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Preface

Differential equations form a very large subject of mathematics. For many ordinary differential
equations and some partial differential equations there exist methods to find solutions. The
discrete counterparts of differential equations are difference equations. Difference equations
are recurrence relations. Solutions can be found for simple linear difference equations. For
non-linear difference equations solutions can not be found in general. However one can inves-
tigate the stability properties of fixed points and periodic limit cycles in order to gain insight
in the dynamics. The latter can give rise to bifurcations. For a stable periodic limit cycle the
orbit does not diverge to infinity. There also exists orbits which do not diverge to infinity and
which are not periodic. Such orbits are chaotic and often attracted to a strange attractor.
Whether or not an orbit diverges to infinity depends on its starting values and on the values
of the constants in the difference equations. Investigation of dependency of orbits on starting
values leads to basins of attraction and the investigation of dependency of orbits on constants
of the difference equations leads to Lyapunov images. In these images fractals can occur.
Within this brief overview we already meet terms as difference equations, recurrence relations,
orbits, chaotic dynamics, periodic limit cycles, fixed points, bifurcations, basins of attraction,
Lyapunov images, fractals, etc. Moreover, a fixed point can be a node, a saddle, a spiral or
a center dependent on its stability behaviour. So, if, for example, somebody with a technical
background wants to learn something about dynamics of non-linear difference equations or,
as another example, a high school student wants to write a practical assignment on fractals,

they are forced to study the whole area including all kinds of terms which may be new to them.

The present book is intended to be a simple and informal introduction to dynamical sys-
tems and properties as fixed points, bifurcations, Feigenbaum constants, chaotic orbits, Julia
sets, the Mandelbrot set and Misiurewicz points. With simple is meant that a high school level
of mathematics (together with the willingness to study) suffices to understand the contents.
With informal is meant that the book is not organised as an enumeration of theorems and
proofs. Instead it rather is a random walk through famous dynamical systems. In general,

proofs are omitted, formal language is avoided and citations are restricted to a few occasions.
The present book has just been written for educational purposes. It is intended for high

school students with talent for mathematics and for readers with (a little more than) a high

school level mathematical background.

may 2020, Hans Montanus, Ron Westdijk
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Chapter 1

Stability

1.1 Stability of one dimensional systems

The modeling of a process (biological, chemical, physical, economical or whatever) often leads
to a differential equation or to a difference equation. Although our goal is to consider differ-
ence equations, we will occasionally also consider differential equations for comparison. For
instance, the absolute growth of waterlilies in a pond will initially be proportional to the
number of waterlilies. The growth will be damped when the pond becomes full of waterlilies.

This can be casted in a differential equation:

d
d—l; = aw — fw?, (1.1)

where w is the number of waterlilies, where time t is the evolution parameter and where o and
B are constants. Since w is a function of ¢t we should actually write w(t) instead of w. However,
we just write w and keep in mind it actually is w(t). In reality the number of waterlilies will
be counted in the summer and not in the winter. A biologist may argue that the evolution of

waterlilies has to be considered from year to year. This can be casted in a difference equation:

Wil = Wy — bw?I , (1.2)

where w,, is the number of waterlilies in year n and w41 is the number of waterlilies one year
later. Here a and b are the constants. We will use greek symbols for constants in differential

equations and roman symbols for constants in difference equations.

In the foregoing equations the right hand side is a function of solely w respectively w,,. That
is, W = f(w) where the dot represents the derivative d/d¢t and where f(w) = aw — Bfw?, and
wpt1 = f(wy) where f(w,) = aw, —bw?. Differential equations such as w = aw — fw? —2e~*
and difference equations such as wy,+1 = aw, — bw? + 3t can not be written as 1w = f(w) or

Wn41 = f(wn)
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For a general quantity x we consider hereafter only differential equations and difference equa-

tions of the type @ = f(x) respectively x,4+1 = f(zp).

We start with the stability analysis for a differential equation of the type ¢ = f(z). A
point of equilibrium is a point where the quantity x does not change in time: 4(¢) = 0. The
equilibrium points x, therefore follow from f(z,) = 0. For z close to x,, that is, for z = z,+0

with ¢ small, we have

i=fx) — b=flz.+0)~ fla.)+ 8{;(;) 5= b=f(z)s,  (13)
SN o . iy Of(x)
where f’(x,) is the derivative of f with respect to x evaluated at x,. Thus f'(z.) = D

T x
From the equation above for § it follows that an equilibrium point is stable if f’(x,) < 0 and

unstable if f'(z,) > 0.

We give an example by means of the following differential equation:
T =ar, (1.4)

where o # 0 is a constant. The equilibrium point is z, = 0. Since f’'(z) = « the equilibrium

point is stable if & < 0 and unstable if o > 0.

Writing the initial condition as x(0) = x¢ we obtain by means of integration the solution
x(t) = e, (1.5)

If @ > 0 then |z(t)| increases exponentially for increasing ¢t. If a@ < 0 then |z(t)| decreases

exponentially for increasing ¢. Alternatively, lim z(¢) = 0 if @« > 0 and lim z(¢) = 0 if
t——o0 t—o00

a < 0. Indeed for @ > 0 the point z(—o0) = 0 is an unstable equilibrium point (a source),

the larger a the faster the divergence from the source. For a < 0 the point xz(oc0) = 0 is a

stable equilibrium point (a sink), the larger —« the faster the convergence towards the sink.

The situation is schematically illustrated in figure [1.1

Suppose we wish to integrate equation (|1.4) numerically. According to the Euler method

we write = as x, and & as (xn,41 — ©p)/At. The result is a difference equation:
Tptl =Tp + - At-x, = (14 a)x,, (1.6)

where a = - At. Starting with xg we then successively obtain x; = (14-a)xo, z2 = (1+a)z; =
(1 + a)%zg, ..., z, = (1 + a)"z. Stability requires —oo < nli_)rgo(l + a)" < oo, which is, for
a # 0, satisfied if —1 < 1+a <1 or —2 < a < 0. That is, the stability region has shrunk
from (—o0,0) to (—2,0) with respect to the continuous differential equation, see figure
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sink i T source

Y
T T T I T T T
-3 -2 —1 0 1 2 3
o
Figure 1.1: Sink and source structure of & = azx .
source sink source
8 0t--------- ® O
T T T I T T T
-3 —2 —1 0 1 2 3
a

Figure 1.2: Sink and source structure of 41 = (1 + a)z), .
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As another example we consider the differential equation

i=(a—1)z—azx?, (1.7)
where a # 0 is a constant. The differential equation is non-linear because of the z2. The
equilibrium points are z, = 1 — 1/a and x. = 0. Since f'(z) = a — 1 — 2ax we have

f'(xz«) = 1—a. So, the equilibrium point z, = 1—1/« is stable if & > 1 and unstable if a < 1.

Since f'(z4) = a — 1 the equilibrium point x,, = 0 is stable if @ < 1 and unstable if a > 1.

Writing the initial condition as x(0) = x¢, the analytical solution reads

B (1 —-1/a)xg
Cxo+ (1 -1/ —ap)e(@=Dt

(1.8)

The solution is known as the logistic function. If o < 1 then tlim z(t) =1 —1/a and
——00

lim z(t) =0. If a =1 then z(t) = zo. If @ > 1 then lim z(f) =0 and lim z(t) =1—1/a.
t——o0 t—o0

t—o00
For various xg values the evolution of z(t) is shown in the next figure for « = —1 (left panel)

and o = 3 (right panel).

~—~ —~
+ -~
~— ~—

For a < 1 the curves z(t) depart from 1 — 1/a and arrive at 0, while for aw > 1 the curves
x(t) depart from 0 and arrive at 1 —1/a. The curves have an S-shape (Sigmoid curve) if zg is
between 0 and 1—1/c, the curves are horizontal lines if 29 = 0 or 9 = 1 —1/a and the curves
have a discontinuity otherwise. The sink and source structure is schematically illustrated in

the next figure.

Suppose we wish to integrate equation (|1.7) numerically. The Euler method then leads to

the following discrete difference equation:

$n+1:$n+(a—1)At~xn—a'At-x%. (1.9)
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For the choice At = 1 and writing « as a we have:

Tptl = ATy — aazi.

(1.10)

The latter difference equation is known as the logistic equation. The equilibrium points or
fixed points L follow from L = aL — aL?. Tt follows directly that L =0 or L =1 — 1/a. The

curves of the fixed points as a function of a are the same as in the previous figure.

The stability analysis for the fixed points of a difference equation is somewhat different than

for differential equation. For a first order difference equation x,1 = f(x,) a fixed point L is

a solution of the equation
L=f(L).

A fixed point L is stable if

of
—1<%’L<1.

(1.11)

(1.12)

It can be seen from a first order Taylor expansion of f(xy) in the neighborhood of L:
(1.13)

0
fan) = S0+ 5
or of
Flan) = f(L) ~ 5=
Since f(xyn) = xp41 and f(L) = L we have
0
Tpy1 — L~ 3»”6{1

L(xn*L)

L(xn_ ) -

(1.14)

(1.15)
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The stability condition |x,+1 — L| <’l‘n — L’ is satisfied if

of
— <1. 1.16
O0xy, L ( )
The latter will be briefly written as |f/(L)| < 1. The following diagrams illustrate the stability
condition.
|
of of
L <1 g 1<) <o -
ox L L OxlL — L
‘ Ty
A
W K f(x)
//'\}\// I //'})//
f’ ‘ unstable f(@) {S:/ stable
L L
| |

unstable

A stable fixed point L for which L = f(L) can be regarded as a limit cycle with period 1.

