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Preface

Cellular automation is a discrete model of computation. It computes the evolution of a
pattern of states in a grid of discrete cells where each cell is in one of the states. Some cellular
automata simulate or mimic patterns found in biology, chemistry and physics. Although the
grid can be of any dimension the present book is restricted to two dimensions and mainly to
one dimension. Even in one dimension the dynamics of cellular automata can be very rich. A
simple but important one dimensional cellular automaton leads to the Pascal triangle with bi-
nomial coefficients or to triangular patterns visualising the divisibility of binomial coefficients
by a prime number. Since binomial coefficients and their divisibility properties are a large

area of research it has been given much attention and space.

The present book is intended to be a simple and informal introduction to cellular automation
and binomial coefficients. With simple is meant that a high school level of mathematics (to-
gether with the willingness to study) suffices to understand the contents. With informal is
meant that the book is not organized as an enumeration of theorems and proofs. Instead it
rather is a random walk through certain aspects of cellular automata and binomial coefficients.
In general, proofs are omitted, formal language is avoided and citations are restricted to a few

occasions.
The present book has just been written for educational purposes. It is intended for high

school students with talent for mathematics and for readers with (a little more than) a high

school level mathematical background.

november 2022, Hans Montanus, Ron Westdijk
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Chapter 1

Cellular automata step by step

1.1 Introduction

To describe a cellular automaton (CA) in a simple way we start with a configuration of cells.
Each cell is in a state. For a two state CA the states can be represented by 0 and 1 or white
and black or © and @ or whatever two different symbols. The iterative development of states
is determined by a rule. An example of a rule for two state cells is: a cell flips to another state
if and only if the nearest neighbor cells are all in the same state. The consequences of a rule

also depends on the dimension of the configuration.

As an example we consider a 1-dimensional configuration of 5 adjacent square cells, say

The nearest neighbors of cell 2 is cell 1 and cell 3. The nearest neighbors of cell 3 is cell 2 and
cell 4. The nearest neighbors of cell 4 is cell 3 and cell 5. The sequence of cells is thought to
be periodic: the nearest neighbors of cell 5 is cell 4 and cell 1 and the nearest neighbors of cell
1 is cell 5 and cell 2. Suppose we apply the aforementioned rule: a cell flips to another state
if and only if the nearest neighbor cells are all in the same state. For the eight combinations
for a triple of cells consisting of a cell with its two nearest neighbors the rule is visualized in

the following pictogram:

If we apply this rule to the initial configuration, then only cell 1, cell 4 and cell 5 flip their
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state. As a result the initial configuration is evolved into the following configuration:

If the rule is applied repeatedly the cell states after each step become

-

R N
S
-~ W
-« B W

The result after six steps is identical to the initial configuration. That is, we obtained a period

6 cycle. There are four more period 6 cycles. There also is a period 2 cycle:

initial

step 2

The five period 6 cycles actually are ‘copies’ of each other. To be specific, if the cell states in
each configuration are shifted (periodically) by one cell (for instance, cell 1 to cell 2, cell 2 to
cell 3, cell 3 to cell 4, cell 4 to cell 5 and cell 5 to cell 1) a cycle turns into one of the other
cycles. One more shift leads to another cycle, and so on. For configurations of five cells one
can make five shifts and therefore there are five period 6 cycles. If the 5 cells are all black or
all white, a shift does not lead to another cycle. Therefore there is a single period 2 cycle.
For 5 cells there are 2° = 32 different states of which 30 occur in the five period 6 cycles
and two occur in the period 2 cycle. For the present rule applied to a one dimensional (1D)

configuration of 5 cells the evolution is depicted in the following directed graph:
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7N S
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1 copy 5 copies

Finally we mention that a cell is also called a site, a state is also called a color and a config-

uration is also called a grid. In case of numbers a configuration is also called a tuple.

1.2 Rules

Other rules may lead to other graphs. For instance, if we apply the rule

to the initial sequence

we successively obtain

- B N
N
o N
-
o B N
. N
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We see the configuration after step 7 is identical to the configuration after step 2. That is, after
two preperiodic configurations a period 5 cycle occurs. In fact, the configuration after step
3 is just the configuration after step 2 shifted (periodically) one cell to the right. Similarly,
the configuration after step 4 is the configuration after step 3 shifted one cell, and so on. As
a consequence, the configuration after step 7 is the configuration after step 2. Therefore, the
graph will contain a period 5 cycle with preperiodic configurations. Application of the present

rule to all the 32 different configurations of 5 cells leads to the following graph:

. I/
e "\'\ /J/.
o——>0O (‘. \\o \(‘. \o(.k.
.\o/ ./7./7.\0/ o
A ™
° % \.
1 copy 1 copy 1 copy

The latter rule maps the configuration of 5 black cells to a configuration of 5 white cells,
while it maps the configuration of 5 white cells on itself, see left part of the graph. The 5
white cells form a period 1 cycle; a fixed point. Fixed points will be drawn as open dots.
From the other 30 configurations 5 are in a bare period 5 cycle and 25 are in a period 5 cycle
with 20 preperiodic configurations. Periodic cycles are attractors. In the latter figure only
the structure of the graph is shown, not the configurations. With configurations the period 1

cycle and the bare period 5 cycle of the latter figure are as shown below.

. |
[ ]
EEE o
EEEEE ¢ —— >0 e  EEN
EEE | e
o
N Em

Another way to represent the configurations is by denoting a black cell as a 1 and a white
cell as a zero. Then the period 1 cycle and the bare period 5 cycle of the latter figure are as

follows.
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An abbreviation can be achieved by interpreting the numbers in the latter figure as binary
numbers. The configurations can also be represented by the decimal value of the binary
numbers. Thus 0 for 00000, 1 for 00001, 2 for 00010, 3 for 00011, 4 for 00100 through 31
for 11111. Then the period 1 cycle and the bare period 5 cycle of the latter figure will be as

follows.
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Usually one is only interested in the structure of the graphs and not in the individual config-

urations. So, hereafter we will confine to graphs without configuration representations.
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1.3 Configuration width

The configuration in the previous section has a width of 5 cells. Other configuration widths
may lead to other graphs. Application of the rule of the first section to configuration widths
of 1 cell, 2 cells, 3 cells, 4 cells and 6 cells lead to the graphs

4 copies 6 copies

and

2 copies

respectively. Clearly, the graphs depend on the configuration width.

1.4 Fractals

Often a relatively large number of zeros (white cells) with a single 1 (black cell) is taken as
the initial configuration. For instance, the evolution of a single black cell under the rule of

the second section leads to a checkerboard pattern, see the next figure.
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The evolution of a single black cell under the rule of the first section is as follows:

= HH
S
_-_'-a-'_-._'__..'-u-'_.._'__-.'-n-'_-_
. ————
e ———
- T = HH
ot T A T L L e
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— 1 e o ey 1o & % ey T 1 2 T L e M
T T e T e T e

The latter pattern contains self similarity on smaller scales. That is, it has fractal properties.

Application of the rule

leads to a fractal which is known as the Sierpinski triangle:

£
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1.5 States

If for a one dimensional n state CA a new state of a cell is determined by the old state of
the cell and the state of its nearest neighbors, the rule has to cover n3 possibilities. For a one
dimensional two state CA a rule covers 2% = 8 possibilities as we saw in the previous sections.
For a one dimensional three state CA a rule covers 3% = 27 possibilities. In the next figure we

see an example of a three state rule.

AEE BEY BN B BN RN  EEEEE
O O O O O O O O O
Il Bl BN BN BN BN B EEENE
O O [ O O | O | |
H NN IiE EhE NN JIE ENEE NEE NEEN
| | | O | | O | [

In the latter example a state is depicted by a color: either white, orange or purple. If we apply

it to the following configuration of 5 cells

we successively obtain

step 25 .

That is, after 25 steps we arrive at the initial configuration; a period 25 cycle. For large

configurations the evolution of a single orange cell leads to the following the pattern:
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1.6 Dimension

In the previous sections we confined to one dimensional configurations. However, a CA can
also live in more than one dimension. An example is a two dimensional (2D) grid of square
cells. The nearest neighbors of cell ¢; ; are ¢;—1 5, ¢; j—1, ¢i+1,; and ¢; j+1. Also here the con-
figurations are periodic. In the next figure the four blue cells are the nearest neighbors of the

green cell. The right panel illustrates the consequences of a grid with periodic boundaries.

J=25-1 5 j+1j+2 1 2 3 4 5
1—2 1
1—1 2
ii B 3
i+17 N 4
]

Suppose a rule for the 2D square grid with two states is: a cell flips its state if it has an odd
number of black nearest neighbors. For a 3 x 3 periodic grid it leads to the following evolution

of a single black cell:
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initial step 1 step 2

The final configuration has period 1; it is a fixed point. This is also the case in the example:

initial step 1 step 2

If we consider the foregoing two initial configurations in a 5 x 5 periodic grid, the present rule

leads to

initial step 1 step 2 step 3 step 4

and

initial step 1 step 2 step 3 step 4

respectively. In both cases we arrive at a period 3 cycle. For larger grids the evolution patterns
become more refined and aesthetic. The evolution of two initial configurations considered in
a 255 x 255 periodic grid leads after 255 steps for the single black cell to
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and for the other initial configuration after 255 steps to

the result is identical to

thus after step 256,
the cycle has a period of 255 steps. The previous two figures

)

For both case holds: if we take one step further

the result after the first step. So

)

respectively.

and

are almost identical. They differ only in the 3 x 3 grid at the center: ®
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1.7 Summary

This chapter was a small tour through the world of CA. We saw how a CA is determined
by the dimension of the grid, the size of the grid, the number of different states a cell can
possibly have, the initial configuration and the rules of evolution. We also saw how periodic
cycles can come into existence. For convenience we confined so far to CA with grids of square
cells. However, grids do not have to consist of square cells. A regular grid of triangles or
hexagons or even less regular grids may serve as well. In addition, rules do not have to be
restricted to nearest neighbors. For sequences it may depend on next to nearest neighbors as
well, or even further away. Also for a square cell ¢; ; one does not have to restrict to neighbor
cells with 2+ 1 and j + 1. In stead one can also consider neighbor cells with ¢ + 2 and j + 2
or even further away. In the chapters to come we will confine to one dimensional CA’s and

investigate some properties.



Chapter 2

Elementary cellular automata

2.1 Elementary cellular automata

A one dimensional cellular automaton is called elementary if there are two possible states for
a cell and if the evolution of a cell depends on the states of the cell itself and its two nearest
neighbors. The very first rule of chapter 1 is an elementary cellular automaton. For each
elementary cellular automaton there are 8 different possibilities for the triple of states of a
cell and its two nearest neighbors. For each triple there are 2 possible new states for the cell
in the middle. Therefore there are 28 = 256 elementary cellular automata. The elementary

cellular automata were introduced by Stephen Wolfram |1, [2]. The rules are

rule 0
AN BN EE R HEE N ||
rule 1 -
NN BN EE R HEE N ||
|
rule 2
through
AN BN E E N HEE BN [ |
[ | [ | [ | [ | [ | [ | [ | [ |
rule 255

17
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If we represent the two states by a 0 and a 1 instead of white and black, then the rule are as

follows

111110 101 100 011 010 001 00O

rule 0 o 0 0 0 0 0 0 0
. 111 110 101 100 011 010 001 000
e o o0 0 0 0 0 o0 1
- 111 110 101 100 011 010 001 000
rue o 0 0 0 0 0 1 0

111 110 101 100 011 010 001 000
rule 3

0 0 0 0 0 0 1 1

and so on through

111 110 101 100 011 010 001 00O

rule 255 1 1 1 1 1 1 1 1

For a rule

111 110 101 100 011 010 001 00O

rule d a;  ag  as ay az ay a ap

with aj € {0,1}, the decimal rule number is given by

7
d=> a2*. (2.1)
k=0

With the use of the latter equation it follows that the rule in section 1.1 has decimal number
105. The rule in section 1.2 has decimal number 114. The rule which resulted in the Sierpinski
triangle in section 1.3 has decimal number 90. These three examples are usually denoted as
rule 105, rule 114 and rule 90.
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2.2 Transition equation
In the binary system, where a state is 0 or 1, a rule d of an elementary cellular automaton
can be summarized as

LCR

rule d N

It represents the transition of the state (C) of a cell, the state (L) of its left neighbor and
the state (R) of its right neighbor to a new state N of the cell for each of the 8 possible

configurations of the LCR triples. Each rule d can be casted in a single equation:
N = (bo—|—blR—i—bQC—l-b30*R—|—b4L+b5L*R—|—b6L*C+b7L*C*R) mod 2, (2.2)

where the coefficients by € {0,1}. The coefficients b; depend on the coefficients a;:

bp = apmod?2 b1 = (a1 —ap) mod2 by = (a2 — ap) mod 2

bs = (a3 —az —a; +ap) mod2 by = (ag — ap) mod 2

bs = (a5 —aq —ay +ap) mod2 bg = (ag — ag — az + ap) mod 2

by = (a7 —ag — a5 + aq — az + az + a1 — ag) mod 2. (2.3)

A transition equation is obtained by substituting the values a; in the latter system of 8

equations. As an example we explicitly calculate the by for rule 105. Rule 105 reads

111 110 101 100 011 010 001 0OO

rule 105 o 1 1 o0 1 0 o0 1

That is, for rule 105 (a7, ag, as, as, as, as, a1,a9) = (0,1,1,0,1,0,0,1). Substitution of these
a; in the 8 equations of equation [2.3|leads to by = by = ba = by = 1 and bg = bs = bg = by = 0.

Hence, the transition equation for rule 105 is
Nigs=(1+R+C+ L) mod2 (2.4)
In a similar way one finds, for example, for rule 114 and rule 90 the transition equations
Niiy=(R+C*R+L+Lx+xR)mod2 |, Ngp = (R+ L) mod2. (2.5)

In equation [2.1] the coefficient a; for rule 255 —d is 0 if the coefficient a; for rule d is 1, and the
coefficient a; for rule 255 — d is 1 if the coeflicient a; for rule d is 0. As a consequence, a; — a;
for rule 255 — d does not differ from a; — a; for rule d. The by through by for rule 255 — d
therefore does not differ from the b; through b7 for rule d. Only the by for rule 255 — d is 0
(1) if the by for rule d is 1 (0).
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2.3 Uniqueness

Among the 256 rules for the elementary cellular automata there are rules which are trivially
equivalent to each other. For instance a change of roles of L and R only leads to a mirror
situation. A mirror rule number occurs if both the coefficients a; and as in equation for
a rule number are exchanged with coefficient a4 and ag respectively. A trivial equivalency also
occurs if the roles of 0 and 1 are exchanged. That is, if the complement situation is considered.
The latter occurs if L, C' and R in a triple and the a;, flip their state. In effect this means that
the new coeflicients follow from a given one via ar = 1 — ay_j for kK = 0 through 7. Finally, a
trivial equivalence also occurs if the complement of a mirror rule is taken. As an example we

consider rule 30:

111 110 101 100 011 010 001 00O

rule 30 o o o 1 1 1 1 0

If we exchange a; with a4 and a3 with ag we obtain as mirror rule 86:

111 110 101 100 011 010 001 00O

rule 86 o 1 0 1 0 1 1 o0

If we exchange ap with 1 — a7_ for k = 0 through 7, we obtain as complement rule 135:

111 110 101 100 011 010 001 00O

rule 135 1 0o o0 o0 o0 1 1 1

The complement of the mirror rule is rule 149:

111 110 101 100 011 010 001 00O

rule 149 1 0o o 1 o0 1 o0 1

Among the 256 rules there are 88 unique rules in the sense that they are inequivalent under

mirror and complement transformations.

Starting with the smallest decimal rule numbers and discarding equivalent rules with larger
decimal numbers, the 88 unique rules are: 0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15, 18,19, 22,
23,24,25,26,27,28,29, 30,32, 33, 34, 35, 36, 37, 38,40,41,42, 43,44, 45, 46, 50, 51, 54, 56, 57, 58,
60,62,72,73,74,76,77,78,90,94, 104, 105, 106, 108, 110, 122, 126, 128, 130, 132, 134, 136, 138,
140,142,146, 150, 152, 154, 156, 160, 162, 164, 168, 170, 172, 178, 184, 200, 204, 232.
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2.4 Generating functions

As an example we consider the evolution of a single 1 among zero’s under rule 50:

0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,1,0,1\0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0
0,0,0,0,0,0,1,0,1,0,1,0,10,0,0,0,0,0
0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0
0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0
0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,10,0,0
0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1\0,0

For the binary number interpretation the blue line indicates the border between negative and
non negative powers of 2. The first number left from the blue line is the coefficient of 2°, one
more to the left is the coefficient of 21, etc. If we interpret each row as a binary number this way,
then the decimal values of the generated sequence are 1,5,21,85,341,1365,5461,21845, ....
Each new number is 4 times the previous number plus 1. The difference equation for such a

sequence is u, = 4u,_1 + 1 with ug = 1. A direct equation is

C44n 1

- (2.6)

u(n)

A Taylor expansion of the function yields

1
(1—-2)(1—4x)

1
~ 14 5z + 2122 + 8523 + 3412 + 13652° + 54612° 4+ 2184527 + ... (2.7)
(1 —2)(1—4x)
Because of the analogy between the coefficients of the powers of  and the generated sequence,
the function (A= 2)(1 —42) is a gemerating function for rule 50.

As another example we consider the evolution of a single 1 under rule 6:

0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
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With respect to the blue line the decimal values of the generated sequence are 1,6, 16, 96, 256,
1536,4096, 24576, .... Once you have a sequence for a rule you can look for its direct equation
and generating function at the OEIS site [3]. The sequence 1, 6, 16, 96, 256, 1536, 4096, 24576, ...

for rule 6, for instance, is known as sequence A266180. It has 4"~ ! (5 — (—1)") as direct equa-

146
tion and i 4;)_ (1$+ 17) as the generating function.

A rule for which the input 000 leads to ag = 1 will have an odd rule number. As a con-
sequence, a odd rule applied to the first row ...000001000000..., will cause the cells at the right
of the blue diagonal in the second row to be filled with a 1. Then one cannot interpret the
second row as a binary number. Therefore the generating functions are restricted to rules

with an even rule number.

