mining

Transactions of cryptocurrencies are recorded. A list of transactions looks like:

0.01384267 bitcoin from Alice to Bob
0.31082855 bitcoin from Bob to Charlie
0.02581299 bitcoin from Alice to Charlie
and so on.
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In reality, the transactions consist of the amount of bitcoins, the public key of the sender
and the public key of the receiver, both Base58 encoded. To be more specific, the keys are
created as follows. Suppose we have the following public key:

023bb54d336d30a6fcb9cf17aa5bafefbdb6509c0465c0c13c6427f74a0fdce213.

The first byte, 02, is the parity of the y-coordinate and the other 32 bytes is the hexadecimal
x-coordinate. First SHA256 is applied to the latter public key. The result is

d9847cd0e87fe3e6d9e6f2f8a600e6a04ad4468e2c1979436b1e5b59a9f0fd08.

Next the hash function RIPEMD160 is applied. The result is:

61182fab45b8bb6141142f732ae9426fbdf5e409.

Two zero’s are placed in front of it:

0061182fab45b8bb6141142f732ae9426fbdf5e409.

To the latter result SHA256 is applied:

2ac64aeb5c4a686f0c4d1ba110e4fa0552d693ecc86fe4d7c325f3b2818d8b84.

Then SHA256 is once more applied:

777097fe0c570f4ea8dc395cbcfb33a64fe86cd0e7528e9fe48fa0c5e0fd86cf.

The first four bytes, that is 777097fe, are concatenated to the end of the RIPEMD160 +
front 00 result:

0061182fab45b8bb6141142f732ae9426fbdf5e409777097fe.

Finally, the latter result is Base58 encoded:

19rPX6VXBW8JjaR2QD8Hvd6VKu4sU1dp4u.

The latter is a standard public key.
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All the transactions are grouped into blocks. If enough new transactions have appeared a
new block will be created. Each block consists of a block header, a SHA256 hash of the block
header and the list of transactions. Each block header consists of a version number (4 bytes),
the previous block header hash (32 bytes), the Merkle root (32 bytes) which will be explained
below, a UNIX timestamp (4 bytes), the di!culty target (4 bytes) which determines the num-
ber of starting zero’s of the block header hash and the nonce (4 bytes).

Before we proceed we first consider the Merkle root. Each transaction is given a SHA256
hash: transaction 1 ↗ H(1), transaction 2 ↗ H(2), transaction 3 ↗ H(3), etc. Then pairs
of hashes are hashed: H(1)+H(2) ↗ H(12), H(3)+H(4) ↗ H(34), H(5)+H(6) ↗ H(56), etc.
Again pairs of hashes are hashed: H(12)+H(34) ↗ H(1234), H(56)+H(78) ↗ H(5678), etc.
In the end we are left with a single hash, which is the Merkle root. Starting from the root the
hashes form a binary tree. It is invented for time e!cient verifications.

For the block header hash all the numbers in the block header are concatenated and the
result is hashed with SHA256. If the latter hash does not start with the required number
of zero’s, the nonce is increased and a new hash is generated. The process of trying a large
number of nonces until the hash starts with the required number of zero’s is called mining.
If a hash satisfies the requirements the block is accepted and the miner is rewarded with a
given amount of bitcoins. A little later, about every 10 minutes, enough transactions will have
appeared and a new block will be created. Part of the header of the new block is the hash of
the previous block header. Therefore the blocks are connected: the block chain.

Suppose Alice buys a painting from art painter Bob for 0.1 bitcoin. Suppose after the transfer
of the painting and the ‘money’ Alice decides to cheat Bob. Alice changes the transaction to,
for instance, 0.01 bitcoin instead of 0.1 bitcoin. However, the small change, causes a di"erent
hash of the transaction and therefore to a di"erent Merkle root. As a consequence the block
header hash changes and Alice is forced to go to the long process of finding a new block header
hash with the required number of starting zero’s. By the time she has found one all the other
miners are a few blocks ahead of her. Because of the chain her alternative block header hash
will change the block header of the successor block which in turn will change the next successor
block and so on. By the time Alice has found hashes for them too all the other miners are far
ahead of her. In the end the longer list of blocks created by all the miners will be accepted
and the single alternative block (or short list of alternative blocks) of Alice will be declined.
The longer list of blocks has taken more work, delivered by all the miners. Because of this
‘proof of work’ it is regarded as the correct list of blocks.

It should be noted that not all the details are mentioned. For instance, the block header
numbers being byte reversed is omitted. Such details are rather technicalities. In summary,
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the validity of a transaction is achieved by means of ECDSA and the reliability of the chain of
blocks of transactions is achieved by the hashing, with di!culty, of the block headers. Since
we are more interested in the underlying mathematics we focussed on modular counting and
elliptic curves in the preceding chapters. In the next and final section we will just consider
the bitcoin rate.

5.6 Bitcoin rate

The price of a bitcoin (BTC) in US dollars (USD) is very volatile. The history of the BTC-
USD rate is shown in the next diagram.
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The historical trend curve (blue) approximately goes as 0.13 t4.8, where t is the time in years
from 1 oktober 2009. Of course, historical trends do say nothing about future developments.
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