0
A period 2 limit cycle occurs if both the conditions L = f(f(L)) and —1 < f(gm(ﬂt)) ; <1
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are satisfied. A period 3 limit cycle occurs if the conditions L = f(f(f(L))) and —1 <
f(f(f(x)))
Ox

< 1 are both satisfied, and so on.

For the logistic equation z,.1 = ar, — az? we have f'(L) = a — 2aL. For L = 0 this is
f(0)=aand for L=1—1/a thisis f'(1—1/a) =2 —a. So, L =0is stable if -1 <a <1
and L =1—-1/aif 1 < a < 3. What happens for L =0 at a = —1 and for L =1 —1/a at
a = 3 is that two fixed points come into existence, a bifurcation. For other values of a new
bifurcations can occur (multiple fixed points) or the dynamics can become chaotic (no stable

fixed points at all). Bifurcations and chaos will be considered in chapter 2.

1.2 Mathematical terms

We already met some terms: differential equation, difference equation, non-linear, first order.

It may be clarifying to make a list of terms with small explanations.

e For a differential equation the evolution is continuous. For example, the variable is a

function of time ¢: x(t).

e For a difference equation the evolution is evaluated only for fixed increments. The
number of increments is counted by an integer n: x,. A difference equation is also

called a discrete equation and a recursion equation.

e A differential equation and a difference equation is one dimensional if there is one

variable, x for instance.

e A differential equation and a difference equation is two dimensional if there are two

variables, x and y for instance.

e A differential equation and a difference equation is linear if it contains only linear terms

of the variables, such as x, y, etc.

e A differential equation and a difference equation is non-linear if it contains non-linear

2

terms of the variables, such as z2, 2y, 32, etc.

e A differential equation is first order if it contains only the first derivative, &. It is m-th
order if there is a m-th derivative in the equation. For example, & + az + 8 = 0 is

second order.

e A difference equation is first order if the maximum difference in subscripts is only 1,
as for z,11 = ax, + b. It is m-th order if the maximum difference in subscripts is m.

For example, z,,4+1 = az, + bx,_1 is second order.
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1.3 Stability analysis for two dimensional systems

In the previous section we considered stability analyses for one dimensional systems. An

example of a (non-linear, first order) two dimensional system of differential equations is

v = av — fv? — yow

(1.17)
w:pw—HwQ—i-uwv,
where the greek symbols are constants. It will be written as
v = f(v,w
(v, 0) (1.18)

w = g(v,w).

The equilibrium point is the point where both © = 0 and w = 0. Let (vs,ws) be a point of

equilibrium, then for v = v, + § and w = w, + € with § and € small the system becomes

('5 ~ af(va U}) af(l), w)
- ov ow

. _ 9g(v,w) dg(v, w)

€ ov ow

o+ €

(v w-) (1.19)

€.

(’U*,’UJ*)

0+

(ve,ws) (ve,ws)

5 9 oI b
-8 [ "
ov  Ow (v, wie)

The matrix with the derivatives is the Jacobian. The Jacobian evaluated at (v, w,) will be

denoted as J (v, wy). Thus
§ )
<> ~ J(Vk, wy) - ( ) (1.21)
é €

The stability of an equilibrium point (v, w,) depends on the eigenvalues of J(vy,wy). The

In matrix notation this is

eigenvalues follow from

Jii— A J12

=0 — MN- (J11 + JQQ))\ + Ji1Jog — J19J91 = 0. (1.22)
Jo1 Ja2— A

The equation can be written shortly as
M -TA\+D=0, (1.23)

where T is the trace of the Jacobian (the trace is the sum of the elements of the main diagonal)

and where D is the determinant of the Jacobian. The solutions are

T+VT?—4D

Ae = .

(1.24)
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An equilibrium point is a
e stable node or sink if both eigenvalues are real and negative.
e unstable node or source if both eigenvalues are real and positive.
e saddle if both eigenvalues are real and have opposite sign.

e stable focus or spiral sink if both eigenvalues have an imaginary part and a negative

real part.

e unstable focus or spiral source if both eigenvalues have an imaginary part and a

positive real part.
e center if both eigenvalues are pure imaginary.
An example of a (first order, non-linear) two dimensional system of difference equations is

Uptl = QUp — bv,z1 — CUp Wy,

) (1.25)
Wp41 = rWy, — kw,, + mwyvy,,
where the roman symbols without subscripts are constants. In general it is
Upt1 = f(vp,w
! (b, 0r) (1.26)

Wp+1 = g(vm wn) .

The equilibrium point is the point where both v,+1 = v, and w41 = wy,. Let (L, K) be a

point of equilibrium:

L=f(L,K
A ) (1.27)
K=y¢y(L,K).
A first order Taylor expansion with respect to (L, K) gives
0 0
Flomwn) = LK)+ 90| (o =Ly 4 90| (g~ )
81) ow (LK)
9g (1.28)

g(vn,wn)—g L K) ’

Substituting f(vy, wn) = vpy1, f(L, K)

=1L, g(vnawn) = Wn+1 and g(L,K)

owlwr

= K we have

0 0
- L= e+ 2 -k
ov (L,K) ow |(L,K) (1.29)
dg dg '
ot — k=2 4+ Y W — K) .
Wnt1 v (LK) Wn = L)+ 5 (L, >(w )
In matrix notation this is
af d
<vn+1L>%<gfj %];> .<an> (1.30)
wpa1 — K 5 2 LK) \Wn K
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The Jacobian evaluated at (L, K) will be denoted as J(L, K). Thus

mn _L n_L
(“ = ) ~ J(L,K)- (” ) (1.31)
wn+1—K wn—K

The stability of an equilibrium point (L, K) depends on the eigenvalues of J(L, K). For this
the modulus of a complex eigenvalue is important. The modulus is the square root of the

sum of the real part squared and the imaginary part squared, thus the modulus of = + iy is

\/aﬁy2 . An equilibrium point is a
e stable node if both eigenvalues are real and both moduli smaller than 1.
e unstable node if both eigenvalues are real and both moduli larger than 1.
e saddle if both eigenvalues are real and just one modulus is smaller than 1.

e stable focus or stable spiral point if both eigenvalues have a non-zero imaginary part

and a modulus smaller than 1.

e unstable focus or unstable spiral point if both eigenvalues have a non-zero imaginary

part and a modulus larger than 1.
e center if both eigenvalues have a non-zero imaginary part and a modulus equal to 1.

The stability analysis and classification of equilibrium points can be extended to three and

more dimensional systems, but that is beyond our scope.

1.4 One dimensional, first order, linear difference equations

A recursion formula of the type u,4+1 = au, + b, with a # 0 and b constants, is a one dimen-

sional, first order, linear difference equation. The equation (1.6) is an example.

The difference equation w1 = au,+b has a fixed point L = 1 as follows from L = aL+b.

The fixed point is stable if —1 < a < 1.

—a

Starting with ug we successively obtain
u1 = aug + b,

uy = aug +b = a®ug + b(1 + a),

u3z = aug + b = adug + b(1 + a + a?),

Uy = a"ug+b(14+a+a®+ ... +a" )

The latter is equal to u, = a™ug+b
b

_a.

n__ . . .
aaill. Hence, a direct equation for u, is u, = (up—L)a"+L,

where L =
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In case a = 1 there is no equilibrium, u,, grows forever: u, = ug + nb.

An alternative way is to substitute u,, = v, + L where L = is the fixed point. Then

—a
Up4+1 = aly, + b is reduced to

Unt1+L=alvp,+L)+b — vpqy1=avy,—L+al+b — vuy1 =av,. (1.32)

a”—1
a—1 "~

Hence, v, = a™vg and thus u,, — L = a"ug — a"™ L. The latter also gives u,, = a"ug + b

First order linear difference equations, u,4+1 = au, + b, have simple sum rules:

= amtt —1 b (m+1)b
If @ # 1 there holds Zuk = <u0 — ) + .
P a—1 1 1—a

m
1
If @ = 1 there holds Zuk =(m+1) (uo + 2mb).
k=0
1.5 One dimensional, second order, linear difference equations

A recursion formula of the type u,+1 = au, + bun—1 + ¢, with a, b # 0 and ¢ constants is a

one dimensional, second order, linear difference equation. As follows from L = aL + bL + ¢

c
it has a fixed point L = [— Here it is advantageous to substitute u, = v, + L with
J— a —
c
L = —— . Then the equation uyy1 = auy + bup—1 + ¢ is reduced to

l—a—0

Upt1 = Uy + bup_1 . (1.33)

Starting with vg and v; we successively obtain

v9 = avy + buyg,

v3 = ave + buy = (a® + b)vy + abuy,

vy = av3 + bug = (a® + 2ab)vy + (a® + b)buvy,

etc. As shown in appendix A for arbitrary n > 2 this is

—_ Ln/g/zJ n-— 1 - k n—l—?k}bk‘ + b Ln/QZ_IJ n— 2 - k n—?—?kbk‘ (1 34)
Un = U1 k a (%) k a . .
k=0 k=0

When we substitute v, = ¢", with g a constant, the equation ((1.33) reduces to the character-

1stic equation:

g>—ag—b=0. (1.35)
It has two solutions:
1 1
g+:§(a+\/a2—|—4b> , g_:§(a—\/M). (1.36)



16 CHAPTER 1. STABILITY

It is shown in appendix B that for a? 4+ 4b # 0 the equation (1.34) is identical to the equation

_ b9+ — U1 no_ vog- — U1 g (1.37)
9+ — 9- 9+ — 9-

If a® + 4b = 0 then g, = g_ = a/2. For this situation we will write both g, and g_ as g. So,
g = a/2 and ¢g? = a®/4 = —b. It is shown in appendix C that for a® + 4b = 0 the equation
(1.34) is identical to the equation

vp = nu1g"t — (n — 1Dueg™. (1.38)

As a result we have two expressions for the solution of linear second order difference equations.