2.5 Cycles

In this section we will apply elementary cellular automata to periodic tuples of finite width.
If the width of a tuple is n binary digits, then there are 2™ possible tuples to start with. Let

us consider, for instance, rule 27

111 110 101 100 011 010 001 00O

rule 27 o o o 1 1 0 1 1

Application of rule d = 27 to the 16 different tuples with width 4 leads to the following graph:
0011 1001

S

110 011
0101 o
e 0000 1111 @ 0001 e 0100
1010 » \/ \ /
1101 1011
0010
0110 1100

There is a period 2 cycle and a period 8 cycle. In total, 6 out of the 16 possible tuples have no
predecessor. They are called ‘unreachables’ or ‘gardens of eden’. A fixed point is ‘reachable’:

it is reached from itself.

Application of rule d = 27 to the 32 different tuples with width 5 leads to the next graph.
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That is, application of rule d = 27 to tuples with width 5 leads to a period 2 cycle, a period

5 cycle and a period 10 cycle, and 10 out of the 32 possible tuples are unreachable.

Let Tmax be the maximum period occurring for a given rule d and a given width n.

the next figures Tiax is plotted against the width n for several rules.
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| | | |
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The figures above suggest the maximum period often is 1, 2, n/2, n, 3n/2 or 2n.
Let v be the ratio of the largest period and the tuple width. Thus v = Tiax/n.
In the next figures v is plotted against rule number d for widths n =5, 6, 7, 8, 9 and 10.
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The largest value of v often occurs for the four rules 45, 75, 89 and 101. Large values for v
also occur for the four rules 30, 86, 135 and 149, the four rules 106, 120, 169 and 225, the four
rules 154, 166, 180, and 210, and the four rules 26, 82, 167 and 181. For each of these sets of

four rules the first rule is unique, the other three rules are its mirror, its complement and its

mirrored complement. For the periods of the sets it suffices to consider only the rules 26, 30,

45, 106 and 154. For these rules the maximum period is shown for widths up to 16 is shown

in the next table.

" 112(3|14|5 |6 | 7 |89 |10 11 |12 | 13 14 15 16
d
26 |1(11]6]1[20| 6 |28 |16 72 | 20 | 88 | 24 | 104 | 56 | 120 | 32
30 11185 | 1] 6340|171 15 |154|102| 832 | 1428 | 1455 | 6016
45 12123 (12]30]18 126 |32 |504|430|979 | 240 | 1105 | 2198 | 6820 | 2816
106 | 1123|415 | 6 | 49 | 15| 54 | 205|176 | 168 | 416 | 448 | 1095 | 2688
154 [1]1|6(4(20]12| 28 | 8 | 72 | 40 | 88 | 24 | 104 | 56 | 120 | 16

Table 2.1: T},4, for tuple widths 1 <mn < 16 and rules d = 26, 30,45,106 and 154.

2.6 Unreachables

Let p be the fraction unreachables. In the next six figures u is plotted against rule number d

for tuple widths of 5, 6, 7, 8, 9 and 10 numbers.
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We see that the rule numbers 0, 2, 8, 16, 64, 191, 239, 247, 253 and 255 have the largest
number of unreachables for all tuple widths. We see that the rule numbers 15, 45, 51, 75, 85,
89, 101, 154, 166, 170, 180, 204, 210, 240 have a number of unreachables equal to 0 or close
to 0. Furthermore the plots are symmetric with respect to the d = 127.5 axis. They illustrate
the symmetry law that u for rule d is identical to p for rule 255 — d. Formally

w(d,n) = (255 —d,n). (2.8)

The symmetry is remarkable since the graphs of a rule d and its opposite rule 255 — d can be

completely different. As an illustration, the graph for d =20 and n = 5 is

L/ ® d \ 1.—> £
—~, °
o—> D<o of i/.
\o o't \.\o
° ° — % £
./. / o<« O
. T\

while the graph for d = 235 and n =5 is

Although completely different both graphs contain 16 unreachables out of 32 tuples.

The reason for the similarity can be explained by looking at the rules d and 255 — d. Let
us take the two rules in the example above: d = 20 and d = 235. The two opposite rules are

shown below.
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111 110 101 100 011 010 001 00O

rule 20 o o0 o0 1 0 1 0 0

111 110 101 100 011 010 001 00O

rule 235 1 1 1 0 1 o0 1 1

As we see, if ap = 1 for rule 20 then ap = 0 for rule 235 and if a; = 0 for rule 20 then
ar = 1 for rule 235. Each aj of rule 20 is the opposite of the a; of rule 235 and therefore
rule 235 will we called the opposite rule of rule 20. The application of rule 20 and rule 235
to tuple 10010, for instance, leads to 11010 and 00101 respectively. The latter two tuples
are each others opposite. Alternatively, if 11010 has 10010 as predecessor under rule 20,
then 00101 has 10010 as predecessor under rule 235. The property holds for other tuples:
if a tuple (s1,s2, 3,84, 85) has tuple (t1,to,t3,t4,15) as its predecessor under rule 20, then
(1 —s1,1 — 89,1 — 53,1 — 84,1 — s5) has tuple (t1,t2,t3,14,t5) as its predecessor under rule
235. As a consequence, each tuple (s1, s2, $3, 4, S5) has as many predecessors under rule 20
as tuple (1 — s1,1 — s9,1 — 83,1 — 84,1 — s5) has under rule 235. Indeed, in both the above
graphs for rule 20 and rule 235, and n = 5, there are 1 tuple with 6 predecessors, 5 tuples
with 3 predecessors , 10 tuples with 1 predecessor and 16 tuples with 0 predecessors. The 16
tuples with 0 predecessors are 16 unreachables. We see there are as many unreachables under

rule 20 as under rule 235.

Of course, the argument can be generalised to other rules and other tuple widths: if a tuple
(81,82, ..., Sp) has tuple (t1, 1o, ..., t,,) as its predecessor under rule d, then (1—s1,1—s9,...,1—
sn) has tuple (t1,t2, ..., t,) as its predecessor under rule 255 — d. As a consequence, each tuple
(81,82, ..., Sp) has as many predecessors under rule d as tuple (1 — s3,1 — s9,...4,1 — s,,) has
under rule 255 — d. In particular, if a tuple (s, S, ..., $,) has no predecessors under rule d
then tuple (1 —s1,1 — s2,...4, 1 — s5,) has no predecessors under rule 255 — d. Therefore, there

are as many unreachables under rule d as under rule 255 — d.



Chapter 3

Modular CA

3.1 Modular addition in one dimension

In this section we will consider tuples where each number in a tuple is an element of a field
Fr ={0,1,2,3,...,k — 1} with £ > 1 an integer.

We consider a tuple with width 7 with numbers in Fy = {0, 1,2, 3}, for example,

(1,3,2,0,0,1,2)

Suppose a rule is as follows: each number in a tuple is the addition, modulo 4, of the number
itself and its left neighbor number. Starting with (1,3,2,0,0,1,2) the repetitive application

of this rule leads to the following evolution:

step 1 (3,0,1,2,0,1,3)
step 2 (2,3,1,3,2,1,0)
step 3 (2,1,0,0,1,3,1)

step 15 (1,2,3,0,2,3,1)
step 16 (2,3,1,3,2,1,0)

The tuple after step 16 is identical to the tuple after step 2. So, the period is 14 steps. It
turns out there are 288 period 14 cycles and 9 period 7 cycles. The tuples (1,1,1,1,1,1,1)
and (3,3,3,3,3,3,3) are mapped on the tuple (2,2,2,2,2,2,2) which in turn is mapped on
the fixed point (0,0,0,0,0,0,0). The complete graph is shown below.

29
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We see the tuples are attracted to either a fixed point, or to one of the 9 period 7 cycles or
to one of the 288 period 14 cycles. In the present graph there are everywhere 3 preperiodic
points which arrive (in one or two steps) at a cyclic point. So, in the present graph there are
four times as many points as there are cyclic points. For a tuple of 7 numbers in F4 there are
47 = 16384 different tuples. Since 4 x (1 x 1+ 9 x 7 + 288 x 14) = 16384 the book keeping is

in order. For the graph a fraction 1/2 of the tuples is unreachable.

3.2 Tabulation of periods

A left neighbor will be denoted as L and a right neighbor as R. A number itself is denoted as
C. There are seven types of rules based on nearest neighbors in one dimensional tuples: L, C,
R L+C,C+R,L+Rand L+ C+ R. The rule L means that each new number inside a
tuple just obtains the value of its left neighbor. This is just a shift of states to the left. Under
rule C nothing changes. The rule R leads to a shift of states to the right. In Fy, the rule L+ C
means that each number in a tuple is the result of the addition modulo & of the number itself
and its left neighbor. Rule C'+ R means the addition modulo k& of a number itself and its right
neighbor. Rule L+ R means the addition modulo k of the left neighbor and the right neighbor.
Rule L + C'+ R means the addition modulo k of a number itself, its left neighbor and its right
neighbor. Rules L, C' and R are trivial. Rules C'+ R is just the mirror of rule L+ C'. Therefore
only the three rules L + C, L + R and L + C' + R will be investigated. For each rule we will
investigate tuples of width n in Fy. For each (n, k) pair we will keep track of the different
periods of the occurring cycles and the fraction of unreachable tuples. The results are shown in
the next three tables for L+C', L+ R and L+C+ R respectively. Each table takes two pages.
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1 2 3 4 5 6 7
n
1 1 1
1 10|13 1,20 13 1,40 123 1,30
1 2 3 4 5 6
2 1011 12 2 13 14 2 123 1,36
3 110133 1260 13612 14,6120 |1,23,6 3 1,3,6 0
1 2 3 4 5 6
4 1011 1282 |13 124 % 12,82 1,3,24 &
5 (101,153 [1,2400 [1,1530 3 |1,4,200 1,2,15,30, 1,3,80, 240 0
40,120 %
1 2 3 4 5 6
6 (101,363 (1,262 [13,6122 [14,6,12242(1,23,6 3 1,2,3,6 S
7 110|173 [1,291,182(1,7,14 1 |1,4,217868 |1,2,7,14,91, |1,3,210
0 0 182 3
1 2 3 4 5 6
8 |10]11 12482 |12 12,4,12,24 211,248 2 1,3,16,24,48 §
9 |10(1,3,631]1,26,180(1,3,6,63, |1,4,6,12,558,1,2,3,6,18, 1,3,6,342 0
126 & 1116 0 63,126 %
10 [101,1530 [1,2,40,80 |1,15,30,60 |1,4,20 % 1,2,15,30,40, |1,3,80,240,
1 2 3 5 6
3 2 3 80,120,240 3 | 480 &
11 |10 (1,341 5 |1,2420 [1,341,682 |1,4,142,284, [1,2,242,341, |1,3,61622,
i 1562,3124 0 | 682,7502 1 | 184866 0
12 (10 [1,36,12 [1,2,6,8,24 [1,3,6,12,24 [1,2,4,6,8,12, |1,2,3,6,8,12, |1,2,3,6,24,48
1 2 3 4 5 6
2 3 1 24 5 245 7
13 (101,819 3 |1,2,13,26 |1,819,1638 |1,4,156,312 |1,2,13,26,819, |1,3,169936,
0 i 0 1638 3 509808 0
14 {10 |1,7,14 § |1,2,91,182]1,7,14,28 2 | 1,4,217,868, |1,2,7,1491, [1,321 &
2 4 5
364 2 1736 2 182,364 2
15 |10 1,3,515 |[1,2,6,40, [1,3,5,6,10, |1,4,6,12,20, |1,2,3,5,6,10, |1,3,6,80,240,
3 120 0 15,30 3 |30,60 0 15,30,40,120 | 1200 0
1
2
16 [10|13 12,4840, 1 3 1,2,4,12.24, [1,2,4,840,80 |1,3,8,16,24,48
80 2 312,624 1 |3 s
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k
8 9 10 11 12
n
1 1 1
I 1,2,6 0 141 1,10 0 121
7 8 9 10 11
2 1% 12,6 5 14 % 110 ¥ 12 4
3 113613 1,2,6,18 0 1,3,4,6,12 3 1,6,10,30 0 1,2,3,6 3
7 8 9 10 11
4 |11 1,2,6,8,24 8 124 & 1,10,40 ¥ 12,8 11
5 |1,15,30,60 3 [1,2,6,40,120 0 |1,4,15,20,60 3+ |1,2,5,10 0 1,2,15,30,40,120
1
2
6 [1,3,612,24 7/1,2,6,18 5 1,3,4,6,12,24 % 1,6,10,30,60 1Y |1,2,3,6,12 15
7 11,714,281 |1,2,691,182, |1,4,7,28,217, 1,10,19,133,190, | 1,2,7,14,91,182
273,546 0 868 1 1330 0 i
8 |12 1,2,4,6,8,12,24 [1,24,12,24 % |1,10,30,40,120 |1,2,4,8 1
8 10
9 11
9 |1,3,6,63,126, [1,2,6,18,54 0  |1,3,4,6,12,63,126] 1,6,10,30,2394, |1,2,3,6,18,63,
252 % 252,558,1116, 11970 0 126 1
3906,7812 1
10 {1,15,30,60, |1,2,6,40,80,120, |1,4,15,20,30,60 |1,2,5,10 & 1,2,15,30,40,60,
120 £ 240 & % 80,120,240 1
11 {1,341,682, |1,2,6,242,726 0 |1,4,142,284,341, |1,10,110 0 1,2,242,341,682,
1364 3 1364,1562,3124, 7502 3
48422,96844 3
12 {1,3,6,12,24, |1,2,6,8,18,24,72 1,2,3,4,6,8,12,24 | 1,6,10,30,40,60, |1,2,3,6,8,12,24
7 8 9 10 11
48 I 8 2 120 10 4
13 {1,819,1638, |1,2,6,13,26,39, |1,4,156,312,819, |1,10,1535352, |1,2,13,26,819,
3276 1 78 0 3276,6552 % 7676760 0 1638 3
14 {1,7,14,28,56 |1,2,6,91,182,273/1,4,7,14,28,217, |1,10,19,95,133, |1,2,7,14,28,91,
7 8 9 10 11
I 364,546, 1092 8 | 434,868,1736 -% | 190,665,1330 19 | 182,364 11
15 {1,3,5,6,10,15,/ 1,2,6,18,40,120, |1,3,4,5,6,12,15, |1,2,5,6,8,10,24, |1,2,3,5,6,10,15,
20,30,60 3 | 360 0 20,30,60 3 30,40,120 0 30,40,120 %
16 |11 1,2,4,6,8,12,24, |1,2,4,12,24,312, |1,10,30,40,120, |1,2,4,8,40,80 11
40,80,120,240 5 | 624 % 3660,7320,14640
10
11

Table 3.1: Cycle periods (separated by a comma) and (separated by a blanc) the fraction of
unreachable tuples for tuples with width n under the modular addition rule L 4+ C' modulo &,

see text.
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2 3 4 5 6 7
n 1
1 1 1
1 |10]13 1,20 14 140 121 1,30
3 3 3
2 1012 1,20 13 140 123 1,36 0
3 |10(13 1260 (121 1,2,40 12,6 1,2,36 0
3 8 15 24 35 48
4 (10|13 12§ 14 14 2 123 13,6 8
5 (10133 |1,280 [136% [14200 12368241 |1,3,16480
6 (101232 12360 122 1240 1,2,3,6 3 1,2,3,6 0
7 101,73 12,1326 |1,7,14 1 |1,4,31,124 [1,2,7,13,14,26, |1,3,21 0
0 0 91,182 3
3 8 15 24 35 48
8 |10]12 124% 18 14828 1124 3 1,36 15
9 (101,73 1,2,6180(1,2,7,14 1 |1,24,62, [1,2,6,7,14,18, [1,2,3,6,114 0
124 0 42,126 1
10 (101,363 [1280 [1,363 (14200 12368243 |1,3,6,16480
11 |10 (1,313 [1,22420 |1,31,62 3 |1,4,1562, |1,2,31,62,242, |1,3,5602,16806
3124 0 7502 3 0
3 8 15 24 48
12 (101243 12365 |1248 |12482 112346,124 [1,23,6,12 9
35
36
13 |10 1,633 [1,2,13,26 |1,63,126 5 |1,4,12,24 0|1,2,13,26,63, | 1,3,13072,
0 126,819,1638 5 | 39216 0
14 [10|1,7,14 3 |1,2,13,26 |1,7,14 3 |1,4,31,62, |1,2,7,13,14,26, |1,3,6,21,42 0
0 124 0 91,182 3
15 |10 |1,3,15 % [1,2,6,8,24|1,2,3,6,15, | 1,2,4,10,20 | 1,2,3,6,8,15,  |1,2,3,6,16,48,
0 30 3 0 24,30,120 3 | 400,1200 0
3 8 15 24 35 48
16 [1013 124168118 1,4,848 22 11,2,4,16 32 1,3,4,6,12 4
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k
8 9 10 11 12
n
1 1 1
1|14 1,2,6 0 141 1,10 0 121
3 3 3
2 |13 1,2,3,6 0 1432 1,5,10 0 1232
3 (124 1,2,6,18 0 124 1 1,2,10 0 1,2,6 3
63 80 99 120 143
4 |18 12,36 8 14 % 1,5,10 120 1,2 143
5 11361235 [1,2,6,8240 1,3,4,12,20,60 § |1,5,10 0 1,2,3,6,8,24 1
6 (122 12,369,180 [1,24 2 1,2,5,10 0 1,2,3,6 3
7 1,714,228 3 [1,2,6,13,26,39, |1,4,7,28,31,124, |1,10,133,1330 0 |1,2,7,13,14,26,
780 217,868 3 91,182 %
63 80 99 120 143
8 |18 12,346,128 1148 2 1,5,10,20 20 124 18
9 |12,7,14281(1,26,18540 |1,2,4,7,14,28,62, | 1,2,10,266,1330 |1,2,6,7,14,18,42,
124,434,868 5 |0 126 &
10 |1,36122 112368240 |1,3,4,6,12,20,60 |1,5,10 0 1,2,3,6,8,24 3
3
4
11 [1,31,62,124 |1,2,6,242,726 0 |1,4,31,124,1562, | 1,10,110 0 1,2,31,62,242,
: 3124,48422, 7502 3
96844 1
12 1,248 % 1,2,3,69,18 82 11,248 2 1,2,5,10 129 1,2,3,4,6,12 143
13 |1,63,126,252 | 1,2,6,13,26,39, |1,4,12,24,63,252,|1,10,118104, 1,2,13,26,63,
i 78 0 504 3 590520 0 126,819,1638 %
14 |1,7,14,28 3 |1,2,3,6,13,26,39,| 1,4,7,14,28,31, |1,5,10,133,266, |1,2,7,13,14,26,
78 0 62,124,217,434, |665,1330 0 91,182 3
3
868 3
15 11,2,3,6,12,15,/1,2,6,8,18,24,72 | 1,2,3,4,6,10,12, [1,2,5,10,120 0 |1,2,3,6,8,15,24,
30,60 3 0 15,20,30,60 3 30,120 %
63 99 143
16 (13 1,2,3,4,6,12,16, |1,4,8,48 -5 1,5,10,20,240 1,2,4,16 13
48 59 o0
81 121

Table 3.2: Cycle periods (separated by a comma) and (separated by a blanc) the fraction of
unreachable tuples for tuples with width n under the modular addition rule L + R modulo &,

see text.
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2 3 4 5 6 7
n 1
1 |10]10 12 1,20 1,40 12 1,6 0
2 |10(10 122 120 1,2,4 0 122 1,2,6 0
3 8 15 24 35 48
3 |10(13 18 12 15 14 2 138 16 4
4 101,20 1,2 2 1,240 1,240 122 1,2,6 0
5 101,30 1.8 2 12360 [1,4200 1,338,242 1,6,16,48 0
3 8 15 24 35 48
6 (1013 1263 |12 1242|1262 1236 B
7 101,70 1,26 2 1,2,7,14 0 [1,4,62,124 {1,7,26,182 2 |1,6,420
0
8 [10[1,240 [1,282 (12480 |124,120 (124832 1,2,3,6 0
3 8 24 35 48
9 (10172 18 12,714 |14,124 22 1,73 1,6,171,342 £
15
16
10 {101,360 |1,24382 {1,2,3,6,12 |1,2,4,10,20 |1,2,3,4,6,8, 1,2,6,8,16,
0 0 12,24 2 24,48 0
11 101,310 |[1,1212 |12,31,62 |14,781, 1,31,121,3751 | 1,6,2801,16806
0 3124 0 2 0
3 8 15 24 35 48
12 (101,22 12368 [1,2412 (124724 221236 22 1,2,3,6,48 35
13 |10[1,210 (1,132 1,2,21,42 |1,3,4,8,12, |1,13,21,273 2 |1,6,817,4902 0
0 240
14 |10[1,7,140 (12,26 2 |1,2,7,14,28/1,2,4,62, |1,2,7,14,26,182 | 1,2,6,14,42 0
0 124 0 2
15 [101,35,15 [1,824 5 [12356, [1,4,20 2% |1,3,58,1524, |1,6,16,48,600,
3 10,15,30 40,120 22 1200 0
15
16
16 {10(1,2480(1,2880%|1,24,38,16 124,12, |1,2,4,880 2 1,2,3,6,24,48 0
0 3120
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8 9 10 11 12
n
1 11,20 12 1,40 1,50 122
2 11,240 122 1,2,4 0 1,2,5,10 0 122
63 80 99 120 143
3 (128 18 14 5 1,5 12 1,2 123
4 11,2480 122 1,2,40 1,2,5,10 0 124 2
5 11,236,120 (18242 1,3,4,12,20,60 0 |1,5,10 0 1,2,3,6,8,24 2
63 80 99 120 143
6 1,248 1,2,6,18 8 1,24 2 1,2,5,10 12 12,6 13
7 11,2,7,14,28 0|1,26,78 2 1,4,7,28,62,124, |1,5,266,1330 0 | 1,2,7,14,26,182
434,868 0 2
8 (1,248,160 |1,2,824 2 1,2,4,12 0 1,2,5,10,24,120 |1,2,4,8 2
0
80 120 143
9 1271428 |12 1,4,7,28,124, 1,5,1330 12 118
63 99
& 868 2.
10 [1,2,34,6,12, |1,2,4,8,1224 2 [1,2,3,4,6,10,12, |1,2,5,10 0 1,2,3,4,6,8,12,24
240 20,30,60 0 2
11 ]1,2,31,62,124| 1,121,363 2 1,4,31,124,781, |1,5,55 0 1,2,31,62,121,
0 3124,24211, 242,3751,7502
96844 0 2
63 80 99 120 143
12 1248 8 11236918 82 (124,24 2 1,2,5,10 120 1,2,3,4,6,12 143
13 |1,2,21,42,84 |1,13,39 2 1,3,4,8,12,21,24, | 1,5,4921,24605 |1,2,13,21,26,42,
0 84,168 0 0 273,546 2
14 [1,2,4,7,14,28,/1,2,26,78 2 1,2,4,7,14,28,62, | 1,2,5,10,266, 1,2,7,14,26,28,
56 0 124,434,868 0 | 1330 0 182,364 2
15 [1,2,3,5,6,10, |1,8,24,72 5 1,3,4,5,12,15,20, | 1,5,10,40,60,120 | 1,2,3,5,6,8,10,
12,15,20,30, 60 120 15,24,30,40,120
63 143
60 32 143
16 [1,2,4,8,16,321,2,8,24,80,240 |1,2,4,8,12,24,312|1,2,5,10,24,120, |1,2,4,8,16,80 2
0 2 0 2928,14640 0

Table 3.3: Cycle periods (separated by a comma) and (separated by a blanc) the fraction of
unreachable tuples for tuples with width n under the modular addition rule L 4+ C + R modulo

k, see text.
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The fraction of unreachables will be denoted by wp. In each table a pattern can be recog-
nized for the fractions of unreachables.
For the L 4 C rule:
0 if n is odd and k is odd;
=9 3 if n is odd and k is even; (3.1)
k

%1 if n is even.

For the L + R rule:

if n 22 0mod 4 and k is odd;
if n 2 2mod4 and k is even; (3.2)
if n is odd and k is even;

221 fp 0O mod 4.

o= e O

For the L + C' + R rule:

0 if n 22 0mod 3 and k£ 2 0 mod 3;
W= % if n 2% 0mod 3 and k£ = 0 mod 3; (3.3)
KoL if n 2 0mod 3.

3.3 Preperiodic points

If we start with tuple (0,0, 1) and follow the evolution under L + C modulo 4, we successively
obtain (1,0,1), (2,1,1), (3,3,2), (1,2,1), (2,3,2), (0,1,1), (1,1,2), (3,2,3), (2,1,1). The
first of these tuples which is part of a cycle is (2,1,1). The two tuples (0,0,1 and (1,0,1)
are preperiodic tuples. We will denote the number of preperiodic tuples as p. In general p
depends on the width n and the field Fy: p = p(n, k). For the given example p(3,4) = 2. For
1<n <16 and 1 <k < 8 the p(n, k) are shown in the table on the next page.

We denote the prime factorization of n asn =2".3 .5 . and of k as k = 2/2.3%3 .55 . ..
The p(n, k) can be expressed as a function of the powers 7; and &;.

If we consider the column for each k than the p(n, k) seem to obey the following rules:

p(n, 1) =0,

p(n,2) = 2",

p(n,3) mod [n+1,2] -3,

p(n,4) = mod [n,2]-2+ mod [n+1,2] 3771,
p(n,5) mod [n+1,2] - 5™,

p(n, 6) = max(p(n, 2), p(n, 3)),

p(n,7) = mod [n+1,2]- 77,

p(n,8) = mod [n,2] + 2721

where mod [a, b] stands for a mod b.

If we consider the row for each n than the p(n, k) seem to obey the following rules:
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p(1, k) = Ko,
p(Q,k) = Ko + 1,
p(3, k) = ko,
p(4,k) =2Kk2 +2— mod [k, 2],
p(5, k) = ko,
p(6,k) = 1+ max(ke, 2K3),
p(7, k) = ko,
p(8,k) =4k2 +4 — 3 mod [k, 2],
p(9, k) = ko,
(

p(11, k) = Ka, etc.
It is not known to us if it is possible to cast p(n, k) in a single general equation or in a limited

set of simple rules.

b 112 (34|56 7] 8
n

1 0140} 2 (0]11]0] 3
2 0|2 |13 |12 ]|1] 4
3 010} 2|0} 1]0] 3
4 0|4 (1|6 |14 |18
) 010} 2|0} 11|03
6 0} 2|33 |1]3 |1 4
7 0140} 2 (0|1]0] 3
8 0|8 |1]12}1| 8 |1]16
9 010} 2|0} 1]0] 3
10 0| 2|13 |52 |1]| 4
11 010} 2|0} 1|0} 3
12 0| 41(13]6 |1 4]1] 8
13 010} 2|0} 1]0] 3
14 0|2 |13 |12 |74
15 010} 2|0} 1]0] 3
16 016|124 |1]16 |1 ] 32
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3.4 Modular addition in two dimensions

We return to the 2D circular grid with two states per cell (black and white say) and the rule
that a cell flips its state if it has an odd number of black (or white) nearest neighbors as we
already met in section 1.6. There we saw how a single black cell in a circular 3 x 3 grid ™
evolves to a cross " which on its turn evolves in itself. That is, ® is a preperiodic point and
= is a fixed point. We also saw how a single cell in a circular 5 x 5 grid evolves to the cross "
which is part of a period 3 cycle. Further investigations deliver that the cross in a 4 x 4 grid
is part of a period 2 cycle. In a 6 x 6 grid the cross is a preperiodic point which evolves in a
period 2 cycle. In a 7 x 7 grid the cross is part of a period 7 cycle, and so on. Below some
cycle lengths are tabulated for different n x n grids and for two different initial configurations,

* and %" , with the evolution according to the aforementioned rule.

init. conf. . - init. conf. . -
grid size ) grid size
3x3 1 1 4x4 2 1
5X5H 3 3 6 x6 2 1
77 7 7 8 x 8 4 4
9x%x9 7 7 10 x 10 6 6
11 x 11 31 31 12 x 12 4 4
13 x 13 63 63 14 x 14 14 | 14
15 x 15 15 15 16 x 16 8 8
17 x 17 15 15 18 x 18 14 | 14
19 x 19 511 511 20 x 20 12 | 12
21 x 21 63 63 22 x 22 62 | 62
23 x 23 2047 | 2047 24 x 24 8 8
25 x 25 1023 | 1023 26 x 26 126 | 126
27 x 27 511 511 28 x 28 28 | 28
29 x 29 16383 | 16383 30 x 30 30 | 30
31 x 31 31 31 32 x 32 16 | 16

If a white state and a black state of a cell is represented with a 0 and a 1 respectively, then
the rule under concern can also be written as:

Cij = (Cij+ cim1j + civ1j +cij—1+cij1) mod 2,

where ¢; ; is the state of cell with index 7 and index j. Thus ¢; ; either is 0 or 1. This means
that the foregoing investigation actually was about modular addition in two dimensions. Of
course, the investigation can be extended to more complicated addition rules and to cells with

more than two states. However, further investigations in this direction is beyond our scope.
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3.5 Game of Life

In addition to the four nearest neighbors of a cell often the four next-nearest neighbors par-
ticipate in the rules of evolution. That is, the eight blue cells in the next figure determine the

evolution of the green cell at the center.

A cell can be black or white. For the situation with 8 neighbors a famous set of rules for the
evolution of cell states is:

1 If0or 1 of the 8 neighbor cells are black, the center cell will stay white if it was white or
become white if it was black.

2 If 2 of the 8 neighbor cells are black, the center cell will stay white if it was white or stay
black if it was black.

3 If 3 of the 8 neighbor cells are black, the center cell will become black if it was white or
stay black if it was black.

4  If more than 3 of the 8 neighbor cells are black, the center cell will stay white if it was
white or become white if it was black.

If ‘black’ stands for ‘live’ and ‘white’ for ‘dead’, then the four rules can be given a sort of
biological interpretation:

1 A cell will not be viable if there are too less live neighbors to care for.

2 A cell stays as it is if it has 2 live neighbors.

3 A cell will come to live if it has 3 live neighbors.

4 A cell will extinct because of overpopulation if it has more than 3 live neighbors.

The cellular automaton which evolves according to these rules is known as Conway’s Game
of Life. For each initial configuration one follows the evolution of the pattern of live cells.
For some initial patterns the live cells all extinct after one or more generations. For some
initial patterns, such as "® or %* , the pattern does not change. Such fixed points are called
‘still lifes’. Other patterns might become periodic: the ‘oscillators’. Two examples of period

2 cycles are

[ |
[ [ || | [ | | ]
|
initial step 1 step 2
and
Hn [ | ] Hl
| [ ] |
| [ 1] |
N [ HE

initial step 1 step 2
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It also happens that a cyclic pattern translates across the grid: the ‘spaceships’. One of the

simplest spaceships is the ‘glider’, see next figure.

|| [ | ] [ ]
[ ] [ ] ] [ [ ] HE HE
[ ] | u H N u H
| |
initial step 1 step 2 step 3 step 4

The glider pattern repeats after every four steps, except that it has translated across the grid

in a diagonal direction.
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Chapter 4

Pascal triangle

4.1 Binomial coefficients

The Pascal triangle is a triangular array of binomial coefficients. That is, of the coefficients

<g> , <§L>, (Z), - (Z), - (n) as they occur in the expansion of the polynomial (x+y)™:
n
n __ n n n n—1 n n—2 2 n n_En: n n—k_ k

The first eleven rows of the Pascal triangle are shown below:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1
n

The coefficients (Z) in the expansion (z + y)" = <Z> x”_kyk determine the coefficients

k=0

n+1 Q|
( i ) in the expansion (z 4 y)" ™! = kz_o ( i 2" FyR Since

n+1 .
> <” ' 1) TR = ()" = (Y y)" = (Y)Y <Z> ST

k
k=0

43
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it follows
n+1 7’L+1 n n n
n+l—-k k _ _n+1l n+1 k
kzo( . ).CE yr=a"" +y +;<<k)+<k;—1>>$ . (4.2)

As a consequence,

n+1 n n+1 n n n+1 n n
(0)-0) - () -0)+0) - (2)-0)+6) -
n+1 n n n+1 n
5 = —I— =
() =600+ 0) G =)
If we define (Z) =0if £ <0 or kK > n we can summarize the foregoing rules by
n+1\ n n n
k C\k—-1 k

In this way we obtain a scheme where for every row the coefficients can be obtained from

the coefficients of the preceding row:

0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 2 1 0 0 0 0
0 0 0 1 3 3 1 0 0 0

0 0 0 1 4 6 4 1 0 0 0
0 0 1 5 10 10 5 1 0 0

0 0 1 6 15 20 15 6 1 0 0
0 1 7 21 35 35 21 7 1 0

0 1 8 28 56 70 56 28 8 1 0
1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

4.2 Sierpinski triangle

The Sierpinsky triangle, sometimes also called the Sierpinsky gasket or the Sierpinsky sieve, is
created as follows. Start with a dark triangle and take out a triangle whose sizes are twice as
small. Repeat the procedure with the remaining dark triangles. The construction is visualized

in the figure below.
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A”A[

A
A

A
AAAA
A

Aad

Repetition of the construction steps to infinity results in the Sierpinski triangle. There is a

A A A A
AAAAAAAA

connection between the Sierpinski triangle and the scheme at the end of the previous section.
To illustrate the connection we add a zero between every horizontal pair of numbers in that

scheme. The additional zeros are colored blue in the next scheme.

o0 0o o0 o0 0 0 O 0 1 0 o o0 0 0 o0 0 0 0O
0oo0o 0o o0 o0 0o 0 0 O 1 0 1 0o 0o 0 0 0 0 0 0O
00 0 0 0 0 0 0 1 0 2 0 1 0 0 0 0 0 0 0O
00 o0 o0 o0 o 0 1 O 3 0 3 o 1 0 0 0 0 0 0O
00 00 0 0 1 0 4 0 6 0 4 0 1 0 0 0 0 0O
oo0oo0oo0 1 o0 5 0O 10 O 10 0 5 0 1 0O0O0O0O0
o0 o001 o0 6 0 15 0 20 0 15 0 6 0 1 0 0 00
o060 10 7 0 22 0 35 0 3 0 22 0 7 01 0 00
00 1 0o 8 0 28 0 56 O 7 0 56 0 28 0 8 0 1 00
01 0 90 36 0 8 0 126 0 126 0 8 0 36 0 9 0 1 O
1 0 10 0 46 0 120 0O 210 O 252 0 210 O 120 0O 45 0 10 O 1
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Next we take the numbers modulo 2. Taking more rows and leaving the color blue we obtain

the following result

Two remarks will be made to this scheme.
Firstly, it reminds us at the Sierpinsky triangle. In fact, if every 1 is replaced by a A the result
exactly equals the Sierpinski triangle.

Secondly, as already remarked in chapter 1, the scheme is generated by rule 90:

111 110 101 100 011 010 001 00O

rule 90 o 1 o 1 1 0 1 0

The corresponding transition equation, see chapter 2, is Ngg = (L + R) mod 2.

4.3 Discrete Sierpinski triangle

If every 1 is replaced by a black square, the result is a discrete version of the Sierpinski trian-
gle. see figure below. Hereafter we will restrict to the use of squares for the construction of

Sierpinski triangles.
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If we extend the number of rows to 128 the result is as shown below.

As for the Sierpinsky triangle there is self similarity present in the discrete Sierpinsky triangle.

Extended to infinity both are a fractal.
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4.4 Pascal triangle modulo ¢

In this section we will take in the Pascal triangle the numbers modulo ¢, where ¢ is an integer

larger than 2. For ¢ = 3 and 81 rows (n < 80) the result is

In the latter figure a black square is drawn if ¢ = 1 mod 3 and a blue square if ¢ = 2 mod 3.