The first one is the equation ((1.34). The second one is the equation (1.37) if a? 4+ 4b # 0 and
the equation ([1.38) if a? + 4b = 0.

For the stability analysis we write v, as wp4+1. Then the equation ([1.33) becomes a two

dimensional system:

Upt1 = avy, + bwy, (1.39)
Wp+1 = Up -

) (@b 7). (1.40)
Wp41 1 0 (LK) W,

The fixed point is (L, K') = (0,0). The equation for the eigenvalues of the Jacobian is equation

In matrix form this is

A2 —a)X — b= 0. This is equal to the characteristic equation. The eigenvalues are

A+=1(a+ a2+4b) , )\_:l(a—\/a2+4b>. (1.41)

2 2

Obviously, g+ is identical to Ay.

We distinguish three cases:

1. a®+4b > 0, then g4 and g_ are real. As an example we consider the difference equation
Fopn=F,+ F1, (142)
with Fy =0 and F; = 1. That is, a = 1 and b = 1. According to the equation (1.34) we

therefore have
n/2-1/2)
F, = 1.4
> (" (1.43)

and according to the equation ((1.37) we have

_ gt -t (A4 VE) - (- VE)"
g+ —9- 27/5 '

Fy (1.44)
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Both lead to the Fibonacci series 0,1,1,2,3,5,8,13,21,34,55,89,.... For increasing
n the Fibonacci numbers diverge to infinity, while their ratio F,/F,_; converges to
¢ = (1++/5)/2; the golden ratio.

As another example we consider the difference equation is

1 1
Untl = 5Un + i (1.45)

with vg = 0 and v1 = 4. That is, a = 1/2 and b = 1/4. According to the equation (1.34)
we obtain
[n/2-1/2] 1—k
n—1-—
— 23771 ]
Un > ( L ) (1.46)
k=0

and according to the equation ((1.37) we obtain

99" _ psn(1+VE)" - (1= VE)"
9+ — 9- 275
35 _ 13 21 17
Both 1 h i 4,2,2,—, -1, —, —, —, ..
oth lead to the series 0,4, 2, 2, 5 11 1632’ 32"
the connection with the Fibonacci numbers: v, = 237 "F,.

vy =4 (1.47)

.. The series converge to 0. Notice

2. a2 +4b =0, then g = a/2 and g> = —b. Expressed in the constant a the equation (1.38)

reads = (2 (UO . <2av1 —m)) ' (1.48)

For |a|] > 2 the series diverges. If a = 2 the series grows linear with n:
Up = v +n (v — ) - (1.49)
For |a| < 2 the series converges.

3. a®> +4b < 0, then g, and g_ are complex numbers. As an example we consider the
difference equation

Untl = Up — Up_1, (1.50)

with v9 = 0 and v; = 1. That is, a = 1 and b = —1. According to the equation (1.34)
we therefore have
[n/2-1/2] 11—k
_ n—21i- k
=y ( . )(—1) (1.51)
k=0
and according to the equation ((1.37) we have
_gr -9t

_ A+ - (1 —iV3)"
9+ —9g- 21i\/3 '

(1.52)
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The latter can also be written as

— ul/g <<cosg + isin g)n - <cosg — isin g)n> . (1.53)

Un,

By means of the de Moivre’s theorem this is equal to

1 nmw ..onm nmw .. onw
vn:ﬁ«cos?—i-zsm?)—<cos?—zs1n?>>
1 nwto .. nmw nwt .. N
= % (cos? —i—zsm? —cos + isin ?) (1.54)
2 nm

All expressions lead to the series 0,1,1,0,—1,-1,0,1,1,0,—1,—1,0,1,1,0,.... From a
two dimensional perspective this is (0, 1), (1, 1), (1,0), (0, —1), (-1, —1), (-1,0), (0, 1), ....
Since the modulus is of Ay is 1 the fixed point (0,0) is a center of clockwise rotation.

As another example we consider the difference equation

1
Unt1 = Un = 5Un—1, (1.55)

with vg = 0 and v; = 1. That is, a = 1 and b = —1/2. According to the equation (1.37
we have g+ = (1+14)/2 and
n __ .n 1 A (1 — )™ 9
SR et € il ) sin 2. (1.56)
9+ — 9~ 2% (V2)n 4

It leads to the series 0,1,1,1/2,0,—1/4,—1/4,-1/8,0,1/16,1/16,1/32,0,.... From a
two dimensional perspective this is (0,1), (1,1), (1,1/2),(1/2,0), (0,—1/4), .... Since the
modulus is of g4 is %\@ < 1 the fixed point (0, 0) is a stable focus. The successive points

spiralize (clockwise rotation) towards the fixed point.



Chapter 2

One dimensional difference equations

2.1 Introduction

In this chapter we will consider difference equations of the type

ITm+1 = f(xm) ) <2~1)

where f may depend on one or more parameters. For instance, for f(z) = a(1l — z) with a a

parameter, the difference equation is as follows:
Tmt1 = a(l — ) . (2.2)

An equilibrium point, L, also called a fixed point, follows from L = a(1 — L). The fixed point
is L = aL—i—l' For a = 3/4, for instance, the fixed point is L = 3/7 and it is stable. To
illustrate it we take a = 3/4 and start with g = 1/3. Then x; = 1/2, x9 = 3/8, x3 = 15/32,
x4 = 51/128, etc. In the long run the values of x,, converge to 3/7, see the next figure.

0.7 - |
0.6 =
0.5 . -

04 / ‘g e . . -

Tm

0.3 B
0.2 B
0.1 B

0 T T T T T T T T T T
0 1 2 3 4 ) 6 7 8 9 10 11 12
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For a = 0.99 and xy = 1/3 the successive z,, slowly converge to 99/199 ~ 0.4974874, see the

next figure.

0.6 - |

0.5

0.4

Tm

0.3 B

For a =1 and zy = 1/3, we obtain x; = 2/3, 9 = 1/3, x3 = 2/3, x4 = 1/3, etc. That is, the

T, alternate are 1/3 and 2/3, see next figure.
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0.6 Y A /A ,\\ //\\ //\ [
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g 0.4 ) v/ L L Vo - s

8 / \/ \y
[ J

0.3 L

0.2 L

0.1+ L

0 T T T T T T T T T T T T T
o 1 2 3 4 5 6 v 8 9 10 11 12

There is neither convergence nor divergence. Of course, for all zg we will obtain 1 = 1 — xg,
x99 =1—(1—=2x9) = x0, 3 = 1 — 20, T4 = T, etc. For a = 1 and zyp # 1/2 we obtain an

alternating sequence. For a = 1 and z¢p = 1/2 we have z,, = ¢ = 1/2 for all m.
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For a = 5/4 and xy = 1/3 the successive z,, diverge from 5/9, see the next figure.
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In a similar manner it is found for a < 0 that subsequent x,, converge if —1 < a < 0, and

diverge if a < —1.

The foregoing mapping function was linear: the power of x in f(x) is 1. Things become
more of interest when we consider more general functions with larger powers of x, such as
f(x) =22 +aor f(x) = asin(x). For a general function f(x) a fixed point L is a solution of

the equation
L=f(L). (2.3)
As shown in chapter 1 a fixed point L is stable if

of
—l<oo| <1 (2.4)

A stable fixed point L for which L = f(L) can be regarded as a limit cycle with period 1.

A period 2 limit cycle occurs if both the conditions L = f(f(L)) and —1 < O (@)

1
Ox ‘L <
are satisfied.

A period 3 limit cycle occurs if the conditions L = f(f(f(L))) and —1 < W‘L <1

are both satisfied, and so on.
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2.2 Logistic equation

A one dimensional, first order, non-linear difference equation is the logistic equation:

Tmt1 = 0T (1l — 2 .

(2.5)

The function f(x) = ax — ax? is the logistic function. The additional condition 0 < a < 4
guarantees 0 < 2,41 < 1 for x,,, € [0,1]. A fixed point L occurs if L = aL — aL?. There

-1
are two solutions: L = 0 and L = ¢ Since 8—

gl a — 2alL, the stability requires

a x

—1 < a—2aL < 1. Substituting L = 0 into the stability requirement leads to 0 < a < 1 and
a —_—

substituting L = into the stability requirement leads to 1 < a < 3. So, this is what

happens: for a close to 0 the sequence xg, 1, z2,... quickly converges to 0. It is illustrated in
the left panel of the next figure.

0.9 | 0.9 =
0.8 | 0.8 =
0.7 |e 0.7 |e -
0.6 | “‘ a=0.2, zg=0.7 0.6 | \‘\ a=0.9, zg=0.7 |

205 205 s
04| 04
03 031
02{ 02 | o
01| 0.1 | '\-\1\._._._1_._._._1

0 ®-0-0-0 0-0-0-0 0 -0 0
0 2 4 6 8 10 12 0 2 4 6 8§ 10 12
m m

For a a little smaller than 1 the sequence xg, z1, o, ... slowly converges to 0, see right panel
of previous figure. For a a little larger than 1 the sequence xg, x1, o, ... slowly converges to

a—1

. For a close to 2 the sequence xg, z1, T3, ... quickly converges to ——, see the left panel

a a

of next figure. For a a little smaller than 3 the sequence xg,x1,x2, ... slowly converges to
—— see the right panel of next figure.

a
The speed with which the sequence xg, 1,2, ... converges to a stable fixed point L is deter-
0
mined by a—f at this point. If, for instance,
x

= — the speed of convergence is three
8$ acam 8 1
times larger in comparison to the situation where a—f =5 Actualy,
Xz,
|Tmy1 — L| = " |z, — L], (2.6)
of . . : .
where k,;, = In e , as will be derived in section 2.4.
|z,
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In particular for ¢ = 3 and x,,, = 2/3 we have k,, = 0: no convergence. Beyond a = 3 a

period 2 limit cycle sets in, see next figure.

Tm

e?T T
o e ey

Voot o

o P el
l I

1 N R PPN RN

A
[ U R IR
vlll‘l|\,|‘

Lo

a=32, rg=0.1

0.9 - 09
0.8 | - 08
0.7 r.\’.’.,.‘*":*l./.;.,l.\’.\ﬂ,..l..’.,,7 0.7 |
0.6 | ./‘.” ‘ol\o/b'b'\o”o¥;b"d‘ooo'oo‘o¥ii 0.6
0.5 | L2 05 [
I & h
0.4, - 04|
0.3 |, 03
0.2 a=3, xo=01 02
0.1 » 01k
0 0
0 20 30 40 50 0

10 20 30 40

20

Alternatively, for a = 3 there is a bifurcation to two fixed points. The fixed points follow from

L= f(f(L))

—  L=af(L) - af*(L)

The latter equation can be elaborated to

3L — 20313 + (a®> + a®)L? — L+ L =0.

This polynomial for L can be reduced to

(aL2 +(1—a)l) (a2L2 —(a+a*)L+1 +a)=0.

—  L=a(aL — aL?) — a(aL — aL?)%

(2.7)

(2.8)

(2.9)
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The expression between the first pair of brackets is the 1 limit cycle. This is not a surprise

since a 2 limit cycle contains a 1 limit cycle. The expression between the second pair of

brackets is for a 2 limit cycle with two different limit values. The two limit values follow from

a’L* —(a+ad>)L+1+a=0. (2.10)
The two solutions are
a+1t+/(a+1)(a—3
Ly = (Qa ) ) . (2.11)
We also find 5 I
fgL()) =a®—2a*(1 4+ a)L +6a°L* — 4a3L3. (2.12)
for L = L4 it is reduced to
of(f(L)) 2
—_ =a°—2a—4. 2.1
5L . a a (2.13)

The requirement for stability therefore is

—1<a’-2a—-4<1 — 3<a<l1+6. (2.14)

At a = 1+ 6 ~ 3.449... a new bifurcation occurs. The two limit values for a = 1 + /6

1 / 1 /
areg <2+\/§+ 2—\/5) and £ <2—\/§—|— 2—!—\/5). As a result there will be a 4 limit

cycle for values of a slightly larger than a = 1 + /6, see the left panel of next figure. At
a =~ 3.544090... a new bifurcation occurs and an 8 limit cycle comes into existence, see right

panel of next figure.
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At a = 3.564... the 8 limit cycle turns into a 2* limit cycle, etc. The sequence of 2" limit
cycles for n — oo ends at a ~ 3.56994567.... In the next diagram the limit values are plotted

against a. It visualizes the bifurcations. It is called a bifurcation diagram.
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0.75

=~ 0.5

0.25

3.5

The value of a where a limit cycle with period 2" changes in a limit cycle with period 27! is

2.3 Feigenbaum constants

denoted as a,, see next figure.
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SN 0.5
0.25 |
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The ratio of differences between two successive a,, values is:
S (2.15)
an4+1 — Gn

In the limit where n — oo the series of ratios converges to a constant value § which is known

as a Feigenbaum constant:

Qn

5= lim "1 — 4.6692016091.... (2.16)

We denote the width of a 2" bifurcation at the value of a where L = 1/2 as w,,, see next

figure.

0.75

0.25

In the limit where n — oo this series of ratios of successive widths

Wn—1

. (2.17)

wn
converges to a constant value a:

Wnp—1

a = lim
n—00 Wy,

= 2.502907875..... (2.18)

The latter also is a Feigenbaum constant.
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2.4 Chaos

For the logistic equation the 2™ limit cycle ends for n — oo at a &~ 3.5699.... So far we only
considered the situation for a smaller than this value. For a slightly larger value of a, say
3.57, the sequence of x,,’s, the orbit, does not converge to a limit cycle. Instead, the sequence
shows chaotic behaviour. From every starting point 0 < xy < 1 the orbit is quite irregular.
The orbit never passes twice through the same point since then one would have periodic be-
haviour. For increasing a ‘windows’ with chaotic behaviour and windows with periodic limit
cycles alternate. To visualize the chaotic behaviour and periodic limit values one can for every
a iterate the starting value xq for instance 20 000 times and plot the final 50 values of the x,,

sequence. The result is shown in the next figure.
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Figure 2.1: Orbit diagram for the logistic equation. The dashed, orange line is where the 2"

limit cycles end and where the first chaos sets in.

There are several windows of periodic cycli present. An obvious window is for the 3 x 2"
limit cycle. It is a 3 limit cycle for n = 0. From L = f(f(f(L))) it follows, after factor-
ing out L = f(L), that 1 + a + a® — (a + 2a® + 2a® + a*)L + (a® + 3a® + 3a* + 2a°)L? —
(a® + 3a* + 5a® + a®) L3 + (a* + 4a® + 3a%)L* — (a® + 3a%)L® + a®L® = 0. Together with the
(9]”(]"(;];(95))) L= 1 we obtain —49 — 28a — 18a? + 24a3 + 4a* — 6a® + a = 0. It
factorizes into (7 — 5a + a?)(—7 — 2a + a?)(1 + a + a?) = 0. The factor (-7 — 2a + a?) = 0
has the analytical solution a = 142v/2. Hence, a 3 limit cycle sets in at a = 1+2v/2 ~ 3.8284...

condition
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A less obvious window is a 4 limit cycle for a close to 4. From L = f(f(f(f(L)))) to-
Bf(f(J;(j(m)))) L= 1 we obtain (1 4 a?)(5 — 4a + a®)(—5 — 2a +
a?)(—135 — 54a — 9a® + 28a® + 3a* — 6a® + a%) = 0. The factor —5 — 2a + a? has a root
a =1+ /6 as we already met before. The factor —135 — 54a — 9a? + 28a> + 3a* — 6a° 4 af
has a root 1 + V4 + 3 x V4 ~ 3.96010188.... It turns into an 8 limit cycle at a ~ 3.96076....

The sequence of 4 x 2™ limit cycles ends at a ~ 3.9612.... The window for this cycle is very

gether with the condition

narrow; Aa =~ 0.001.

In between the windows of limit cycles there is chaotic behaviour: the sequence of x,,’s is
sensitive for the initial value zg. A slightly different x¢p may lead to a completely different
orbit. Starting with zy we are after one step at x1 = f(xg). Starting with xg + dy we arrive

after one step at x1 + 1 = f(xo + Jp). Taking a first order Taylor expansion of f the latter is

0 1 0
x1+01 ~ f(xg) + 5g—f‘ . Since x1 = f(xo) it is reduced to T a of . The rate of change
ox o (50 ox )
0 0
is 5—1 ~ 8—f . Calculating §o from 41, 3 from d9,etc. through 6, leads to the equation
0 T 1o
57”: On .5”_1. ‘5251~af . g g (2.19)
50 5n—1 571—2 (51 (50 ox ZTn1 - ox z1 ox o ’ .
or 5
My pfin—1t K1tk 2.20
T~ , (2.20)
where of
=In|— 2.21
fom . ox T ( )
It can be written as
60| & €™ |60] , (2.22)
where
1 n—1
o= > (2.23)
m=0
In the limit where n goes to infinity it is known as the Lyapunov exponent \:
A= lim k. (2.24)

In case of a convergence to a periodic limit cycle the Lyapunov exponent is smaller than 0. In
case of chaotic behaviour the Lyapunov exponent is larger than 0: small differences initially
grow each step. In the next figure the Lyapunov exponent is plotted against the parameter a

for the logistic equation.
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Lyapunov exponent

3.7 38 39

Figure 2.2: Lyapunov exponent for the logistic equation.

2.5 Starting points

So far we only considered 0 < a < 4 and starting values zy between 0 and 1 for the logistic
equation, since the orbit either is periodic or chaotic for 0 < a < 4 and 0 < zg < 1. For other
starting values xy and other values for a the orbit may either be attracted to a periodic limit
cycle, stay in a chaotic region or diverge to infinity. The situation is shown in the next figure.