For ¢ = 4 and n < 63 the result is

o

a:fm% SR
":--:':.:':--:" .-:f:f:':-.\i}%. ":--:'f:.:--:"

Pt W ST
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For ¢ = 5 and n < 74 the result is

ot A
5 e, P, R e

..:}.::. ...-.:.. | - .... . ..:::.. | .::::.. || .
... ..:::EII .... ..ﬂ.. ... ..:.. | H m .| | W | ....:...- .-. ..::ﬁl. ....

L] I-J}.:.l.l l.l :.l l.l l-l l.l l.l l.l l. ..... L] .
N
g
nEns l.:.l L] I.I.l L] l.::l.j.l:l.l::.l .l : L] .. .

The triangles appear more regular if ¢ is a prime. The regularity is even more apparent if we
turn all the colored squares into black squares. That is, a black square appears if a number is

not divisible by ¢g. For several ¢ the resulting triangle is shown below.
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=5 n<174

q




52

CHAPTER 4. PASCAL TRIANGLE

vious
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4.5 Skewed triangles

In the schemes of the first section of this chapter the first 1 corresponds to k = 0. That is, for
increasing n the position of k¥ = 0 runs diagonally towards the lower left corner. We can also

take a scheme where the first 1’s in each row are lined up vertically, see the next table.

5 (0151010} 5|10 0] 0} O0/|0]0]O0]O0

6 0161520 15| 6 | 1 [0} 0] O0||0]O0O]O0]O

7 01| 7121|3535 | 21 7 1 0 0 0(0]0]O0

9 01119 36| 84 |126|126 | 84 | 36 9 1 0[0]0]O0

10 0]1]10]45| 120|210 |252|210|120| 45 | 10 | 1 | O | O | O

11 0 [1]11]55|165 330|462 |462|330|165| 55 |11 |1 | 0 | O

12 0|1|12]66 220|495 | 792|924 | 792 495|220 |66 |12| 1 | O

In this ‘skewed’ Pascal triangle each binomial coefficient is the sum of the number right above

and its left neighbor: the transition equation is N = L + C.

We first consider the binomial coefficients modulo 2. The CA for the transition N = (L + C)
mod 2 is

111 110 101 100 011 010 001 00O

rule 60 o o 1 1 1 1 0 0
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The first 52 rows become

0010000000000000000000000000000000000000000000000000000
0011000000000000000000000000000000000000000000000000000
0010100000000000000000000000000000000000000000000000000
0011110000000000000000000000000000000000000000000000000
0010001000000000000000000000000000000000000000000000000
0011001100000000000000000000000000000000000000000000000
0010101010000000000000000000000000000000000000000000000
0011111111000000000000000000000000000000000000000000000
0010000000100000000000000000000000000000000000000000000
0011000000110000000000000000000000000000000000000000000
0010100000101000000000000000000000000000000000000000000
0011110000111100000000000000000000000000000000000000000
0010001000100010000000000000000000000000000000000000000
0011001100110011000000000000000000000000000000000000000
0010101010101010100000000000000000000000000000000000000
0011111111111111110000000000000000000000000000000000000
0010000000000000001000000000000000000000000000000000000
0011000000000000001100000000000000000000000000000000000
0010100000000000001010000000000000000000000000000000000
0011110000000000001111000000000000000000000000000000000
0010001000000000001000100000000000000000000000000000000
0011001100000000001100110000000000000000000000000000000
0010101010000000001010101000000000000000000000000000000
0011111111000000001111111100000000000000000000000000000
0010000000100000001000000010000000000000000000000000000
0011000000110000001100000011000000000000000000000000000
0010100000101000001010000010100000000000000000000000000
0011110000111100001111000011110000000000000000000000000
0010001000100010001000100010001000000000000000000000000
0011001100110011001100110011001100000000000000000000000
0010101010101010101010101010101010000000000000000000000
0011111111111111111111111111111111000000000000000000000
0010000000000000000000000000000000100000000000000000000
0011000000000000000000000000000000110000000000000000000
0010100000000000000000000000000000101000000000000000000
0011110000000000000000000000000000111100000000000000000
0010001000000000000000000000000000100010000000000000000
0011001100000000000000000000000000110011000000000000000
0010101010000000000000000000000000101010100000000000000
0011111111000000000000000000000000111111110000000000000
0010000000100000000000000000000000100000001000000000000
0011000000110000000000000000000000110000001100000000000
0010100000101000000000000000000000101000001010000000000
0011110000111100000000000000000000111100001111000000000
0010001000100010000000000000000000100010001000100000000
0011001100110011000000000000000000110011001100110000000
0010101010101010100000000000000000101010101010101000000
0011111111111111110000000000000000111111111111111100000
0010000000000000001000000000000000100000000000000010000
0011000000000000001100000000000000110000000000000011000
0010100000000000001010000000000000101000000000000010100
0011110000000000001111000000000000111100000000000011110

If we replace a 0 by a white square and a 1 by a black square we obtain a "skewed" Sierpinski

gasket, see next figure.
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From the scheme with zeros and ones we see that a row whose row number n is a power of 2,
n = 2™ has only a 1 at the start, a 1 at the end and only zeros in between. This implies that
(1+2)?" 214+ 2¥" mod 2.

Instead of modulo 2 we can take the coefficients modulo ¢. If g is a prime p then each
row number n that is a power of p has a 1 at the left (k = 0), a 1 at the right (k = n), and

only zeros in between, as can be seen in the previous table. As a consequence
(1+2)P" =214+2”" mod p (4.3)

if p is a prime. It can be proven by induction as follows.

For m = 1 we have

p p '
(L+ap=>" (i) =Y mxk. (4.4)

k=0 k=0
For 1 <k < p—1 the divisors (p—k)! and k! do not divide a prime p. Hence, for 1 <k <p-—1

the binomial coefficients Z are a multiple of p. Only for ¥ = 0 and £ = p the binomial

coefficients are equal to 1. Therefore (1 + :c)(pm) =~ 14 2™ mod p if p is a prime.

For m + 1 we have
(1+2)F") = 42" ? = (1 +2)"") (4.5)
Assuming the rule to be true for k it can be elaborated to

p(m+1)

(L 2) ) = (14 :c@”))p > (142" mod p, (4.6)
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where 2/ = z®™). As for (1 4+ z)? the coefficients of (1 + 2/)P are 1 for 20 and 2P, and a

multiple of p otherwise. Therefore
(1+2)7=1+2"7 modp. (4.7)
Hence,

(1+ :C)(p(m+l>) ~1+a2P 214 (x(pm))p ~1+2") mod p 0. (4.8)

4.6 Gould’s sequence

As we saw before the Sierpinski triangle and the skewed Sierpinski triangle are generated by

rule 90 and rule 60 respectively. Both rules contain the transition

100
1

For this transition a periodicity in the successive configurations cannot occur since the most
right 1 in a configuration is shifted one cell to the right in the next configuration: ...100....

—...X10..., where X is either a 0 or a 1. A cycle therefore is impossible.

In the first row, n = 0, of the discrete Sierpinski triangle there is a single black cell. On
the second row, n = 1, there are 2 black cells. On the third row, n = 2, there are 2 black
cells. On the fourth row, n = 3, there are 4 black cells. On the next row, n = 4, there are
2 black cells. In fact a triangle (width three cells and pointing downwards) of white cells
starts at this row. Left and right from this white triangle there is a triangular configuration
identical to the triangular configuration in the first four rows. Therefore the number of black
cells in the rows n = 4 through n = 7 is twice the number of black cells in the rows n = 0
through n = 3 respectively. Similarly, the number of black cells in the rows n = 8 through
n = 15 is twice the number of black cells in the rows n = 0 through n = 7 respectively.
On the basis of the pattern one can generate a sequence with the number of black cells in
each row. Starting with a 1 for the single black cell in row n = 0 and doubling it we obtain
2 for row n = 1. One step further, doubling the {1,2} we obtain {2,4} for the number of
black cells in row 3 and 4. Hence for the first four rows we have {1,2,2,4}. Doubling it we
obtain {2,4, 4, 8}or the number of black cells in row n = 4 through row n = 7. Extending
the sequence {1,2,2,4,2,4,4,8} for row n = 0 through row n = 7 with its double values, we
obtain {1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16} for row n = 0 through row n = 15. In a scheme:
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1

1 2

1,2 24

1,224 2448

1,2,2,4,2,.44,8 2,4.484,88,16

and so on.

In the end it leads to the sequence 1, 2, 2, 4, 2,4, 4,8, 2,4, 4,8, 4,8, 8,16, 2,4, 4, 8,4, 8,
8, 16, 4, 8, 8, 16, 8, 16, 16, 32, ...

It is sequence A001316 in the OEIS [3]. The sequence is known as Gould’s sequence.

For a row n with 28 < n < 2¥t1 the number of black cells is twice the number of black
cells in row n — 2%, while the binary representation of n has one 1 more than the binary
representation of n — 2F. So, if b(n) is the number of ones in the binary representation of n,

then the number of black cells in row n is equal to 2°(™).

4.7 Skewed Pascal triangle modulo ¢

If we consider the binomial coefficients modulo 2, then a black square in a (skewed) Sierpinski
triangle means the binomial coefficient is odd and a white square means the binomial coefficient
is divisible by 2. If we take the binomial coefficients modulo q where ¢ =3, 4, 5, 6 and 7, then

we obtain the following figures:
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The patterns are quite regular. They are more regular if ¢ is a prime. The latter becomes
more emphatically visible if we color a square white if the binomial coefficient is divisible by
q and black otherwise. For ¢ = 2 the figure will be the same. For ¢ = 3, 4, 5, 6 and 7 the

figures become as shown below.
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We see the figures are most regular if ¢ is a prime.

4.8 Kummer’s method

The pictures of the previous section graphically represent the divisibility of a binomial by an
integer ¢q. If a square is black the binomial is not divisible by ¢, if the square is white it is

divisible by gq.

If the part of row n between ki and ko is white, then the part between k1 + 1 and ks is

white in row n + 1. That is, if the binomial coefficients (,:‘1) through (,?2) are divisible by a

n+1

prime ¢, then the binomial coefficients (k1 1

) through (",:; 1) are also divisible by a prime q.

If ¢ is composite it suffices to check for the divisibility by each prime divisor p of ¢q. A

binomial is divisible by ¢ if it is divisible by all prime divisors of ¢q. Checking binomials for
n

divisibility by a prime sounds easy. However, for increasing n and k binomials I soon be-

come extremely large. Fortunately there is an alternative method to determine if a binomial

is divisible by a prime number p. The method is based on Kummer’s theorem [5]:

If p is a prime and r carries occur in the addition of n — k£ and k in base p, then p" does

divide the binomial (Z) while p"+! does not divide the binomial <Z>

A proof is given in appendix A. Here we confine to some examples.



4.8. KUMMER’S METHOD 63

9
Example 1: divisibility of < 4) by primes 2, 3, 5, ... or a power of them.

9
For the divisibility of 4 by a power of 2 we write 9 —4 = 5 and 4 both in base 2 and count

the carries in the addition:

carries 100

5 = 101,
4 = 1002
1001, *

9
Since there is one carry, ( 4> is divisible by 2! but not by 22.

9
For the divisibility of <4> by a power of 3 we write 9 —4 = 5 and 4 both in base 3 and count

the carries in the addition:

carries 11
5 = 125
4 = 115
_ _|_
1003

9
Since there are two carries, <4> is divisible by 32 but not by 33.

9
For the divisibility of 4 by a power of 5 we write 9 — 4 = 5 and 4 both in base 5 and

count the carries in the addition:

carries 00
5 = 105
4 = 045
145

Since there are no carries, (Z) is not divisible by 5.
9
Now we know that ( 4) = 126 is divisible by 2 and by 32. Since the product is smaller than

126 there must be another factor. There is no need to check the divisibility of (Z) by primes
larger than 9 since it would not lead to carries. The only factor left is the prime 7 or a power
of it. Indeed 2 - 32 -7 = 126. To show that the factor 7 also follows from the carries, we write
9-4=5 and 4 both in base 7 and count the carries in the addition:

Since there is one carry, 4 is divisible by 7'.
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carries 1
5 = 57
4 = 4+
_— +
127

9
In summary, <4> is only divisible by the primes 2, 3 and 7, by the prime power 32 = 9 and

by all combinations of them: 2-3=6,2-7=14,2-32=18,3-7=21,2-3-7 =42, 3.7 = 63,
2-3%.7=126.

152
Example 2: divisibility of < 19 > by a power of 7.
To this end we write 152-19—133 and 19 both in base 7 and count the carries in the addition:

carries 010

133 = 2507
19 = 25,
505,

Since there is one carry, is divisible by 7! and not by 72. We obtained the divisibility

152
19
quite easily from small numbers 133 and 19 (written in base 7), while the binomial is large:

<11592) = 724818552390382102384200.

. . n
In summary, a binomial

k

) is divisible by a prime power pj"* if there are m; carries occur

in the addition of n — k and k in base p;. A binomial Z is divisible by a composite number

1 m2

qg=p" - py?-pys - if it is divisible by p™ and by p3'? and by p5'", etc., where each m; is
an integer larger than zero, and each p; is a prime, p; # p; if ¢ # j. For the divisibility of a
composite number one has to count carries in the successive bases p1, p2, p3, etc. As soon as

it fails for a p; one can conclude the binomial is not divisible by g¢.

In modern mathematics one often speaks of ‘p-adic numbers’ instead of ‘numbers expanded in
base p’. For the present purpose it does not matter. Nevertheless there is a subtle difference.

A simple introduction to p-adic numbers is given in appendix B.



Chapter 5

Properties of Binomials

5.1 Series in Pascal’s triangle

The diagonals of Pascal’s triangle show a regular pattern. The edges contain only 1’s:
{(3) n=0,1,2,3,.1={ (Z) In=0,1,2,3,..}={1,1,1,1,1,...}. Moving inwards, the diago-
nals next to the edges contain the natural numbers: {<71L> In=1,2,3,4,...}={ (n i 1) In =
1,2,3,4,...}={1,2,3,4,5,...}. The next diagonals contain the triangular numbers: {(Z) In =
2,3,4,5,...}={ (ni2)|n = 2,3,4,5,...}={1,3,6,10,15,...}. Next we have diagonals with
tetrahedral numbers: {(g) In =3,4,5,6,...}={ (n ﬁ 3> In = 3,4,5,6,...}={1,4, 10, 20, 35, ...}

next we have diagonals with pentatope numbers: {<Z)|n = 4,5,6,7,...}4{<n7z4> In =
4,5,6,7,...}={1,5,15,35,70, ...}, and so on.

Explicit formulas for the triangular numbers are:

n
n(n+1) n+1
T,=S k=142434. 4+n= """ _ 5.1
. ; +2434..+n 5 ( ) ) (5.1)

A triangular number T;, counts the number of elements arranged in an equilateral triangle

with side n:

(J
(L
0000
T

1 =10

T =1 Ty =3 Ts

6

65
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Explicit formulas for the tetrahedral numbers are:

Ten—ZTk—Z (k+1)_ n(n+ o +2) 52)

k=1 6

A tetrahedral number T'e,, counts the number of elements arranged in an equilateral triangular

pyramid with side n:

T61:1 T6224

The bottom layer of the pyramid with side 4 is an equilateral triangle with side 4 and thus with
Ty = 10 elements. The next layer is an equilateral triangle with side 3 and thus with 75 = 6
elements. The next layer is an equilateral triangle with side 2 and thus with 75 = 3 elements.

The top layer is just a single element, 77 = 1. As a consequence the number of elements in the
pyramid with side 4 is Teq = Ty +To+T5+Ty = 1+34+6+10 = 20. In general, Te,, = Z Tk.

n
We saw that the sum of 1’s results in natural numbers: n = Z 1. That the sum of nat-
k=1

n
ural numbers results in triangular numbers: T;, = Z k. That the sum of triangular numbers

k=1
n

results in tetrahedral numbers: Te,, = Z Tj.. One can continue the summations: the sum of
k=1

n
tetrahedral numbers results in pentatope numbers: P, = Z Tey, and so on.
k=1

Instead of diagonals one can also consider ‘shallow’ diagonals, see blue lines in the figure below.

A

15 20 15
21 35 35 21 7 1
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—k
The series of binomials on a blue line is given by {<n k ) |k =0,1,2,3,...,[n/2]}. The sum

of the binomials on a blue line is a Fibonacci number:

me (” . k) — Fpit. (5.3)

k=0

The first Fibonacci numbers are Fy =0, 1 =1, Iy, =1, F3 =2, Fy = 3, F5 = 5, Iy = 8,
F7 =13, ... Successive Fibonacci numbers follow from the recurrence Fj, 12 = Fj,+1+ F,,. That

the sum of binomials on a shallow diagonal is equal to a Fibonacci number can be proven by
induction. To this end we take, as before, (Z) =0if £k > nor k < 0. Then we can omit

the floor function | |. Suppose the sum of a shallow diagonal is a Fibonacci number for n and

n+1: . N
Z (n—i—k)sz Z (n;k)anH- (5.4)

k=—o00 k=—o0

1
Adding the two sums, using (km 1) + (7;) = (m]: ) and using Fj,40 = Fp41 + F, we

obtain

e BV B (- R G E 0

S-S

5.2 Stern series

(5.5)

Once more we consider the shallow diagonals in Pascal’s triangle. This time we count the odd

numbers on the shallow diagonal, see next figure.

e

15 20 15
7T 21 35 3 21 7 1

Continuing the process the series of numbers of odd numbers on shallow diagonals is (1, 1, 2,
1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5,7,2,7,5,8,3,7,4, 5, 1,....). It is the series
A002487 of the OEIS [3]. It is known as Stern’s diatomic series.
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The k-th number of the Stern series will be denoted as a(k): a(1) =1, a(2) =1, a(3) = 2,

etc. The elements of the Stern series are given by:
a(l)=1, a(2k)=a(k), a(2k+1)=a(k)+alk+1). (5.6)

In order to show some properties we consider sub-series s(m) starting with a (2”“1) and
ending with a (2™):

s(1) = (a(1),a(2)) = (1,1)

s(2) = (a(2),a(3),a(4)) = (1,2,1)

s(3) = (a(4),a(5),a(6),a(7),a(8)) = (1,3,2,3,1)
and so on.