If the orbit tends to infinity the pixel at (a,xq) is coloured yellow, orange through red
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dependent on a slow, intermediate through fast velocity with which the orbit goes to infinity.
If the orbit ends in a stable periodic limit cycle or is at an unstable fixed point (as g = 0 or
xo = 1) or stays in a chaotic region, that is, if the orbit does not diverge to infinity, the pixel
at (a,xg) is coloured white. The region of zp’s which do not lead to divergence to infinity has
the borders - <m0 < “ 1 if 2<a<0, T <ap< tif0<a<land0<ax <1 if

a a a a
1 < a < 4. In the next figure the orbit diagram is shown on top of the previous figure.

2.6 Other difference equations

In this section we will investigate how the orbit diagrams look for other difference equations.
First we consider the sine map:

Tim41 = bsin(ma,,) . (2.25)

The additional condition 0 < b < 1 guarantees 0 < z,,41 < 1 for x,, € [0,1]. The orbit
diagram for the sine map is shown in the figure Although the logistic map differs from
the sine map, their orbit diagrams look almost identical. The Feigenbaum numbers § and «
for the sine map are identical to the ones for the logistic equation. This suggests that the
Feigenbaum numbers are universal constants. Except for some scaling effects, power sine maps

such as bsin®(7wx) have a comparable orbit diagram.

1 1 1
With the linear transformation z — (Z—la — §) T+ 3 the logistic equation takes the form

1
f(z) =1 — pa? with u = Za(a — 2). The iterations
T =1—px?,, 0<pu<2 (2.26)

lead to the diagram in figure Also here the Feigenbaum numbers § and « are identical to

the ones for the logistic equation.
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Z19950 through w0000

Z19950 through x20000
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0.25

Tm41 = bsin(mayy,)

0.7 0.8 0.9 1
b

Figure 2.3: Orbit diagram for the sine map.

0.5 -

—0.5 -

0 0.5

2
Tm+1 =1 — px;,

—_

Figure 2.4: Orbit diagram for the map f(z) = 1 — pz?.

31
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Another often used example is the hyperbolic tangent map: f(x) = gx(1 — tanhz). The
iterations Z;,+1 = g, (1l — tanhz,,), with ¢ > 1, lead to the orbit diagram and Lyapunov
diagram as shown in figure [2.5] and figure [2.6] respectively.

5

Tmt1 = 9gTm (1 — tanh x,,)

Z19950 through 20000

Figure 2.5: Orbit diagram for the hyperbolic tangent map f(z) = gz(1 — tanhz).

-1.5

2 4 6 8 10 12 14 16 18
g

Figure 2.6: Lyapunov exponent for the hyperbolic tangent map.
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Of course, one can create an arbitrary smooth function with a maximum value on its domain.

T

Let us try, for instance, f(z) = haxe™™. The iterations x,,+1 = hxye®, with h > 1, lead to

the orbit diagram and Lyapunov diagram as shown in figure [2.7] and figure respectively..

20
Tm41 = hxpme™ "™

g 15 |
S
&
=
20
=
S
= 10
&

5 -

0 T

1 10
h
Figure 2.7: Orbit diagram for the map f(z) = hxe™*.
1

30 40 50 60
h

Figure 2.8: Lyapunov exponent for the map f(x) = hze™?.
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For all these examples the Feigenbaum numbers § and « are identical to the ones for the
original logistic map. For one-dimensional maps f(z) the Feigenbaum numbers are universal

if the Schwarzian derivative of f(x),

= (58) 3(58) 5B 3(5). o

is negative on the given domain.

An example of a one-dimensional difference equation whose Schwarzian derivative is not neg-
ative is the tent map f(z) = dmin(x,1 — ). The iterations z,,+1 = d min(x,,, 1 — z,,) on
the domain [0, 1] lead to the diagram of figure

1

d min(zy,,1 — )

0.8

0.6 |

0.4

T19950 through 20000

0.2

O T T T T T T T T T
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

d

Figure 2.9: Orbit diagram for the tent map f(x) = d min(zy,, 1 — x,,).

The diagram for the tent map contains unstable periodic orbits and chaotic orbits. Cascades

of bifurcations are not present.



Chapter 3
Two dimensional difference equations

In this chapter the main characteristics of non-linear, two dimensional systems will be ex-
plained by means of the Lotka-Volterra model and the Hénon map. We start with the Lotka-

Volterra model.

3.1 Lotka-Volterra model

The Lotka-Volterra model describes the evolution of the size of the population of two interact-
ing species, predators and prey. For concreteness we take stoats as the predators and rabbits
as the prey. If s is the number of stoats and r the number of rabbits then the Lotka-Volterra

system in differential form is |1, 2]

dr ds
= — = — G — — — — .1
7 i ar — Brs $ i ~vs + dsr, (3.1)

where t is the time parameter and where the constants are defined by:
« is the growth rate of rabbits in the absence of stoats,

[ is the death rate of rabbits due to the presence of stoats,

v is the natural death rate of stoats in the absence of rabbits,

¢ is the growth rate of stoats in the presence of rabbits.

All four constants are larger than 0.

The equilibrium points of the system follow from 7 = 0 and $ = 0. They are (7, $x) = <Z, g)

and (7., Ssx) = (0,0). For the stability analysis we write the system as

r=f(r,s) , $=g(r,s), (3.2)

where f(r,s) = ar — frs and g(r,s) = —ys + dsr. The Jacobian is

of of _ _
s =g o)=(00r 53
= & ds —v + or

35
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At the equilibrium point (r., s«) = (0,0) this is

J(Fas, $20) = (g _07> (3.4)

The eigenvalues are Ay = o and A = —v. Since Ay > 0 and A_ < 0 the equilibrium point
(7sxy Ssx) = (0,0) is a saddle point.

At the equilibrium point (ry, i) = (g, ;) the Jacobian is

_By
Jrivs.) = (5‘1 K ) (35

The eigenvalues follow from

—A _%7 2
oy =0 — XN+4+ay=0. (3.6)
B
The eigenvalues are Ay = i,/ay and A\_ = —i,/a7y. Since the eigenvalues are pure imaginary
the equilibrium point (7., s.) = (v/d,a/B) is a center. The solutions near this center are

periodic. We consider the dynamics close to the equilibrium point (ry, s.). That is, we take
r(t) = r« + n(t) and s(t) = s« + €(t). Then we have the system
dn By de da
— =——€— , — = —n+ omne. 3.7
% 5 €~ Ben Qo (3.7)
For n and € very small we have the approximation
dn By de da
— - —~ — 3.8
from which it follows that 7j & —a+yn and € ~ —arye. The solutions are n(t) ~ x sin(\/ayt+0)

and €(t) = {sin(\/ayt + ¢), where § = arcsin(n(0)/x) and ¢ = arcsin(e(0)/£).

There is no analytical solution for r(¢) and s(¢). One can eliminate ¢ by dividing the two

equations of motion:

dr  ar—prs (a—Bs)r

— = = ) 3.9
ds —ys+dsr (—y+dr)s (39)
Separation of variables gives
DN _ _
(v + r)dr: (a Bs)ds — (fy—i—é) dr = (g—ﬂ) ds. (3.10)
r S r S

Integration gives

/(j+5>dr:/(a—5>ds —  —ylnr+oér+c=alns— s, (3.11)

S
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where ¢ is the constant of integration. Exponentiation of both sides leads to
K = V5% 0 hs (3.12)

where K = ¢° is a constant of motion: K = 0. Its value is therefore determined by the initial
conditions:
K = r]sge 0mo=hs0, (3.13)

For a given r the equation (3.12) delivers two values for s. If after a while the number of
rabbits is again the earlier r, the values for s will be the earlier values since K is a constant

of motion. As a consequence the parametric plot of (r(¢), s(t)) is a closed curve.

As an example we consider the situation for o = 0.05, 5 = 0.005, v = 0.025 and ¢ = 0.00025.

%, g) is the point (100,10). For the initial condition ro = 50 and
sg = 10 the evolution of r and s is shown in the left panel of figure The parametric plot

The equilibrium point

is shown in the right panel of figure The arrow in the parametric curve indicates the

evolution in forward time. The time unit is arbitrary, something like days or weeks or so.

20
150 | B
15 B
r
w
o] 100 n |
= o 10 B
~
50 B 5 B
S
\_/\_/\/\
0 T T 0 T T T
0 250 500 0 50 100 150 200
t T

Figure 3.1: Evolution of the population size of rabbits r and stoats s (left panel) and the

parametric plot (right panel). See the text for the initial conditions and the constants.

Next we consider the population dynamics close to the equilibrium point (100, 10). To be
specific, we take the initial conditions ro = 90 and sg = 10. The result is shown in figure
As expected, the closer the populations are to the equilibrium point (100, 10), the more the
parametric plot looks like an ellipse. And the closer the populations are to the equilibrium
point (100, 10), the closer is the period of the oscillation to 27/, /ay = 177.7. Indeed, in figure
the period is approximately 177.7, while in figure the period is approximately 182.
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Figure 3.2: Evolution of the population size of rabbits r and stoats s (left panel) and the

parametric plot (right panel). See the text for the initial conditions and the constants.

If we take the equilibrium point (100,10) as the initial populations, then the r(¢) and s(t)
curves are horizontal lines and the parametric plot is the single point (100,10). From the
figures and we see the shape of the parametric curve depends on the initial condition.

Parametric curves are drawn for sg = 10 and 7o = 10 through 100 in steps of 10 in figure [3.3

30
20 -
W
0 T T T
0 100 200 300 400

r

Figure 3.3: Parametric plots for various initial conditions. The rotation is anti-clockwise.
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Close to the equilibrium point (100, 10) the parametric curve is almost an ellipse, while far

away from the equilibrium point (100, 10) it rather is a triangle with rounded corners.

Since we do not have an analytical solution for r(¢) and s(¢) we have to resort to numeri-

T4l — T Snt+1 — S
cal methods for the plots. To this end we write 7 as %tn and § as L " Then

At

Tnt1l = Ty + @At ry, — BAtT, S, (3.14)
Sna1 = Sp — YAt s, + At 8,1y,
with rg and sg as the starting values. Absorbing At in the constants, thus a = aAt, b = AL,

etc., we obtain
Tntl =Tn+ary —brpsy (3.15)
Sn+1 = Sp — CSp +d SpTn,

The latter is a discrete system of difference equations. It often is considered as a more appro-

priate model for the prey-predator system than the continuous system.

The equilibrium points of the discrete system follow from r,,+1 = r,, = L and sp4+1 = s, = K.
They are (L, K) = (0,0) and (L, K) = (5, %) For the stability analysis of the equilibrium
points we write the system of equations as 7,11 = f(rn, Sn) and Sp41 = g(ry, Sn), where

frys)=r+ar—brsand g(r,s) = s —cs+ dsr. The Jacobian of the system is

or of l+a—-0bs —br
J(rs)= (o 95| = 3.16
(r.) (gg g‘;) ( ds 1—c+dr (3.16)

At the equilibrium point (0,0) the Jacobian is

J(0,0) = (1?;“ 0 ) (3.17)

1—c¢

The eigenvalues are Ay = 14+aand A\ =1—c. For a > 0 and 0 < ¢ < 2 there holds |Ay| > 1
and |A_| < 1. That is, for a > 0 and 0 < ¢ < 2 the equilibrium point (0,0) is a saddle.

Cc

a .
7 g) the Jacobian is

(9= ) 029

At the equilibrium point (

The eigenvalues follow from

b
1— b

d
ad ] _ )

=0 — (A=1)2%4ac=0. (3.19)

The eigenvalues are Ay = 1+ iy/ac and A_ = 1 — iy/ac. Since the eigenvalues are complex

the solutions are periodic. Since the moduli of the complex eigenvalues are larger than 1
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the equilibrium point (g, %) is an unstable focus. The curve is spiralizing outwards. For
a = 0.05, b = 0.005, ¢ = 0.025, d = 0.00025, ¢ = 50 and sy = 10 the evolution of r and s and

the parametric plot is shown in figure [3.4

‘ 20
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< 100 - I
~
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\/\/_\S/\
0 T T 0 \ T T T
0 250 500 0 50 100 150 200 250
¢ r

Figure 3.4: Evolution of the population size of rabbits r and stoats s (left panel) and the

parametric plot (right panel) according to the difference equations as given in the text.

3.2 Modified Lotka-Volterra model

According to the system of equations (3.1) the population of rabbits will grow to infinity when
stoats are absent. Of course this is not realistic. In reality the population of rabbits cannot
grow to infinity because of the limited amount of food. When stoats (and other predators)

are absent the evolution of rabbits will be rather something like the logistic equation:

dr

= E = or — MT27 (320)

/f.
a
where a > 0 and g > 0 are constants. The equilibrium points are r, = — (stable) and r,. =0
(unstable). Writing the initial condition as r(0) = 7o, the analytical solution reads
arp

r(t) = s re—reTE (3.21)

The solution has the property: tlim r(t) = 2 as required.
— 00 ILL
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If we do take the limited growth of the rabbit population into account the rabbit-stoat system

is modified to
dr

T ar

d
7 =ar—ur —Brs $= d—i = —vys+dsr. (3.22)

The modified Lotka-Volterra system has the equilibrium points (0, 0), (a’ O> and
7

5 —
Z, 20T | The Jacobian of the system is
) Bo
—our — _
J(rs) = (@72 B O (3.23)
08 —y+or
At the equilibrium point (0,0) the Jacobian is
0
J(0,0) = (O‘ ) (3.24)
0 —v
with eigenvalues A\y = o > 0 and A\_ = —y < 0. The equilibrium point (0,0) therefore is a

saddle.
At the equilibrium point <a’ 0) the Jacobian is
7

— _ob
J <O‘,o> - ( “ Ma5> (3.25)
K 0 —v+ m

The eigenvalues are Ay = —a and A\_ = —y + 0‘7‘5. Now Ay < 0 while A_ > 0 if ad > yu and

A_ < 0if @d < yu. Thus (a,0> is a stable node if @d < yu and a saddle if ad > ypu.
I

At the equilibrium point <Z, W) the Jacobian is
By
7 ad —yp -5 -7
J|l= —— | = 3.26
The eigenvalues are
ST e e
Ap = 25i\/<25) +E oy (3.27)

Also for the modified Lotka-Volterra model we consider the situation for o = 0.05, 5 = 0.005,
v = 0.025 and § = 0.00025. Suppose we take p = 0.0001. For these numerical values of

5 —
%, W) is the point (100,8) and the eigenvalues
of the Jacobian at this point are Ay ~ —0.005 + ¢0.031225. So, (100, 8) is a stable focus.

the constants the equilibrium point (

The equilibrium point <a, 0> is (500, 0) and the eigenvalues of the Jacobian at this point are
I
—0.05 and 0.1. So, (500,0) is a saddle for these constants. For the initial condition ro = 20

and sg = 5 the evolution of r and s is shown in the left panel of figure [3.5} The parametric
plot is shown in the right panel of figure
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Figure 3.5: Evolution of the population size of rabbits r and stoats s (left panel) and the

parametric plot (right panel). See the text for the initial conditions and the constants.

Applying Euler’s method we obtain the discrete equivalent of the modified system of equations:

Tntl = Tn + aAtr, — pAt 7“7% — BAt T, S,
(3.28)
Snt+1 = Sp — YAt s, + At sy,

with rg and sg as the starting values. Absorbing At in the constants, thus a = aAt, b = AL,

etc., we obtain
Tntl = Tn + a7y — mr% —brpsy (3.29)
Sn+l = Sp — CSp +dSpTy .
The equilibrium points (L, K) of the discrete system follow from 7,41 = r,, = L and sp,41 =

sp =K. Thus L=L+aL—-mL?>—bLK and K = K — ¢cK + dKL. Solving for L and

d—
K we obtain the following three equilibrium points: (0,0), (g, O) and (2, abdcm> For
m
the stability analysis of the equilibrium points we write the system as 7,41 = f(rn, s,) and

Snt+1 = g(Tn, 8n), where f(r,s) = r+ar—mr?—brs and g(r,s) = s—cs+dsr. The Jacobian

or of l1+a—2mr—>bs —br
Jr,s)=[9 9| = 3.30
(r:8) (gg gg) ( ds l—c+dr (3:30)

of the system is

At the equilibrium point (0,0) the Jacobian is

J@@:Cﬁ“lgg. (3.31)
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The eigenvalues are Ay =14+ aand A =1—¢. Fora >0 and 0 < ¢ < 2 we have |Ay| > 1
and |[A_| < 1 and the equilibrium point (0, 0) is a saddle.

a
At the equilibrium point (—, ()) the Jacobian is
m

1— _ab
J <3, 0) - ¢ mo. (3.32)
m 0 l1-c+ ¢
The eigenvalues are Ay =1—acand A\_ =1—c+ %d. Depending on the values of a, ¢, d and

a
m the equilibrium point (—, 0) is a stable node or an unstable node.
m

At the equilibrium point <ccl’ adb—dcm> the Jacobian is
c ad—cm 11— —%3
J (d’ bd> - (adbcm ) (3:33)
The eigenvalues are
cm cm\2  Am
e =1- 0y (S2) + S0 - ac. 3.34
* 2d 2d) T 2a T (3:34)

For a = 0.05, b = 0.005, ¢ = 0.025, d = 0.00025 and m = 0.0001 the latter is A+ ~

d—
0.995 4 40.031225 and the equilibrium point (C, aa—an) _ (100, 8). Since the modulus of

d bd
0.995 £ ¢0.031225 is smaller than 1 the equilibrium point (100, 8) is a stable focus. The node

(g, O) = (500, 0) and the eigenvalues of the Jacobian at this node are Ay = 1—a = 0.95 and
m

Ao=1—-c+ %d = 1.1. So, (500,0) is a saddle. For o = 20 and sy = 5 the parametric plot,
see next figure, is quite similar to the parametric plot in figure

15

10 + B

0 T T T T
0 50 100 150 200 250
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3.3 Hénon map

The Hénon map is non-linear map. The two dimensional first order Hénon map reads

Tmy1 =1 — am?n + Ym (3.35)

Ym+1 = by, ,

where a and b are constants and where (z,yo) is the starting position. For a = 1.4 and

b = 0.3 the points (x,,, ym) are attracted to a so called strange attractor, see next figure.