To create, for instance, s(4) from s(3) is just a matter of stretching s(3) by writing gaps
between its elements, (1, ,3,,2,,3, ,1), and filling each gap with the sum of its two adjacent
neighbors:(1,4, 3,5,2,5,3,4,1). Each sub-series is a palindrome: a (2’”_1 + 2) =a (2™ —19)

for i = 0,1,2,...,2™!. The sum of the element of sub-series s(m) is equal to 3™~ 4 1.

5.3 Divisors of products of binomials

In this section we will consider the set B(n) of prime divisors of the product of binomials with

n in the upper index

n—1
n
B(n) = i d 5.7
m =t 1paprimeand ol IT (1)) 5.7
and the set C of primes smaller than or equal to n
C(n) ={p|p <nand p a prime} . (5.8)
We give an example.
> (6
B(6) ={p | p a prime andp]H (k)}—{2,3,5}. (5.9)
k=1
At the same time
C(6) ={p|p <6 and p a prime} = {2,3,5}. (5.10)

That is, the set B(6) equals the set C(6): B(6) = C(6).

As another example

/9
B(9) = {p | p a prime and p| [ | <k>}_{2,3,7}. (5.11)
k=1

At the same time
C9)={p|p <9 and p aprime} ={2,3,5,7}. (5.12)
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That is, the set B(9) equals the set C'(9) except for the number 5: B(9) + {5} = C(9).

From inspection we find the following property for every n either B(n) = C(n) or B(n) +
{d(n+ 1)} = C(n), where d(n + 1) is the largest prime divisor of n + 1.

The numbers n for which B(n) = C(n) are {1,2,4,6,10,11,12, 16, 18, 22, 23, 28, 29, 30, 35, 36,
39,40, 42, 44,46,47,52,55, 58, 59, 60, 62, 66, 69, 70, 71,72, 78,79, 82, 83, 88, 89, 95, 96, 100, ... }.
The series is known as A056077 in the OEIS [3].

If we add 1 to the elements of this series, we get {2,3,5,7,11,12,13, 17,19, 23, 24, 29, 30, 31, 36,
37,40,41,43,45,47, 48,53, 56, 59, 60, 61, 63,67, 70, 71,72,73,79, 80, 83, 84, 89,90, 96,97, 101, ... }.
For the elements in the latter series holds that they are either a prime or they are mutinous. A
number is mutinous if n/p* > p, where p* is the largest prime power dividing n. For example,
12 is mutinous since 12/4 > 2, while 18 is not mutinous since 18/9 % 3. The series with
mutinous numbers is known as A027854 in the OEIS.

5.4 A multiplicity conjecture

In the Pascal triangle entries equal to 1 occur two times in each row and therefore infinitely
many times in total. Entries larger than 1 occur just a finite number of times. We give some

examples:

2
2 occurs just once: <1> =2,

w

NN
Il
W~

I
w

3 occurs twice: (

4 occurs twice: (

—
Il
TN N N N T
Il
ot

U= = w
N—
Il

5 occurs twice: (

6 occurs three times: (

7

I
>

7 occurs twice: <

8 occurs twice: (

9

9 occurs twice:

Il
©

0 © - 00O I ——" CT W N
I
VRS
(SN
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— = 00
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Il
“OO

._.
= o

1

9 2 3
Forn =1,2,3,..... the number of times n appears in Pascal’s triangle, the multiplicity, is
m71727272737 27 27 2?4? 27 27 27 274? 2? 27 27 27 3747 27 272727272747 2? 2? 27 27 27 274747 2727272727 27 27
2,4,2,2,2,2,2,2,2,2,2,4,4,2,2,2,2,2,2,2,2,2,4,2,2,2,3,2,2,2,2,2,2,2,4,2,2,2,2,2,4,2,2,

2,2,2,2,4,2,2,2,2,2,2,2.2,2,2,2,2,2,4,2,2,2,2,2,2,2.2,2.2,2.2,2.2,6,2,2,2,2,2,4,2,2, ...
It is sequence A003015 in the OEIS [3].

10 occurs four times: (
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It turns out there are infinitely many entries with multiplicity 2. There are infinitely many
entries with multiplicity 3. There are infinitely many entries with multiplicity 4. It is not
known if there exists an entry with multiplicity 5. There are infinitely many entries with

multiplicity 6. The smallest example is

190 — 120 120 16\ /16\ (10\ /10
1 119 2) \14) \3) \7)
It is not known if there exists an entry with multiplicity 7. There is one entry known with

multiplicity 8:

3003 — 3003 3003 78\  (78\ _ (15\ (15 [14\ (14

1 3002 2) \76) \5) \10) \6) \8)
It is not known if there exists another entry with multiplicity 8 in Pascal’s triangle. De-
spite advanced computer searches it is not known if there exist entries with multiplicity larger

than 8. Singmaster, who proved there are infinitely many entries with multiplicity at least 6,

has conjectured that 10 is an upper bound for the multiplicity of entries in Pascal’s triangle

7).

5.5 Binomials and 7

We consider a random walk in one dimension, the z-axis. The walk starts at x = 0. Each step

is determined by coin tossing. For instance, head: one unit to the left, Ax = —1, and tail: one

1 1
unit to the right, Az = 1. The expectation of z after the first step is E(x) = 3 -1+ 3 1=0.

After two steps we are at * = —2 (1 way), at + = 0 (2 ways) or at x = 2 (1 way). The
2 1
expectation of z after two steps is Fa(z) = - - —2 + 1 0+ 1 2 = 0. After three steps we
are at x = —3 (1 way), at z = —1 (3 ways), at x = 1 (3 ways) or at x = 3 (1 way). The
3 3 1
—3—|—f —1—|—§-1—|—§-3:O. After four

1
~ 8
steps it is Ey(r) = 0, etc. Since there are > ways to arrive at * = n — 2k and since there

FN

expectation of = after three steps is E3(r)

are 2" ways to take n steps, the expectation of = after n steps is
E()—Zi( 2%) (" —ﬁi " Eik” (5.13)
AT k) 2 \k) " 2n k) '
k=0 k=0 k=0
The sum of all the ways to choose n times out of two possibilities must be equal to 2™:

Zn: <Z> — o, (5.14)

k=0

k<Z) NCES 7—1(]:__11))!!(]{ — ”<Z: i) ; (5.15)

Since
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there holds

k=1

S0 £ B e

For the expectation of = after n steps we obtain

n = (1 2 & n 2 a1 _
En(x)_Q"kZ()(k:)_Z”Zk(k)_n_anQ =n—n=0.

That is, the mean T is zero.
The identity (5.16) is often derived at another way. Take the derivative of

Zn: <Z>y’“ =(1+y"

k=0

with respect to y,

ik@) Y =nl+y)"

k=0
and substitute y = 1:

z": k(:) =n2" 1,
k=0

If we take once more the derivative with respect to y,

Zk () =l D,

and substitute y = 1, we get

Therefore

Zsz( ) = 1)2"~ 2+Zk< > (n—1)2""2 4 n2" ! =pn(n41)2"2.

The latter allows to calculate the expectation of x?:

n

D-Sro-w () - E 5 () -F ) w2

an 4
En(z%) =n? - n2" ' — nn+1)2"2=n*—2n>4+n? -—n=n.

on 2”
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(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

Since the mean is zero, the variance is equal to E,(z%) = n. The standard deviation o is the

square root of the variance: o = /n.
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Now we will investigate the expected value of the absolute distance r = |z|. After the first step

we are at © = —1 or x = 1. The expectation of r after the first step is Fy(r) = 3 1+ 3 1=1.
After two steps we are at * = —2 (1 way), at x = 0 (2 ways) or at x = 2 (1 way). The

expectation of r after two steps is Ea(r) = 1 2+ 1 0+ 1 2 = 1. After three steps we
are at x = —3 (1 way), at z = —1 (3 ways), at x = 1 (3 ways) or at x = 3 (1 way). The

1 3 3
expectation of r after three steps is F3(r) = 3 -3+ 3 14 3 14 3 3= 5 After four steps it

is E4(r) = 3. Continuing the calculus we obtain E5(r) = Eg(r) = £, Ez(r) = Es(r) = 3 etc.

n
There are 2" ways to take n steps and there are (k ways to arrive at x = n — 2k. The

expectation of the distance r after n steps therefore is

"= k;) ), (5.26)

For an even number of steps, n = 2m, this is

2 ' 2m
B (1) = o5~ (2 2k) 2
2 mkz m — (k:) (5.27)

and for an odd number of steps, n = 2m — 1, this is

m—1

Eopn(r) = % 3 (@m—1-2k) <2mk_ 1) . (5.28)
k=0

In appendix C it is shown that

t:zl(m — 2k) (T) =m <21Z‘> (5.29)

0
and that .
— 2m — 1 m [(2m
Z(2m—1—2/~c)< L >_2<m>. (5.30)
k=0
Hence 5 5
m m
Eop, Eop— . 31
(1) = Eamea () = () (5.31)

According to the central limit theorem the binomial distribution tends towards a normal dis-

tribution. For T = 0 and o = /n the normal distribution is given by

p(x) = e " . (5.32)

We approximate E, (1) by means of this normal distribution

0 92 o —x2
E,(r) = dx = o 5.33
)= [ lelplatr = —— [ e (5.3
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Partial integration yields

—2n ’2’;2 < 2y

E.(r) = e = . 5.34
In the limit where n goes to infinity the equality becomes exact
2
E,(r 2
lim n) _2 . (5.35)
n—o0 n ™

Both for n = 2m and n = 2m — 1 we obtain the following relation between 7 and binomials

) 16™
7= lim el (5.36)

The latter result also follows from Stirlings approximation:
nn
nl~V2mn —. (5.37)
e

Asymptotically there holds

2 n
lim Y, (5.38)

n—oo nlen
The latter relation for n = 2m divided by the square of the latter relation for n = m gives
2y/7m (2m)*™ m!m!e*™

A @m)le™  27mm - m2m L (539)

The latter is reduced to

. (5.40)

That is

The square of the latter indeed equals the identity (5.36).

For another relation for 7 notice that equation (5.31) implies

En(r)  n—1 Eu(r)

= 5.42
n n n—1 ( )
and
Eu(r)’ Eua(r)’
ik AR S (5.43)
n n—1 n-—1

2
for n is even and n is odd respectively. Starting with E;(r) /1 = 1 we obtain the following

sequence

lim = :1551166§§ (5.44)
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The comparison with (5.35) then leads to the identity
m 2 2 4 46 6 8 8

2. 2. 2. 2. 2. 2.2.2. 5.45
2 13 35 5 779 ( )
or shortly
oo
s 4k?
2 . 4
2 4k2 — 1 (5:46)
k=1

The latter is the Wallis product. The English mathematician John Wallis published it in 1656.
It is curious because it is an infinite product while other approximations for w usually are

infinite sums.



Chapter 6

Divisibility aspects of binomials

6.1 Introduction

For p a prime the binomials <119>, <§> ( p 1) all have p as a divisor.
p —_—

Py (p® p”
For p® a prime power the binomials < 1 >, ( 5 > ( N 1) all have p as a divisor.
po —
For n composite and not a prime power the binomials (1), <2> ( 1) do not

have a common prime divisor. Motivated by group theoretical considerations Sharesian and

Woodroofe have formulated the following condition [8]:

Condition 1: There exist primes p and ¢ such that if 1 < k < n — 1, the binomial coef-
ficient (Z) is divisible by at least one of p and q.

They ask if condition 1 holds for all positive integers n. Casacuberta discusses sufficient

conditions under which an integer n satisfies condition 1 [9].

6
For example, if 1 < k < 5 the binomials i have the value 6, 15, 20, 15 and 6 respec-

tively. Each of these binomials is divisible by 2 or 3 or both. Moreover, each of these binomi-
als also is divisible by 2 or 5 or both, and each of these binomials also is divisible by 3 or 5
or both. So, there are three prime pairs {p, ¢} that satisfy condition 1: {2,3}, {2,5} and {3,5}.

If n = p+ 1 with p a prime, it is easy to see condition 1 is satisfied. Since <z> is, for

1 1
1 <k <p-—1, divisible by p and since (p—lz > = (k pi 1) =+ (i) the binomials (p—]L- )

+1
)=p+1

are divisible by p for 2 < k < p — 1. The two remaining binomials are 1

75
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p+1

and = p + 1 are divisible by 2. As a consequence, the prime pair {2, p} does satisfy

condition 1 if n =p+ 1.

As further examples we consider some n, neither a prime nor a prime power, with a larger

gap to the largest prime or largest prime power smaller than n.

n = 22: The largest prime or prime power smaller than 22 is 19. For 1 < k < 11 the
binomials 2l<:2 have the values 22, 231, 1540, 7315, 26334, 74613, 170544, 319770, 497420,
646646 and 705432 respectively. We do not have to consider 12 < k£ < 21 for reasons of
. " )= Z) The seven prime pairs {2,7}, {2,11}, {3,11}, {7, 11}, {11,13},
{11,17} and {11, 19} do satisfy condition 1.

symmetry:

n = 36: The largest prime or prime power smaller than 36 is 32. For 1 < k < 18 the bino-
36

mials k have the values 36, 630, 7140, 58905, etc. The eleven prime pairs {2, 3}, {2,5},

{2,7},{2,11}, {2,17}, {3,5}, {3, 7}, {3, 11}, {3,17}, {3,29} and {3, 31} do satisfy condition 1.

n = 96: The largest prime or prime power smaller than 96 is 89. The binomials

have the value 96, 4560, 142880, etc. The nineteen prime pairs {2,3}, {2,5}, {2,11}, {2,13},
(2,17}, {2,19}, {2,23}, {2,37}, {2,41}, {2,43}, {2,47}, {2,67}, {2,71}, {2,73}, {2,79},
{2,83}, {2,89}, {3,19} and {3,47} do satisfy condition 1.

According to Lucas’ theorem the following congruence relation holds for non-negative numbers

n and k and a prime p |10} [11]:

Let p be a prime and let

n=np +n,_1p "+ +nip+ng
k=kp" +ke1p 4+ kip+ko

be base p expansions of two positive integers, where 0 < n; < p and 0 < k; < p for all i, and

n, # 0. Then
n) = ﬁ <nz> mod
pu— p .
<k i—o \Fi

n; n;

A binomial coefficient (k’l) is zero if n; < k;. In particular, kl) =0ifn; =0and k; > 0.
i i

If a number n has a prime power p® as a divisor, then the base p expansion of n ends with «

n
zero’s. As a consequence, p) = 0 if the base p expansion of k ends with less than « zero’s.

That is, (Z) is divisible by p if k£ is not a multiple of p®. In other words, if n =0 mod p®
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then (Z) =0 modp® if k20 mod p® If n =0 mod p® and £k = 0 mod p* then (Z)

mod p® should be evaluated, for instance with Kummer’s theorem.

It follows by means of Lucas’ theorem that if and only if n is a prime power the binomial
coefficient (Z) is divisible by that prime if 1 < k < n — 1. It also follows that if n is a product
of two different prime powers the binomial coefficient (Z) is divisible by at least one the two
primes if 1 < k < n — 1. For these two cases condition 1 is satisfied. The situation is not
trivial if » has more than two different prime divisors. It is an open question whether or not
condition 1 is satisfied for all such n. A numerical inspection up to n = 10'° delivered no
counterexample. The algorithm used for the numerical inspection is briefly described in the

next section.

6.2 Algorithm for SW-pairs

A numerical inspection learns that condition 1 of Shareshian and Woodroofe is satisfied for all
positive integers up to 10 billion. Explicitly, for every positive integer n with 1 < n < 1019,

there exist primes p and ¢ such that, for all integers £ with 1 < k < n — 1, the binomial
n
coefficient < > is divisible by at least one of p or q. Hereafter, a pair of primes satisfying the

k
condition 1 of Shareshian and Woodroofe is denoted as SW-pair.

To find a SW-pair {p, ¢} for all n up to 10 billion, we used a 7-step approach. Let n = p* -
py? - pm be the prime factorization of n and let p,,* be the maximum of {p$, p3?, ..., p2m},

then the 7-step algorithm for a given number n is as follows:

1. If n has one or two different prime factors (that is, if m < 2) then condition 1 is satisfied

and the algorithm terminates, else it moves to step 2.

2. The algorithm takes p, as p and the largest prime smaller than n as ¢. If pfj" >n—gq
then {p, q} is a SW-pair and the algorithm terminates, else it moves to step 3.

3. For odd n the algorithm takes p, as p and the largest prime smaller than n/2 as ¢. If n
is odd and pj* > n — 2q then {p, ¢} is a SW-pair and the algorithm terminates, else it

moves to step 4.

4. For even n the algorithm successively takes prime divisors p; of n (running in descending

order from the largest prime power p,cj“ to smaller prime powers) as p and the largest
prime smaller than n/2 as ¢. If n is even and pj" > n — 2¢ and (732) is divisible by
pi then {p,q} is a SW-pair and the algorithm terminates. If no SW-pair is found the
algorithm moves to step 5. Of course, if p; = 2 it is redundant to check if <nT/LQ) is
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divisible by 2 since ( "

n/2

5. The algorithm creates a set L of pairs of different prime divisors of n. That is, L =

) is always even for even n.

{{pi,pj}} with 1 <i <m and i < j < m. The algorithm successively takes a pair from
L and investigates if the pair is such that, for all integers & with 2 < k < [n/2], the

n
binomial coefficient ( k) is divisible by at least one element of the pair. If such a pair

{pi,p;j} exists, then {p;,p;} is a SW-pair and the algorithm terminates. If no SW-pair
is found the algorithm moves to step 6. Of course, for a pair {p;, p;} the binomials the
<Z> have only to be evaluated if k is a multiple of pf‘ip?j .