Tmg1 =1 — 1.4;1@2,1 + Ym

0.4r Yma1 = 0.3z,

Ym

Figure 3.6: Attractor of the map 2,11 = 1 — ax2, + Ym, Yms1 = by, for a = 1.4 and b = 0.3.

Periodic limit cycli are also possible. For b = 0.3 a period 1 limit changes to a period 2 limit
when a = 0.3675. The period 2 limit changes to a period 4 limit when a = 0.9125, which in
turn changes to a period 8 limit when a = 1.026, etc. A period 16 limit is shown in the next
figure. The period 16 limit cycle is depicted by the symbols A through P. For instance, start-
ing the cycle in point N the next point is O, then P, then A, then B etc., through M. The

larger n the more the n points of the period 2™ limit cycle approaches the strange attractor

of figure



3.4. LYAPUNOV EXPONENTS FOR TWO DIMENSIONAL MAPS 45

0.4 OK =
G C g
[ ] . I
M ..
02 A .
B
o J
0, |
- N
F
0.2 H .- D -
“ L
P
T T T T
1 0.5 0 0.5 1 15

The two dimensional first order Hénon map (3.35) can also be written in the form of a one

dimensional second order map:
Tyl = 1 — ax?, + by 1 (3.36)

with xp and x1 as the initial values.

Linear, one dimensional, second order difference equations, such as x;,11 = ¢ — axm + bTpm_1,
can be solved analytically, as we saw in chapter 1. It is the square in the one dimensional,
second order difference equation , or in general the non-linearity, which makes the sit-
uation complicated: bifurcations and chaotic behaviour. Before we proceed we first have to

outline the calculation of the Lyapunov exponent for two dimensional maps.

3.4 Lyapunov exponents for two dimensional maps

For a one dimensional map we already met the concept of a Lyapunov exponent when we
considered the logistic equation. For a one dimensional iterative function f(z), m=1 = f(zm),

the Lyapunov exponent A is given by
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1, |Of
A-Jl_}ﬂ;onmzz;)ln 9, (3.37)

For a two dimensional map Zm+1 = f(Zm, Ym) and Ym+1 = g(Tm, Ym), we have to first order

0 0
x1 4+ 01 = f(xo + do,yo + €0) =~ f(z0,Y0) + do ({Tf + €9 a*f
L1 (z0,y0) Y 1 (@o,y0)
(3.38)
dg
y1 + €1 = g(xo + do, yo + €0) =~ g(z0,y0) + €0 Iz + 60 | 5= .
L1 (20,y0) Y (0,y0)

Since x1 = f(xo,yo) and y1 = g(xo,yo) there holds

o1\ _ (0f(z,y)/0x Of(x,y)/dy) (o (3.39)
€1 0g(x,y)/0x  09(x,y)/0y ) ; \€o)
where (o) expresses that the derivatives are evaluated at (z9,y0). The matrix with derivatives

is the Jacobian: Jy). From (z1,y1) to (w2,y2) the errors go as

02\ _ (Of(z,y)/0x Of(x,y)/0y) (& (3.40)
€ 0g(z,y)/0x 0g(x,y)/0y ) \e1)
where (1] expresses that the derivatives are evaluated at (z1,y1). The matrix with derivatives
is the Jacobian: Jpj). For 2 X 2 matrices there are 2 eigenvalues and therefore 2 Lyapunov

exponents. We are interested in the largest Lyapunov exponent. For the situation after two

steps we have the product of 1 step Jacobians J;; and Jig):

<52>:<af<x,y>/ax af(sc,y>/ay> <af<x,y>/a:c af(sc,y>/ay> (%) (3.41)
€2 0g(x,y)/0x g(x,y)/0y ), \O(x,)/0x  Dg(x,y)/0y ), \eo) '

For increasing n the resulting product matrix becomes almost singular: determinant — 0.
Because of limited machine precision an almost singular matrix leads to large inaccuracies in
the numerical calculation of the eigenvalues. For this reason the product of Jacobians is not

used. Instead, the largest Lyapunov exponent will be extracted from the single step Jacobians.

To illustrate the method we follow the dynamics of the Hénon map a few steps. For the
constants we take a = 1.4 and b = 0.3. For these values the orbit is chaotic. For the present
purpose we take (zg,y0) = (0.25, —0.25) as the initial point. We will follow the evolution of
a circle with a small enough radius, » = 0.00015, with the initial point as its center. Then
(x1,y1) = (0.6625,0.075) and (x2,y2) = (0.46053125,0.19875). The evolution of the circle is
shown in the next figure. For educational purposes the circle and its evolutionary curves are

shown thousand times too large.
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We see the initial blue circle has transformed into the green elliptic shape after the first step
and to the brown elliptic shape after the second step. The blue points A through D have
transformed in the green points A through D and brown points A through D respectively.
The distance between brown point A and (2, y2) is grown with respect to the distance between
the blue point A and (z,yp). In case of a positive Lyapunov exponent the distance will grow
and grow. After about hundred steps the distance is such large that second order effects are
no longer negligible. To avoid a situation where second order effects are no longer negligible,
the distance is resized after every step. We will outline the procedure step by step. For the

blue circle the difference between the blue point A and (xg,yp) is the error vector vj:

i <5O> _ <0.00015> (3.4
€0 0

The vector ¥ is shown 1000 times too large in the left panel of the next figure. If we let the

Jacobian for starting point (zg, yo) act on ¥y we get the vector w;. Explicitly

o . —0.7 1 0.00015 —0.000105
Wy = Jpgto = = . (3.43)
03 0 0 0.000045
The vector w; is with respect to point (z1,y1). Together with the transformed circle it is

drawn, 1000 times magnified, in the right panel of the next figure.
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Now we proceed with a circle of radius 0.00015 with (x1,y1) as the center. From w; we

construct a new vector U7, which has length 0.00015 and the same direction as s:

) = —0.00013787 (3.44)
0.000059088

We let the Jacobian for point (z1,y1) act on the vector @7 to obtain the vector wa:

. . —1.855 1 —0.00013787 0.00031484
wo = J[l]vl == == . (345)
0.3 0 0.00005908 —0.00004136

The evolution of 77 to s is shown in the next figure.
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From wsy we construct a new vector ¥, which has length 0.00015 and the same direction as
wo. Then we let the Jacobian for point (z2,y2) act on the vector @5 in order to obtain the
vector ws. The procedure is repeated as long as desired. Often the length of Wy is close to

the length of the semi-major axis of the elliptic curve. One calculates for £k = 0,1,2,3, ... the
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ratio of the length of wi11 and 0.00015 and take the logarithm of it in order to obtain y:

‘wk+1‘
=1 . 3.46
" . 0.00015 ( )

The results of the first 16 steps are shown in the next table.

k 0 1 2 3 4 ) 6 7

ki | -0.27236 | 0.74999 | 0.36451 | 0.99076 | -1.14860 | 0.76630 | 1.24989 | 0.89729

k 8 9 10 11 12 13 14 15

ki | 0.17350 | 0.25303 | 0.40657 | 0.95979 | -0.85634 | 1.16730 | 1.18259 | 0.57448

The average value of the 16 xj values shown in the table is £ ~ 0.466. After 100 steps the
average is k ~ 0.453, after 1000 steps k ~ 0.429, after 10 000 steps & = 0.427 and after 100 000
steps K = 0.420. For the present example of the Hénon map with a = 1.4 and b = 0.3 the

largest Lyapunov exponent found this way is 0.42.

Next we will consider the situation in case the largest Lyapunov exponent is negative. This is
the case if the Hénon map converges to a limit cycle. For example, for ¢ = 0.45 and b = 0.3
the Hénon map converges to a period 2 limit. The two fixed points are (0.13949,0.42482)
and (1.4161,0.041848). For this example we will consider the evolution. As for the previous
example we start with the initial point (0.25, —0.25). From (g, y0) = (0.25, —0.25) it follows
(z1,y1) = (0.721875,0.075) and (x2,y2) = (0.840503,0.216563). The successive points are
shown in the figure at the top of next page. We see initially big steps between successive
points until the points are close to (0.90,0,27). From there the points alternately jump be-
tween two branches, to the left for even k and to the right for odd k. For k > 100 the points
(zk,yr) are very close to the fixed points. The first five steps of the evolution of a circle
with radius 0.00015 and center (xo,yo) is shown in the figure at the bottom of the next page.
Also here the initial blue circle has transformed into a green elliptic shape after the first step
and to a brown elliptic shape after the second step. The curve after the third step is cyan,

after the fourth step yellow and after the fifth step purple. All curves are 1000 times magnified.

As for the previous example the error vector is resized at each new point. We should, because

we do not know in advance whether or not the Lyapunov exponent is larger than zero.
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The difference between A(0.4, —0.25) and (zg, yo) = (0.25, —0.25) is the error vector vy:

. (50> _ <0.00015> (3.47
€0 0

The vector v is shown in the left panel of the next figure. If we let the Jacobian for starting

point (zg, yo) act on Uy we get the vector w:

—0.225 1)\ (0.00015 —0.00003375
Wy = J[O}Q_}'() = = . (3.48)
0.3 0 0 0.000045

The vector w; and the transformed circle are drawn in the right panel of the next figure.
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Again ) is resized to vector ;. Then ws is obtained from v via Wy = J[l} 1, and so on.