6. For each prime divisor p; of n the algorithm takes p; as p and it successively takes the
largest prime smaller than n/j as ¢ for j = 3,4,5,....,[n/2]. As soon as a pair {p;, q}

satisfies condition 1 the algorithm terminates. If no SW-pair is found the algorithm
moves to step 7. Of course, for a pair {p;,q} the binomials the (Z) have only to be

evaluated if k is a multiple of p3*.

7. For each prime divisor p; of n the algorithm takes p; as p and it successively takes for

a prime smaller than n as g. As soon as such a pair {p, ¢} satisfies the condition 1 the
n
algorithm terminates. Also here, for a pair {p;, ¢} the binomials the ( k:> have only to

be evaluated if k is a multiple of p*.

Step 1 is to sieve the trivial ones. Step 2, 3, 4 and 6 are to a large extent based on the work
of Casacuberta [9]. Step 5 is based on the observation that for many numbers there exists
SW-pairs {p,q} such that both p and ¢ are prime divisors of n. Step 6 is just for the few
occasions where the algorithm has not terminated within 5 steps. Step 6 is based on the idea
that for p; a prime divisor of n and g; the largest prime smaller than n/j, there is a large
chance there exist a SW-pair among all the pairs {p;, ¢;}. Step 7 is in case even step 6 does
not deliver a pair satisfying the condition 1. In step 7 the algorithm checks with a brute
force approach if there exists a SW-pair {p;,q} with p; a prime divisor of n and ¢ a prime
smaller than n. A number n passing step 7 would be a counterexample to the believe that
the condition 1 of Shareshian and Woodroofe is satisfied for all numbers. However, for all the
numbers we investigated, that is, for n < 109, there were even no numbers who passed step
6.

To illuminate the algorithm we give some examples.

Example 6.2.1. n =0:

9
Since n is a prime power, n = 32, it is for sure that < ) is divisible by 3 if 1 < k < 8.

k
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Therefore the algorithm terminates after step 1. For this situation {3, ¢} is a SW-pair for any

prime q.

Example 6.2.2. n = 12:

12
Since n is a product of two prime powers, n = 22 - 3, it is for sure that ( k:) is divisible by
at least one element of {2,3} if 1 < k < 11. For this situation {2,3} is a SW-pair. Therefore

the algorithm terminates after step 1.

Example 6.2.3. n = 220:

That is, n is a product of more than two prime powers: n = 22.5-11. The largest prime

power is 111, so p = 11. As a consequence is divisible by 11 for k£ < 11 and k£ > 209.

k

The largest prime smaller than 220 is 211, so the algorithm takes ¢ = 211. As a consequence,
220 220

< I > is divisible by 211 for 9 < k < 211. Hence, if 1 < k£ < 219 the binomial < I > is

either divisible by 11 or by 211. In short, since 111 > 220 — 211, the condition p* > n — q is

satisfied. Therefore the algorithm terminates after step 2.

Example 6.2.4. n = 4199:

That is, n is a product of more than two prime powers: n = 13 -17-19. The largest prime

power is 191, so p = 19. As a consequence (41;9) is not divisible by 19 for £ = 19. The

largest prime smaller than 4199 is 4177, so in step 2 the algorithm takes ¢ = 4177. As a result,
4199 is divisible by 4177 for 22 < k < 4177. The binomial (4139) is neither divisible by

k
19 nor divisible by 4177. In short, since 19 % 4199 — 4177, the requirement p® > n — ¢ is not

satisfied and the algorithm jumps to step 3. In step 3 also p = 19. In step 3 the algorithm
takes ¢ = 2099 since 2099 is the largest prime smaller than 4199/2. The binomial 41: 9)
is divisible by 2099 for £ = 2,3, ...,2098 and k£ = 2101,2102, ...,4197. Since 19 is a divisor of
n, 19 is not a divisor of (n — 1)/2 = 2029. Similarly, since 19 is a divisor of n, 19 is not a
divisor of (n + 1)/2 = 2100. As a consequence, <4199> and (4199> are divisible by 19. So,

2099 2100
(19,2099) is a SW pair. In short, since 19 > 4199 — 2 - 2099, the requirement p® > n — 2q is

satisfied. Therefore the algorithm terminates after step 3.

Example 6.2.5. n = 126:

That is, n = 2- 32 - 7. The largest prime power is 32, so p = 3 in step 2. The largest prime
smaller than 126 is 113. So, in step 2 the algorithm takes ¢ = 113. Since 9 ¥ 126 — 113,
the requirement p* > n — ¢ is not satisfied and the algorithm jumps to step 3. In step 3 the
algorithm jumps to step 4 since n = 126 is even. In step 4 the largest prime smaller than n/2

126

is 61, so ¢ = 61. The algorithm first takes 32 for the prime power p®. Since < 63 > is divisible
by 3 and 9 > 126 — 2 - 61, the pair {3,61} is a SW-pair. Therefore the algorithm terminates
after step 4.
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Example 6.2.6. n = 210:

That is, n = 2-3-5-7. The largest prime power is 7', so p = 7 in step 2. The largest prime
smaller than 210 is 199. So, ¢ = 199. Since 7 % 210 — 199, the requirement p® > n — q is
not satisfied and the algorithm jumps to step 3. In step 3 the algorithm jumps to step 4 since
n = 210 is even. In step 4 the largest prime smaller than n/2 is 103, so ¢ = 103. The algorithm

210
first takes 7! for the prime power p®. Although 7 > 210—2-103, the binomial (105) happens

21
to be not divisible by 7. Next the algorithm takes 5 as p®. Since 5 > 210—2-103 and (102)

is divisible by 5, {5,103} is a SW pair. Therefore the algorithm terminates after step 4.

Example 6.2.7. n = 3432:

That is, n = 23-3-11-13. The largest prime power is 13!, so p = 13. The largest prime
smaller than 3432 is 3413. So, in step 2 the algorithm takes ¢ = 3413. Since 13 % 3432 — 3413,
the requirement p® > n — ¢ is not satisfied and the algorithm jumps to step 3. In step 3
the algorithm jumps to step 4 since n = 3432 is even. In step 4 the largest prime smaller
than n/2 is 1709, so ¢ = 1709. The algorithm first takes 13! for the prime power p®. Since
13 # 3432—2-1709 the requirement p® > n—2q is not satisfied and the algorithm jumps to step
5. In step 5 the algorithm creates the list L = {{2,3},{2,11},{2,13},{3,11},{3,13},{11,13}}
of which {2,3}, {2,13}, {3,13} and {11, 13} are SW-pairs. Hence, the algorithm terminates
after step 5.

Example 6.2.8. n = 14280:

That is, n = 23 -3-5-7-17. The largest prime power is 17!, so p = 17. The largest
prime smaller than 14280 is 14251. So, in step 2 the algorithm takes ¢ = 14251. Since
17 # 14280 — 14251, the requirement p® > n — ¢ is not satisfied and the algorithm jumps
to step 3. In step 3 the algorithm jumps to step 4 since n = 14280 is even. In step 4
the largest prime smaller than n/2 is 7129, so ¢ = 7129. The algorithm first takes 17*
for the prime power p®. Since 17 ¥ 14280 — 2 - 7129 the requirement p® > n — 2q is not
satisfied and the algorithm jumps to step 5. In step 5 the algorithm creates the list L =
{{2,3},1{2,5},{2,7},{2,17},{3,5},{3,7},{3,17},{5,7},{5,17},{7,17}}. Since non of these
pairs are SW-pairs, the algorithm jumps to step 6. The largest prime smaller than 14280/3 is
4759. Starting with the largest prime power 17 of 14280 the algorithm soon finds {17,4759}

as a SW-pair. Therefore the algorithm terminates after step 6.

The smallest number which is sieved by step 1 is 2.

The smallest number which is sieved by step 2is 30 =2-3 - 5.

The smallest number which is sieved by step 3 is 4199 = 13 - 17 - 19.

The smallest number which is sieved by step 4 is 126 = 2-3% - 7.

The smallest number which is sieved by step 5 is 3432 =23 -3 -11-13.
The smallest number which is sieved by step 6 is 14280 =23-3-5.7-17.
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The following table shows, for consecutive intervals of n, the frequencies of numbers sieved by

the step 1, step 2, step 3, step 4 and step 5.

n in billions | # step 1 | # step 2 | # step 3| # step 4| # step 5| # step 6
0<n<1 | 257266332 | 742713994 2973 13291 2139 1271
1l<n<2 242891175 | 757100138 1397 5882 760 648
2<n<3 |238070712 | 761922660 1050 4534 569 475
3<n<4 235055035 | 764939230 951 3932 410 442
4<n<bH | 232872031 | 767122789 815 3536 432 397
5<n<6 |231157511 | 768837909 724 3144 355 357
6<n<7 |229758393 | 770237 352 702 2915 329 309
7T<n<8 | 228575421 | 771420740 619 2665 284 271
8§<n<9 | 227546521 | 772449721 624 2578 271 285
9<n<10 | 226639716 | 773356 772 554 2404 299 255

Table 6.1: Frequencies of numbers sieved by the step 1 through step 6 for consecutive intervals

of n.

For some individual numbers the search for a SW-pair {p, ¢} can be conducted in a more
efficient way than the algorithm described above. For example, for the number n = 126 =
2.3%.7 it is quickly seen that n — 1 = 52. One could therefore try ¢ = 5 as one prime of a
SW-pair. Since (li(j) is divisible by 5 if k is in the interval [2,124], one needs a prime divisor
of 126 as a second prime. Either 2, 3 or 7 suffices. Hence, the pairs {2,5}, {3,5} and {5, 7} are
SW-pairs. However, for increasing n the relative density of prime powers with power larger
than 1 decreases. The larger n the more inefficient the check for nearby prime powers. For

this reason it is omitted in the algorithm.

6.3 Number of SW-pairs

First we consider the case where n has two prime divisors: n = p®¢®. Then {p,q} is a SW-pair.
Other SW-pairs may also occur. For instance, if n = 6, next to the obvious pair {2, 3} also
the pairs {2,5} and {3,5} are SW-pairs. The next number with two prime divisors is n = 10.
Here 2, 3, 5 and 7 are the primes smaller than n of which 2 and 5 are divisors of n. Of the
six possible pairs only {2,3}, {2,5}, {3,5} and {5,7} turn out to be SW-pairs. In the next

figure the number of SW-pairs is plotted against n for the case n has two prime divisors.
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Figure 6.1: The number of SW-pairs for numbers n which have 2 prime divisors, plotted

against n.

We recognise some curves for the numbers which have a relatively large number of SW-pairs.
As an example we consider n = 9998. The number 9998 has 836 SW-pairs. The point
(9998, 836) is the most right dot on the upper curve. The value 9998 is two times a prime:

9998 = 2-4999. All 836 SW-pairs are of the type {gq,4999} where the ¢ runs over the 836

9998
4999

9973 and 9998 there is no SW-pair of the type {2,p} with p a prime smaller than 9998.
As a second example we consider n = 9974. The number 9974 has 834 SW-pairs. The point

(9974, 834) also is on the upper curve. Points on the upper curve are two times a prime or two

prime divisors of ( ) The largest prime below 9998 is 9973. Because of the gap between

times a prime power. The value 9974 is two times a prime: 9974 = 2 - 4987'. There are 833
SW-pairs of the type {q,4987} where the ¢ runs over the 833 prime divisors of (Zgg‘;). There
is an additional SW-pair, {2,9973}, since 9973 is a prime just 1 smaller than 9974.

For numbers n < 10000 with two prime divisors the minimum number of SW-pairs is 3, which
occurs for n = 6. The case of 4 SW-pairs occurs only for n = 10. The smallest number with

5 SW-pairs is n = 12. The smallest number with 6 SW-pairs is n = 15.

Next we consider the case where n has three prime divisors. The smallest number with
three prime divisors is 30, which has 9 SW-pairs. The next number with three prime divisors
is n = 42, which has 7 SW-pairs. For n < 10000 there is a local minimum for n = 78: 6
SW-pairs. In the next figure the number of SW-pairs is plotted against n for the case n has

three prime divisors.
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Figure 6.2: The number of SW-pairs for numbers n which have 3 prime divisors, plotted

against n.

Local minima of small SW values slightly increase with n. For example, for the number 3952
there is a local minimum of 12 SW-pairs. As another example, for 9176 there is a local mini-

mum of 19 SW-pairs. It seems as if the local minima increase with n.

Next we consider the case where n has four prime divisors. The smallest number with four
prime divisors is 210, which has 9 SW-pairs. The next number with four prime divisors is
n = 330, which has 12 SW-pairs. For n < 10000 there is a local minimum for n = 3060: 7
SW-pairs. In the next figure the number of SW-pairs is plotted against n for the case n has
four prime divisors. For n < 10000 there are 5 numbers with 9 SW-pairs: 210, 2508, 3740,
3960, 5980.
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Figure 6.3: The number of SW-pairs for numbers n which have 4 prime divisors, plotted

against n.
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Figure 6.4: The number of SW-pairs for numbers n which have 5 prime divisors, plotted

against n.
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The situation where n has five prime divisors is shown in the previous figure. The smallest
number with five prime divisors is 2310, which has 27 SW-pairs. The next number with five
prime divisors is n = 2730, which has 18 SW-pairs. For n < 10000 there is a local minimum
for n = 3570: 8 SW-pairs.

Finally, we consider the case where n is a prime p or a power of a prime p. Then any
pair {p, ¢} with ¢ an arbitrary prime is a SW-pair. To avoid an infinity of SW-pairs we impose
an additional condition: the members of SW-pairs should not to be larger than n. By its
nature any divisor of the binomial (Z) is not larger than n. So, the additional condition has
no consequences for SW-pairs of composite numbers, while it keeps the number of SW-pairs
finite for primes and prime powers. To be specific, the element ¢ of a SW-pair {p, ¢} can be
any prime not larger than n. If n = 2 there is only one SW-pair: {2,2}. If n = 3 there are
two SW-pairs: {3,2} and {3,3}. If n =5 there are three SW-pair: {5,2}, {5,3} and {5,5},
and so on. The number of SW-pairs therefore is given by the prime counting function 7(n) in

case n is a prime p or a power of a prime p, see next figure.
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For numbers n < 10000 we saw that for numbers with 1, 2, 3, 4 and 5 prime divisors the
minimum number of SW-pairs is 1, 3, 6, 7 and 8 respectively. Although it may give the feeling

that numbers with no SW-pairs are not very likely, it does prove nothing.
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6.4 Confining to prime divisors of n

The identity (711) = n implies that at least one of the primes of the SW-pair {p, ¢} is a divisor
of n. For many n a SW-pair {p, ¢} exists such that both p and ¢ are a prime divisor of n.
For n < 1000 there are 21 exceptions:

110, 220, 222, 231, 238, 240, 440, 444, 468, 476, 506, 561, 609, 615, 702, 720, 748, 814, 888,
966 and 988.

For n < 10* there are 314 exceptions. For n < 10° there are 5149 exceptions. For n < 10°
there are 75079 exceptions. For n < 107 there are 1022008 exceptions. For n < 108 there are
13111 425 exceptions. The number of exceptions is plotted against n in the figure below. For

comparison the function f(n) = n is shown as a dashed line.
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Figure 6.5: The number of integers m < n for which no {p, ¢} pair exists such that both p

and ¢ are a divisor of m, plotted against n. The dashed curve is the function f(n) = n.

For SW-pairs {p, ¢} such that p and ¢ are not both a divisor of n we change the problem to
finding a set with three or more prime divisors of n such that if 1 < k < n — 1 the binomial
coefficient (Z) is divisible by at least one element of the set. We will call a set of prime divisors
of n ‘covering’ if the set is such that if 1 < k& < n — 1 the binomial coefficient (Z) is divisible

by at least one element of the set.
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For instance, for each of the 21 exceptions given above for n < 1000 there exists a triple
of primes {p, ¢,r} all dividing n and such that if 1 <k < n — 1 the binomial coefficient (})
is divisible by at least one of p, ¢ and r. For n < 100,000 we find by inspection that a triple
of prime divisors of n is not sufficient for n = 47957 and n = 56826. These two exceptions
require a set of four prime divisors of n to do the covering. For much larger n it may occur

that a set of five or more prime divisors of n is required to do the job.

For every integer n > 1 there exists a covering set. It is a consequence of Lucas’ theo-
rem. If n = pi™* - pi™* - pm is the unique prime factorisation of n and if 1 <k <n — 1, then
(}) is divisible by py if 1 < k < p{* — 1, if pi* +1 < k < 2p* — 1, etc. The divisibility by
p1 is not certain if & is equal to p{" or a multiple of it. Similarly, the divisibility by p2 is not

certain if k is equal to p5? or a multiple of it. The situation where k is not divisible by both

p1 and py can only occur if k is equal to p{'p5?. For k = p{'p5? the binomial (}) is divisible
by ps except possibly when k is equal to p{'p5?p5®. Checking for all the prime divisors we
find that the only exception can occur if k is equal to p{* - p{* - - p%m = n, which is outside
the range 1 < k < n — 1. Therefore, the set of all prime divisors always is a covering. The

minimal length of a covering set is smaller or equal to the number of divisors of n.

Let u(n) be the number of prime divisors of n and let v(n) be the smallest number of el-
ements of the covering sets. For each n we have v(n) < u(n). Furthermore, let 043 be the

sequence of increasing n’s for which u(n) and v(n) have specified values a and b respectively:
oap = {n| u(n) = a, v(n) = b}. (6.1)

Below are shown the first sequences for n < 108.

00,0 = {1},

o11 = {2,3,4,5,7,8,9,11,13,16, 17, 19,23, 25,27, 29, 31, 32, 37, 41,43, 47, 49, 53,59, 61, 64, 67,
71,73, 79, 81,83, 89,97, 101,103,107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151
157,163,167, 169, 173,179, 181,191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243,
251,256, 257, 263, 269, 271, 277, 281, 283, 289, 293, 307, 311, 313, 317, 331, ...},

020 = {6,10,12,14, 15, 18,20, 21,22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52,
54,55, 56,57, 58,62, 63, 65, 68, 69, 72, 74, 75, 76, 77, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95,
96, 98,99, 100, 104, 106,108, 111,112, 115,116, 117, 118, 119, 122, 123,124, 129, 133, 134,
135,136, 141,142, 143, 144, 145, 146, 147, 148, 152, 153, 155, 158, 159, 160, 161, ...},
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32 = {30,42, 60,66, 70,78, 84,90, 102, 105, 114, 120, 126, 130, 132, 138, 140, 150, 154, 156, 165,
168,170, 174, 180, 182, 186, 190, 195, 198, 204, 228, 230, 234, 246, 252, 255, 258, 260, 264,
266, 270, 273, 276, 280, 282, 285, 286, 290, 294, 300, 306, 308, 310, 312, 315, 318, 322, 336,
340, 342, 345, 348, 350, 354, 357, 360, 364, 366, 370, 372, 374, 378, 380, 385, ...},

o33 = {110, 220,222, 231,238,240, 440, 444, 468, 476, 506, 561, 609, 615, 702, 720, 748, 814, 888,
988,1001, 1012, 1022, 1045, 1118, 1258, 1309, 1310, 1370, 1394, 1404, 1495, 1644, 1653,
1683, 1720, 1742, 1767, 1786, 1833, 1855, 1972, 1976, 2006, 2013, 2016, 2022, 2024, 2044,
2254, 2345, 2387, 2409, 2465, 2482, 2516, 2553, 2570, 2620, 2740, 2788, ...},

o490 = {210, 330, 390, 420, 462, 510, 546, 570, 630, 660, 690, 714, 770, 780, 798, 840, 858, 870, 910,
924,930, 990, 1020, 1050, 1092, 1110, 1122, 1140, 1155, 1170, 1190, 1218, 1230, 1254,
1260, 1290, 1302, 1326, 1330, 1365, 1380, 1386, 1410, 1428, 1430, 1470, 1482, 1518, 1530,
1540, 1554, 1560, 1590, 1596, 1610, 1638, 1650, 1680, 1710, 1716, 1722, 1740, 1770, ...},

o3 = {966, 1320, 1870, 1932, 1995, 2002, 2142, 2145, 2470, 2508, 2860, 2990, 3066, 3198, 3612,
3696, 3710, 3740, 3828, 4002, 4095, 4182, 4284, 4446, 4522, 4818, 4845, 4902, 5016, 5110,
5244, 5418, 5775, 5796, 5820, 6045, 6060, 6072, 6110, 6118, 6138, 6396, 6486, 6578, 6622,
6710, 6902, 7084, 7095, 7134, 7310, 7395, 7480, 7735, 7820, 7905, 7920, 7990, ...},

04,4 = {47957,582967, 701845, 887485, 961741, 1003767, 1070399, 1115615, 1171247, 1175783,
1385359, 1385423, 1394789, 1402789, 1447589, 1639877, 1816879, 1822331, 1846019,
2033383, 2116989, 2167711, 2328065, 2417979, 2505137, 2621065, 2632069, 2796547,
3113891, 3119845, 3154459, 3226769, 3238459, 3284407, 3307603, ...},

5.2 = {2310,2730, 3570, 3990, 4290, 4620, 4830, 5460, 5610, 6090, 6270, 6510, 6630, 6930, 7140,
7410, 7590, 7770, 7980, 8190, 8580, 8610, 8778, 8970, 9030, 9240, 9282, 9570, 9660, 9870,
10010, 10230, 10374, 10626, 10710, 11130, 11220, 11310, 11730, 12012, 12090, 12180,
12390, 12540, 12558, 12810, 12870, 13020, 13090, 13110, 13260, 13398, ...}

5.3 = {6006, 7854, 9690, 10920, 11550, 11970, 12210, 13566, 14190, 14280, 14322, 15180, 15330,
15708, 15834, 15990, 17290, 18060, 18270, 18354, 18870, 22110, 23100, 23370, 23478,
23870, 23940, 23970, 24420, 24990, 25080, 25662, 25806, 25935, 26220, 27132, 27370,
27390, 28014, 28470, 28490, 28560, 28644, 29070, 29820, 30360, 30450, ...}

05,4 = {56826, 383990, 1113177, 1357345, 2773113, 2832387, 3305913, 3318095, 3999709,
4165323, 4188006, 4218465, 4251003, 4421313, 4684305, 5175667, 6484225, 6836523,
7023445, 7245485, 7293531, 7406035, 7700446, 7711319, 7757491, 7796555, 8184939,
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9187165, 9367475, 9601685, 9607465, 9640345, 9764765, 9902857, 10483676, ...},

055 ={},

06,2 = {30030, 43890, 46410, 53130, 60060, 62790, 66990, 67830, 72930, 78540, 79170,
81510, 82110, 84630, 85470, 87780, 90090, 91770, 92820, 98670, 99330, 101010,
103530, 103740, 106260, 108570, 110670, 111930, 115710, 117810, 120120,
123690, 124410, 125580, 125970, 128310, 129030, 131670, 132090, ...}

06,3 = {39270, 51870, 71610, 94710, 102102, 106590, 114114, 117390, 122430, 132990,
139230, 140910, 152490, 163590, 170170, 175560, 176358, 182910, 183540,
186186, 189210, 190190, 192270, 196350, 207480, 207570, 211470, 213486,
214890, 217770, 222870, 226590, 227010, 227766, 228228, 230010, ...}

06,4 = {11960234, 12732915, 13639815, 20924365, 23330424, 23947066, 24600570,
26918535, 27545973, 28696479, 30757870, 33322718, 33382356, 33480042,
33713771, 36555805, 37453065, 38183445, 38496185, 38787455, 50230986,
54127485, 54198108, 55950076, 56232033, 56349436, 56448645, ...},

06,5 = {}7 06,6 = {},

o072 = {510510, 690690, 903210, 930930, 1067430, 1138830, 1193010, 1217370, 1231230,
1291290, 1345890, 1381380, 1385670, 1411410, 1438710, 1452990, 1492260,
1531530, 1540770, 1560090, 1591590, 1607970, 1610070, 1623930, 1647030,
1677390, 1688610, 1717170, 1741740, 1763580, 1771770, 1799490, ...},

o753 = {570570, 746130, 870870, 881790, 1009470, 1021020, 1111110, 1141140, 1272810,
1360590, 1504230, 1711710, 1820910, 1845690, 1939938, 1946490, 2012010,
2222220, 2238390, 2284590, 2326170, 2363790, 2395470, 2434740, 2451570,
2462460, 2526810, 2545620, 2574390, 2631090, 2649570, 2677290, ...},

o7.4 = {50227870, 61623555, 77942865},

ors =1}, or6 ={}, orr = {},

og2 = {11741730, 15825810, 17687670, 18888870, 19399380, 20030010, 21111090,
21637770, 23130030, 23393370, 23483460, 24534510, 25555530, 25571910,
26246220, 26996970, 27057030, 27335490, 27999510, 28318290, 29609580,
29699670, 30240210, 30591330, 31141110, 31293570, 32083590, ...},

89
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og3 = {9699690, 13123110, 14804790, 16546530, 17160990, 20281170, 20930910, 21411390,
21951930, 23993970, 26193090, 26816790, 27606810, 29099070, 29274630, 30120090,
30955470, 31651620, 31870410, 32626230, 33090330, 33093060, 34321980, 34597290,
35225190, 35375340, 36606570, 37350390, 37447410, 38228190, 39369330, ...},

osa=1{}, 085 ={}, 086 ={}, o057 ={}, o83 = {}.

The notation o, = {} just means there are no elements in o, lower than or equal to
108. Empty sets will be filled by considering numbers larger than 108. For instance, the first
element of 055 is 1245792 257.

Of course, 01,1 is just the sequence of numbers that are divisible by exactly 1 prime. It is iden-
tical to the sequence A246655 of the OEIS [3]. Similarly, o9 is just the sequence of numbers
that are divisible by exactly 2 different primes (A007774, OEIS). The union of o35 and o3 3 is
the sequence of numbers that are divisible by exactly 3 different primes (A033992,0EIS). The
union of 042, 04,3 and 044 is the sequence of numbers that are divisible by exactly 4 different
primes (A033993,0EIS). The union of o5, with 2 < k < 5, is the sequence of numbers that
are divisible by exactly 5 different primes (A051270,0EIS). In general, the union of o, , with

2 < b < a, is the sequence of numbers that are divisible by exactly a different primes.

6.5 Algorithm for covering sets of prime divisors of n

If n has exactly one prime divisor then the prime divisor is covering and the minimal length
of the covering set is 1. If n has exactly two prime divisors then the two prime divisor form
a covering pair and the minimal length of the covering set is 2. If n has three or more prime
divisors the minimal length is determined with an algorithm. Let n = p{* - pg? - - - p™ be the
prime factorization of n. Starting with the pair of primes {p;,p;} with the largest product
Pyt p;xj , the algorithm runs over the pairs to see, by means of Kummer’s method, if for each
k a multiple of p;" - p?j the binomial (Z) is divisible by either p; or p;. If so, the minimal
length is 2. If no pair is found the algorithm runs over the subsets with length 3, starting with
the triple with largest product pj* - p?j -p;", to see if for each k a multiple of pf' - p?j ;"
the binomial (Z) is divisible by either p; or p;. If it is, the minimal length is 3. If no triple is
found the algorithm runs over subsets with length 4 and so on. As soon as a covering subset
with minimal length is found the algorithm terminates.

To illuminate the algorithm we give some examples.

Example 6.5.1. n = 42:
That is, n has three prime divisors: n = 2-3-7. The algorithm starts with the pair {3, 7}.
Since the binomial (3?) is divisible by 3, it is concluded that {3,7} is a covering set. Hence,

the minimal length is 2.
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Example 6.5.2. n = 60:
That is, n has three prime divisors: n = 2%-3-5. The algorithm starts with the pair {2,5}.
Since the binomial (gg) is divisible by 5, it is concluded that {2,5} is a covering set. Hence,

the minimal length is 2.

Example 6.5.3. n =110:

That is, n has three prime divisors: n = 2-5-11. The algorithm starts with the pair {5,11}.
Since the binomial (15150) is divisible by neither 5 nor 11, it is concluded that {5,11} is not a
covering set. Next the algorithm takes the pair {2,11}. Since the binomial (1415) is divisible
by neither 2 nor 11, it is concluded that {2,11} is not a covering set. Next the algorithm
takes the pair {2,5}. Since the binomial (111[? ) is divisible by neither 2 nor 5, it is concluded
that {2,5} is not a covering set. Since all possible pairs are inspected, the algorithm draws

the conclusion that {2,5,11} is the smallest covering set. Hence, the minimal length is 3.

From the foregoing examples we see that 42 and 60 belong to the 032 sequence and that 110

belongs to the o33 sequence.

6.6 Primorials

A primorial is a product of subsequent primes starting with the first prime p; = 2. If p,,#
denotes the m-th primorial, then p1# = p1 = 2, po# = p1p2 = 2 -3 = 6, psF# = p1paps =
2:-3-5 =230, pa# = p1papsps = 2-3-5-7 = 210, etc. By inspection we observe the following;:
The first element of o1 1 is p1# = 2.

The first element of 029 is pa# = 6.

The first element of 032 is p3# = 30.

The first element of 049 is ps# = 210.

The first element of o5 9 is ps# = 2310.

The first element of 062 is pe# = 30 030.

The first element of 072 is pr# = 510510.

The first element of og 3 is pg# = 9699690

The first element of og 2 is pe# = 223092 870.

The first element of o192 is p1o# = 6469693 230.

The first element of o112 is p11# = 200 560490 130.

The first element of o123 is p1o# = 7420738 134 810.

The first element of o133 is p13# = 304 250 263 527 210.

The first element of 0143 is p1a# = 13082761 331 670 030.

We see that for relatively small a the primorials p, are the the first element of 0,2, while

for increasing a the primorials p, more and more are the first elements of o, 3.
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6.7 Distributions

Let S, () denote the number of elements of o, ; lower than or equal to 2. To get an impression
of the distributions we have tabulated S, ;(x) for several decades of z, see table .

10 | 100 | 1000 | 10000 | 100000 | 1000000 | 10000000 | 100000 000
Soo | 1] 1 1 1 1 1 1 1
Siai| 7] 35| 193 | 1280 | 9700 78734 665134 5762859
Sao | 2| 56 | 508 | 4097 | 33759 | 288726 | 2536838 | 22724609
Sso | 0] 8 | 255 | 3465 | 35873 | 345445 | 3253887 | 30535779
Sss| 0] 0] 20 | 230 | 2971 34275 388879 4264583
Sia | 0] 0 | 22 | 813 | 13986 | 176249 | 1948483 | 20253779
Sis| 0] 0 1 81 1868 | 31780 440751 5531494
Sial O] 0] 0 0 1 5 199 4307
Sso | 0] 0 ] 0 30 1511 34034 520767 6594422
Sss{o] o] o 3 304 8456 170408 2755964
Ssa| 0] 0] 0 0 1 2 34 907
Sss | 0] 0 ] 0 0 0 0 0 0
Sea |l 0] 0] 0 0 21 1728 51705 966300
Ses| 0] 0] 0 0 4 557 21197 523598
Sea| O] 0 ] 0 0 0 0 0 60
Ses | 0] 0] 0 0 0 0 0 0
Ses | 0] 0 | 0 0 0 0 0 0
Si;al 0] 0] 0 0 0 4 1177 49893
Szs|l 0] 0] 0 0 0 4 539 30223
S;al 0] 0] 0 0 0 0 0 3
S5 0] 0] 0 0 0 0 0 0
Sze| 0] 0] 0 0 0 0 0 0
Szl o] 0] 0 0 0 0 0 0
Ssa | O] 0 | 0 0 0 0 0 433
Ssz| 0] 0] 0 0 0 0 1 286
Ssa|l O] 0] 0 0 0 0 0 0
Sss| 0] 0 ] 0 0 0 0 0 0
Ss¢ | O] 0 ] 0 0 0 0 0 0
Ssz| 0] 0] 0 0 0 0 0 0
Ssg| 0] 0 | 0 0 0 0 0 0

Table 6.2: S, () for several decades of . For example, the entry in the sixth column and
the fifth row tells us S33(100000) = 35873. That is, 35873 elements of the sequence o33 are
lower than or equal to 100 000.
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From the contents of table it can be inferred that for almost 87% of the numbers n <
100000000 there exist a pair of prime divisors of n such that if 1 < k < n — 1 then the
binomial coefficient (Z) is divisible by at least one prime of the pair.

A visual presentation of the number of elements of o1 1, 022, 032, 033, 042, 043, 044, 052,
053, 054, 062, 063, 064, 072, 07,3, 07.4, 082 and og 3 lower than or equal to n is shown in the

next figure.
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Figure 6.6: Various functions S, ;(x) plotted against . The dashed curve is the function

f(n) =n.
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Appendix A

Proof of Kummer’s theorem

Let p be the largest integer exponent of the prime p such that p* dividesn!=1-2-3-... - n.
That is, p* is a divisor of n!, while p#*! is not a divisor of n!. Since y depends on n and p we

will denote it as pp(n). For p(n) holds the following identity:

[e.9]

() =] (A1)

1)
=1 p

Here |z] denotes the integer part of xz; the largest integer smaller than x. Thus [5.2] = 5,
|6.7] =6, [0.8] =0, etc. The contribution of L%J is zero as soon as p' > n.
p

The identity can be explained as follows. The numbers p, 2p, 3p, ..., L%Jp are divisible by
p

p, so they contribute {%J to pp(n). The numbers %, 2p°,3p%, ..., L%Jpz are divisible by

p p

J times the factor p of which LEJ is already counted in

p?. Together they contain 2 - Ln 5
p

2
n

{%J The numbers p?, 2p%, 3p?, ..., {%JpQ therefore contribute LGJ to pp(n). The numbers
p p p

3,203, 3p3, ..., L%J p> are divisible by p*. Together they contain 3 - L%J times the factor p of
p
which {%J is already counted in {%J and [%J is already counted in {%J The numbers
p p p p
3,203, 3p%, ..., L%Jpg therefore contribute L%J to pp(n). Continuing the line of reasoning
p p
we obtain the identity (A.1)).

15
For example, if n = 15 and p = 2, then the [?J = 7 numbers 2,4,6,8,10,12 and 14 are

divisible by 2. Together they contain 7 times the factor 2, so they contribute 7 to u2(15). The

15
LﬁJ = 3 numbers 4, 8 and 12 are divisible by 22. Together they contain 6 times the factor 2

15
of which 3 times are already counted in L?J The numbers 4,8 and 12 therefore contribute

15

3 to pe(15). The [?J = 1 number 8 is divisible by 23. It contains 3 times the factor 2 of

95
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1 1
which 2 times are already counted in LZ—?J and LQ—L;)J The number 8 therefore contributes 1
to pa(15). Altogether, uo(15) = 7+ 3+ 1 = 11. That is, 15! = 1307674368000 is divisible by

211 but not by 212.

19
Example 2: n — 19 and p = 3. The L?J — 6 numbers 3,6,9,12,15 and 18 are divisible by
19
3. Together they contain 6 times the factor 3, so they contribute 6 to p3(19). The {3—2J =2

numbers 9 and 18 are divisible by 32. Together they contain 4 times the factor 3 of which 2
19

times are already counted in L?J The numbers 9 and 18 therefore contribute 2 to u3(19).

Hence, p3(19) = 642 = 8. That is 19! = 121645100408832000 is divisible by 3% but not by 3°.

By means of the identity (A.1) one can derive another identity. To this end we expand

n, n — k and k in base p:

n:iaipi, k:ibipi, n—k:iqpi. (A.2)
=0 =0 =0

If m such that p”t' > n while p™ < n, then n = ag + a1p + agp® + ... + a,p™. The integer
parts of n divided by p* expanded in base p then are [%J = ;4 @i 1p+ ... + 4™, where
p

i < m. By means of the latter we can write y,(n) as

m [o.¢]
)= 3512 = 5 o ) -
=1 =1

(a1 + agp + azp? + asp® + ... + amp™ 1)+
(a2 + agp+ asp® + ... + amp™ )+

_ A3
(a3 + agp + ... + amp™ )+ (A.3)
(am—l + amp)+
G -
After a rearrangement of terms it can be written as
m t—1 .
o) = 33 anp (A4)
t=1 j=0
From the latter it follows
m t 4 m t—1
(p=Dip(n) =D Y ap! =D Y ap’ =
t=1 j=1 t=1 j=0 (A5>
m m m m
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where op(n) is the sum of all the digits in the base p expansion of n:

op(n) =Y ar. (A.6)

Since a; = 0 for ¢ > m the latter can also be written as

o

op(n) =Y ar. (A7)

t=0
In a similar way we obtain for n — k and k:
op(k) =) bi, op(n—k)=> c. (A.8)
i=0 i=0

In ((A.5) we have arrived at an identity which was already formulated by Legendre in 1808 [6]:
If pp(n) is the largest integer exponent of the prime power pH(™) that divides n!, then

n—op(n)
pp(n) = ﬁ- (A.9)
|
Let r be the largest integer exponent of p such that p" divides o L, then
k (n — k)!k!

p" is equal to pH™) . p=H(=k) p=i(k) That is,

P = pp(n) — ppln — k) — (k). (A.10)
Substituting Legendre’s identity we obtain

. n—o(n) B n—k—o(n—k) B k—o(k) _ O'(n*k)+0'(k,')*0'(n). (A11)

p—1 p—1 p—1 p—1
Substitution of (A.7) and (A.8) leads to

P=1\i=o i=0 =0

bo + CoJ
p 7

J, and so on. If we define

When we add k£ and n — k, the carries, which we will denote as §;, follow from dy = L
b1 +c1 +do by + 2 + 01 bs + c3 + 02
o 2R - Brath) o [orars
p p p
6_1 = 0, then §; = L J for ¢ = 0,1,2,3,... Since the addition of n — k and k

results in n, we obtain

bi +c + (52'_1
p

a; = b; + ¢+ ;-1 — pd; , 1=0,1,2,3,... (A.l?))



98 APPENDIX A. PROOF OF KUMMER’S THEOREM

Substitution of the latter into (A.12)) leads to

1 oo oo o0 1 oo
r=——= ZCZ' + bi - Z(bz + C; + 51'_1 —p&i) = — Z(p(sl - (51'_1) . (A.14)
r—1\= =0 i=0 N
Since
> (pd; — 6i-1) = (pdo — 6-1) + (pd1 — &) + (pd2 — 01) + (pds — 6a) + ... =
i=0
(p50 —0)+ (p(Sl —do) + (p(SQ — (51) + (pds — 52) +..= (A 15)
(pdo — 00) + (pd1 — 61) + (pd2 — d2) + (pd3 — 63) + ... =
> i =) =(p—-1)) 4,
i=0 i=0
we finally obtain
r=> &. (A.16)
i=0

The latter is Kummer’s theorem. In words:

if p is a prime and r carries occur in the addition of n — k and k in base p, then r is the largest

value of x for which p® divides <Z>
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P-adic numbers

B.1 Infinite repetitions

For normal numbers we are used to deal with endless repetitions of decimals. As an example,

for the number 0.22222... | also denoted as 0.2, we know it is equal to 2/9. As another exam-

83
330"

denote 0.0515151... as y. If you multiply y by 100 and subtract 5.1 from the result you obtain

y: 100y—5.1 = y. The latter can be elaborated to y = %. Since x = 3—|—%+y we find x = 3%.

ple, for the number z = 3.2515151... = 3.251 we can derive it is equal to 3 To see this,

Instead of numbers with infinitely many digits to the right of the decimal point, we can
consider numbers with infinitely many digits to the left of the decimal point. An example
of such a number is ...999999., also denoted as 9. If we add 1 to this number the result is
...000000.. Of course to the far left there is living a 1. However, it is infinitely far away from
the decimal point. Ignoring the infinitely far away 1, we can think of ...000000. as being equal
to zero. Then we can write ...999999. + 1. = ...000000. as 9 + 1 = 0. It implies 9 = —1. To
see if this makes sense a little we take the square of 9:

9% = ...999999. - ...999999. = 9 - ...999999. + 90 - ...999999. + 900 - ...999999. + ... =

...999991. 4 ...999910. + ...999100. + ... = ...000001. = 1.

Well, at least it is not against logic that we obtain (—1)? = 1.

- 1 — 2
The division of ...999999. by 9 leads to ...111111. That is, 1 = e In a similar way 2 = ——,

9
_ 3 1 - 4 — 1 - 2
3= —g= "3 4= —g’ etc. If we add 1to 3 = —3 we obtain 34 = 3" Taking the square we
_ 4 _ _
get 56 = 9 Adding 4 results in 56 + 4 = 0 as desired since % — % =0.

The foregoing suggests the arithmetic is consistent for numbers with infinitely many digits
to the left of the decimal point. However, without restrictions ambiguities can occur. For

1
instance, if we add 1 to ...888888. = —S we get ...888889. = 9 If numbers with infinitely

many digits to the right of the decimal point are not excluded then also 0.111111... = 97

99
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1
That is, we would have two different representations for the fraction —. To avoid the ambigu-
ity in the representation of certain fractions, the numbers with infinitely many digits to the
right of the decimal point are excluded. Numbers with infinitely many digits to the left of the

decimal point and a finite number of digits to the right of the decimal point are called 10-adic
numbers. Examples of 10-adic numbers are:

1
3= ...000000.619 ,

1 —
_g = 33333310 - 310;

2 —
_g = 66666610 - 6107

1
7 = 0000002510,
3
© = -.000000.7510,
1
= = --000000.29,
11 1 3
11 1 6
—5 =3~ 5 = 06606710 —..000000.519 = ...666666.510 = 6.510,
5 1 1 6
5 =3t = 60666710+ ..000000.519 = ...666667.510 = 67510,
. .
5 = 1428571428571 = 1428570,
X -
- = 2857142857143, = 285714310,
9 1 1 985714
31; =3+ =+ 5 = 2857142857146 519 = 2857146510,
11 1 1 285714
B35 =3+ T =-2857142857146.25,0 = 2857146.2510

1 _
= ...09090909119 = 09119,

1 _
3= ...692307692307692307692307719 = 69230769230771¢ ,

1
7= ...29411764705882352941176470588235319 = 294117647058823531¢ ,

1
6l = 09836065573770491803278688524590163934426229508196721311475411¢ .

The index 10 indicates the numbers are 10-adic.
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5
The fraction 6 can be obtained in different ways:

§—1+1—675

6 3 ' o W0
or 5 1

S —1-2=8675

6 6 10
o 5 1

S —5.2=6751.

6 6 10

We see different routes lead to the same answer just as for addition, subtraction, multiplication
and division of normal numbers. Formally, 10-adic numbers obey the following properties:
P1: associativity for (+): a4+ (b+c¢) = (a+b) +c.
P2: neutral element for (+): a +0=0+a = a.
P3: inverse for (+): a + (—a) = (—a) +a = 0.
P4: commutative (Abelian) for (+): a+b=0b+ a.
P5: associativity for (-): a-(b-¢) = (a-b)-c.
P6: distributivity: a-(b+c¢)=a-b+a-c; (a+b)-c=a-c+b-c.
P7: neutral element for (-): a-1=1-a = a.
P8: commutative (Abelian) for (-): a-b="5b-a.
Therefore 10-adic numbers for a CUR (commutative unitary ring). As we will see in the next

section 10-adic numbers do not form an integral domain and therefore they do not form a field.

From the 10-adic number examples we see non-zero digits to the right of the decimal point
if the denominator of the fractional part (in reduced form) is not coprime to 10. In general,
for b-adic numbers non-zero digits to the right of the decimal point occur if the denominator
of the fractional part (in irreducible form) is not coprime to b. As a consequence, for p-adic
numbers, with p a prime, non-zero digits to the right of the decimal point occur only if the

denominator of the fractional part (in irreducible form) is a multiple of p.

B.2 10-adic zero divisors

It turns out that 10-adic numbers have an awkward property: they have zero divisors. That
is, there exists two numbers a # 0 and b # 0 such that a - b = 0. Examples of such a pair are
a = ...63811000557423423230896109004106619977392256259918212890625,

b= ...63811000557423423230896109004106619977392256259918212890624

or

a’ = ...36188999442576576769103890995893380022607743740081787109376,

b = ...36188999442576576769103890995893380022607743740081787109375.
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2 _ g factors in

These numbers satisfy the equations a> —a = 0 and b = a — 1. Since a
a-(a—1)=a-bwehave a-b=0. So, to find 10-adic numbers which satisfy a-b =0 is a
matter of finding 10-adic numbers which satisfy a? = a. Next to the trivial solutions 0 and 1,
such numbers must have a 5 or a 6 as the first digit to the left of the decimal point. Otherwise

it will not equal the first digit to the left of the decimal point of the square.

A procedure to find a number with 5 as the first digit to the left of the decimal point is
as follows [4]. First take the square of 5. Since 625 is the square of 25 the next digit must
be 2. Since 390625 is the square of 625 the next digit is 6. Since 8212890625 is the square
of 90625 the next two digits must be 90. If a zero digit occurs we take two digits at a time,
if two adjacent zero digits occurs we take three digits a time, etc. Since 793212890625 is the
square of 890625 the next digit must be 8. Since 8355712890625 is the square of 2890625
the next digit must be 2, and so on. Continuing the procedure leads to the first of the two

aforementioned pairs.

The procedure for a number with 6 as the first digit to the left of the decimal point is a
little more tedious. Since 362 = 1296 the next digit can not be 3. However, 762 = 5776
suggests to take 7 as the second digit. Since 3762 = 141376 we take 3 as the next digit. Since
93762 = 87909376 the next digit must be 9. Since 1093762 = 11963109376 the next two digits
are 10. Since 71093762 = 50543227109376 the next digit is 7, and so on. Continuing the

procedure leads to the second of the two aforementioned pairs.

The pairs are not unrelated: @’ = 1 — a. Not a big surprise because the square of 1 — a
equals 1 —a. That is, (/)2 = (1 —a)®>=1—-2a+a®?=1—a = a. We could therefore have
obtained the second pair directly from the first pair.

10-adic zero divisors exist because 10 is a composite number. As a consequence 10-adic
numbers do not form a field. Zero divisors do not occur in p-adic numbers if p is a prime.
As a consequence p-adic numbers form a field. The field of p-adic numbers is denoted as Z,,.
p-adic number for which non-zero digits do not occur to the right of the decimal point are
p-adic integers. The field of p-adic integers is denoted as Q,. As we will see below, p-adic
integers with finite digits to the left of the decimal point are just integers expanded in base p,

while p-adic integers with a repetitive cycle of digits represent fractions.

B.3 p-adic numbers

The p-adic calculus will be illustrated for p = 7. Afterwards the reader can apply it to
other primes. Some examples of 7-adic numbers are: 1 = 17, 2 = 27, 10 = 137, 20 = 267,

1 1 _ _
100 = 2027, 200 = 4047, 7= 0.17, 0= 0.017, —1 = ...6666667 = 67, —2 = ...6666657 = 657,
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— 1 - 1 - 1 —
—8 = ...6666567 = 6567, 5 LA111117 = 1y, 3= ..2222227 = 27, 5= ...3333337 = 37,

2 _ 5 _ 1 _ 1 _
—5 = A4y = dp, = LB555557 = Br, o = 5555567 = 567, 5 = .444445; = 157,

and so on.

3
For instance, to find the 7-adic representation of 5 one considers the expansion in base 7:

3 =
Doy (B.1)
=0
Multiplication by 5 gives
o0
3= 5a,7". (B.2)
=0

Since 3 = 37 there holds 5ag = 3 mod 7. The solution is ag = 2. Since 5-2 = 10 = 137 it
gives 1 as a carry. Therefore, 5a;1 +1 =0mod 7 — a1 = 4. Since 5-4 + 1 =21 = 307 it gives
3 as a carry. Therefore, bas +3 = 0mod7 — ay = 5. Since 5-5 + 3 = 28 = 407 it gives 4 as
a carry. Therefore, bas +4 = 0mod7 — a3 = 2. Since 5-2+4+ 4 = 14 = 207 it gives 2 as a
carry. Therefore, 5a4 +2 =0mod7 — a4 = 1. Since 5-1+ 2 =7 = 107 it gives 1 as a carry.
Therefore, 5as +1 = 0mod 7 — a5 = 4. Since a; = 4 leads to a;+4 = 4 the pattern repeats to
infinity. Hence,

g = ...125412542; = 12542 . (B.3)

A fraction whose 7-adic representation has a repetition of k digits will have 7% — 1 in the
denominator or a divisor of it if the numerator and denominator share a common divisor. For
k = 1 the fraction has 6 = 2 - 3 in the denominator or a divisor of it. For k = 2 the fraction
has 48 = 2%-3 in the denominator or a divisor of it. For k = 3 the fraction has 342 = 2-32.19
in the denominator or a divisor of it. For k = 4 the fraction has 2400 = 2° - 3 - 5% in the

denominator or a divisor of it. In the next table some numbers 7% — 1 are factorized.

To obtain a prime factor p # 7 in the denominator it suffices to consider K = p — 1. For
instance, 4 is the smallest k for which 5 appears as a fraction of 7¥ — 1 and 10 is the smallest
k for which 11 appears as a fraction of 7% — 1. It often happens that a prime factor appears
for k < p—1. For instance, 3 is the smallest k for which 19 appears as a fraction of 7% —1 and
5 is the smallest k for which 2801 appears as a fraction of 7% — 1. If a prime factor p appears
for £ < p — 1 then the smallest & is a divisor of p — 1.
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k h—1 factors

1 6 2! 3!

2 48 24 31

3 342 2! 32 19!

4 2400 25 31 52

5 16806 21 31 2801!

6 117648 24 32 19! 43!

7 823542 21 31 291 47331

8 5764800 26 31 52 12011

9 40353606 2! 33 19! 37! 1063!

10 282475248 24 31 111 191" 28011

11 1977326742 21 31 1123' 293459!

12 13841287200 25 32 52 13! 19! 43! 181!

13 96889010406 21 3! 161481684011

14 678223072848 24 31 291 113! 911" 4733!

15 4747561509942 21 32 19! 31! 2801' 159871!

16 33232930569600 27 31 52 17! 1201' 1695531

17 232630513987206 2! 3 14009 2767631689"

18 1628413597910448 24 33 191 37! 43! 1063' 117307*

19 11398895185373142 21 31 419! 4534166740403"

20 79792266297612000 25 31 53 111 191' 281" 2801' 4021"

21 558545864083284006 21 32 191 291 4733! 11898664849'

22 3909821048582988048 24 31 231 1123' 293459' 10746341!

23 27368747340080916342 21 31 47! 3083! 31479823396757"

24 191581231380566414400 26 32 52 13! 19 43! 73 181' 193! 409! 1201!
25 1341068619663964900806 21 31 25511 2801! 31280679788951!

26 | 9387480337647754305648 24 31 531 228511817' 16148168401"

27 | 65712362363534280139542 21 3% 19' 37! 109! 811! 1063 2377' 2583253!
28 | 459986536544739960976800 25 31 52 291 113! 911! 4733' 13564461457
29 | 3219905755813179726837606 21 31 591 127540261' 71316922984999!
30 | 22539340290692258087863248 | 2* 32 11! 19! 31! 43! 191! 2801 159871 6568801!




Appendix C

Two binomial identities

Here we will prove two identities for binomials. The first one is

e () - ()

We start splitting the sum in two sums:

Sem-m () = Ean()-S(T).

It can also be written as

m—1

k=0

g (2/? ) - (275 T!:)!k! - (QST 1;)}(22171 o= m <2;T __11)

Using

we get

k= k=0

Changing variables in the most right sum we obtain

T fam—1 o fam—1
Since Z 2m< ; ) is identical to Z 2m( i ) and since

k=0

am (M) = (L2 Y =m0 ) =m0 ()
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> (2m - 2k) <2ZL> = 2m (2?:) + 2mmZ‘; <2m> 2 Z k<2m> .

md om om om m om — 1
O (2m — 2k) (k>—2m<m)+2mz(k>—222m<k_1).

)

(C.1)

(C.3)

(C.4)

(C.6)

(C.7)
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there holds

H

S (2m — 2k) (T) =2m (27:) + 2mTZ1 (T) - 2mzl(2m — k) (2;71) . (C.8)

The latter implies,

k=0

k=0 k=0
Hence
ml 2m 2m
2 2m — 2k =2 O C.10
> () =2 () (C.10)

The second binomial identity we will prove here is

mi‘l@m —1-2k) <2mk_ 1) = % <2;:> . (C.11)

k=0

We start splitting the sum in two sums:

~ (2m — 1— 2k) <2mk_ 1> g (2m — 1) <2m - 1> 27: jk<2m B 1) (C.12)

It can also be written as

mzl(zm—1—2k) (ka_ 1) = m(?:) +(2m—1) mzl <2mk_ 1> —2 i k(zmk_ 1> - (C.13)

k=0 — ot
Using
k<2mk:_ 1) - (QST 1_ _1):;;{;; - (;jlm__l?!,g?k__ll))! =(2m—1) (2;:__12> (C.14)
we get
B (7)) e B ) e (1)

(C.15)

Changing variables in the most right sum we obtain

(7o) B ) o ()

m—1
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s 2m — 2 s 2m — 2
Since ]ZO (2m — 1)( j > is identical to kZ_O(Qm— 1)< i ) and since

(2m —1) <2mk_ 2) = (@m—1-k) (2:1”_’ Ii k) = (@m—1-k) <2mk_ 1) . (Cam)

there holds

m—1 m—1 m—1
2m —1 2m 2m —1 2m —1
= — — 4dm—2-2 .
g (2m—1— 2k< . ) m<m>+(2m 1)k:0< . > k:(m k)( k: >

k=0 0
(C.18)
The latter implies,
e om — 1 om\ o om
kZ()Qm—l—Qk( i >: <m>—k0(2m—1—2k)<k> (C.19)

Hence

ml om — 1 om
1 _ 92
2];:0 (2m — 1 — 2k) < . ) m<m> 0 (C.20)
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