The x values of the first 16 steps are shown in the next table.

k 0 1 2 3 4 5 6 7

Kk | -0.98083 | 0.18511 | -0.05628 | 0.11209 | 0.06605 | 0.09703 | 0.07254 | 0.09795

k 8 9 10 11 12 13 14 15

kg | 0.07087 | 0.10024 | 0.06825 | 0.10301 | 0.06510 | 0.10629 | 0.06134 | 0.11016

For the first 16 steps we find for the average value of the k;: & &~ 0.017. So, initially there is
a little growth of the error. After 100 steps this is K &~ —0.083 , after 1000 steps k ~ —0.228,
after 10000 steps k =~ —0.243 and after 100000 steps & =~ —0.244. For the Hénon map with
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a = 0.45 and b = 0.3 the largest Lyapunov exponent found this way is —0.244.

When the points are close to the fixed points the situation is as shown below.
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When the points alternate between the two fixed points, the errors also alternate. That is,
Wak14 1S the same as worio and wopy3 is the same as wog 1. For large k, say 1000 or more,
the length of vector wok1o is a fraction 0.385052 of the length of vogy1, while the length of
vector wok43 is a fraction 1.59261 of the length of veryo. In effect there is a net decrease of
v/0.385052 - 1.59261 ~ .783 per step. Taking the logarithm of it we find indeed a Lyapunov
exponent of —0.244.

If we would have taken point B instead of A for the initial error, the ki will be different.
When the points have arrived at the fixed points, the error vector happens to be opposite

with respect to the situation for A, compare the figures on the next page with the ones above.
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It makes clear that the Lyapunov exponent is independent of the direction of the error vector
we start with. The question arises which initial errors lead, on the long run, to the same error
vectors as initial error A and which to the same error vectors as initial error B. In the next
diagram the part of the initial circle which leads to the same error vectors as A or B is shown

red respectively green.
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In case of two fixed points, say F} and Fbs, there are three possibilities:

1. for increasing k the points (o, yor) converge to Fy and the points (21, Yor+1) con-
verge to F3,

2. for increasing k the points (xog, yor) converge to Fy and the points (Togi1,Yort1) con-
verge to F,

3. the points (z, yr) diverge to infinity.

We can colour each starting point (xo,y0) accordingly. As an example, for the Hénon map
with a = 0.45, b = 0.3 the two fixed points are F}(0.13949,0.42482) and F»(1.4161,0.041848).
In case of possibility 1, 2 or 3 a starting point (xg,yo) is coloured blue, orange or white re-

spectively. The result is shown in the next figure.
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3.5 Orbits for the Hénon map

For 2o =0, 21 = 0 and b = 0.3 a plot of z,, against a for a = 0.3 through a = 1.426 is shown
in figure [3.7] Under the same conditions the largest Lyapunov exponent is plotted against a
in figure The main period doubling cascade, the one with 1,2,4,8,... limit cycles, runs
from a = —0.1225 through a =~ 1.058. By inspection it is found that at a ~ 1.072374 a period
12 limit cycle shows up. At a = 1.07288 it turns into a period 24 limit cycle, a little further
a period 48 cycle, etc. The whole 3-2", n = 2,3,4, ..., cascade takes place in a small window.
A small change in a leads to a discontinuous change of the orbit at a ~ 1.0772 and a ~ 1.0808
and at other places. At a = 1.07878 starts a period 18 limit cycle. Its period doubles at
a ~ 1.07893. The whole 9-2" n = 1,2,3,..., cascade ends at a ~ 1.07903. So, also this
cascade takes place on a very small window. At a ~ 1.1001 a period 5-2", n=1,2,3, ..., sets
in. At a ~ 1.1724 a period 9-2", n =0,1,2, ..., limit cycle sets in. At a ~ 1.17675 a period
5.-2" n=1,2,3,..., sets in. At a = 1.226 a period 7-2", n = 0,1,2, ..., limit cycle sets in.
The window is clearly visible in figure[3.7 At a =~ 1.299 again a period 7-2", n =0,1,2, ...,
limit cycle sets in. Since it ends at a ~ 1.3065 it also is visible in figure At a ~1.3233 a
period 2", n = 3,4,5, ..., limit cycle sets in and ends at a ~ 1.3238. At a ~ 1.3539 a period
13-2" n =0,1,2,..., limit cycle sets in and ends at a &~ 1.3542. At a =~ 1.36546 a period
13-2" n=0,1,2,..., limit cycle sets in and at a ~ 1.36615 a period 11-2" n =0,1,2,...,

limit cycle sets in. There exist many more periodic limit cycles, all with small windows.

1.5

0.5

x19951 through 220000
o
|

Tmt1 =1 — ax2m + 0.3z, 1

:C():O,wl:(]

—15 T T T T T T T T T T T
0.3 04 05 0.6 07 08 0.9 1 1.1 1.2 1.3 1.4
a

Figure 3.7: Orbit diagram for the Hénon map.
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Figure 3.8: Largest Lyapunov exponent for the Hénon map, with b = 0.3.

If we zoom in on the red rectangle in figure [3.7] we see that bifurcation branches sometimes

do intersect, see the next figure.
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Figure 3.9: Part of the orbit diagram for the Hénon map.
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Instead of varying a for a fixed value of b we can vary b for a fixed value of a. For zg = 0,

x1 =0 and a = 1.4 the z,, are plotted against b in the next figure.

1.5 :

0.5

x19951 through anooo
(e}
|

Tmt1 =1 — 141‘7271 + bxp_1

330:0,1‘1:0
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Figure 3.10: Orbit diagram for the Hénon map.

In this orbit diagram one also recognizes various limit cycles.

3.6 Single fixed points of the Hénon map

In order to understand the orbit diagrams we will analyse the Hénon map by means of the
methods shown in the previous chapters. We start with a single fixed point (L, K). According
to the Hénon map (3.35) the point (L, K') should satisfy

L=1—-al’+K

3.49
K =0bL. ( )

Elimination of K leads to aL? + (1 —b)L — 1 = 0. The solutions are

b—1+/(b—12+4a
L= (2a ) . (3.50)

b—1

For real solutions (b — 1)2 + 4a has to be larger than zero. At the edge we have L = if
a
(b—1)2+4a = 0. That is, if a = —(b — 1)?/4. For b = 0.3 this is at a = —0.1225, see the

position of green dashed line in the next figure.
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For the stability of the solutions we consider the Jacobian of system (3.35):

—2ax, 1
(e 1) s

—2al 1
(). oo

N 4 2aLA—b=0. (3.53)

At the point (L, K) this is
The equation for the eigenvalues is

Since L can be L; and L_ there are four solutions

M =—-aly —y/a?L2 +b , Xa=—aly+,/a’L? +b (3.54)
A3 =—al_ —/a?L? +b , X =—al_+ \/a’L? +b.

For (b — 1)? 4+ 4a > 0 the equilibrium L_ is unstable since A4 > 1, see appendix D. For the
equilibrium L the stability depends on a and b. As an example we consider the case b = 0.3.
In the next figure we have plotted Ly (black), A\; (red) and A2 (blue) against a for b = 0.3.

3

b=0.3

-0.5 . 1.5

The fixed point Ly becomes unstable when A\; < —1. To determine the value of a for which

this occurs, we substitute A = —1 into the equation (3.53):

1-0
1—-2aL-b=0 — L= . (3.55)
2a

The latter is in agreement with Ly if

(b—1)2+4a=2—2b. (3.56)
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Taking the square we obtain

(b—1)% +4a = 4(1 — b)2. (3.57)
Hence, the single fixed point bifurcates to a period 2 limit cycle at

3 2

a=7(01-1b) (3.58)

For b = 0.3 this is at a = 0.3675, see the position of orange dashed line in the previous figure.

3.7 Period 2 limit cycles of the Hénon map
The system (3.35)) is for the single step from (Zy, Ym) t0 (Tmt1, Ym+1). For two steps we have

2
$m+2:1—ax3n+1+ym+1zl—a(l—axfn+ym) + b,

(3.59)
Ym+2 = bl’m+1 =b (1 — al'?n + ym) .
Expanding the brackets we obtain
Tmy2=1—a+ 2a2:n,2n — a?’xfn — 2aym + Zan%ym — ay%z + by, (3.60)

Ymao = b — abx?, + by, .

For (L, K) to be a period 2 limit point, the other period 2 limit point has to be (K/b,bL).

The substitution of these period 2 limits into the period 2 system gives

L=1—-a+2d’L? —a3L* — 2aK + 2d%°L*K — aK? + bL

K =b—abL? + bK . (3.61)
The elimination of K leads to
(aL® + (1 —b)L — 1) (¢’L* —a(1 —b)L+ (1 - b)* —a) = 0. (3.62)
The solution aL? + (1 — b)L — 1 = 0 with the roots
L. — b—1+ \/(2ba— 1) + 4a (3.63)

corresponds to the single fixed point we already met in the previous section. The other solution
a’L? — a(1 —b)L + (1 — b)? — a = 0 with the roots

1—b+/da—3(1 - b)?
L= o (1-9) (3.64)

corresponds to a period 2 cycle with two different limit points. The corresponding K4 is given
by
Ky =b(1-b)/a—bLy, (3.65)

as can be derived from K = b — abL? + bK and a?’L? —a(1 —b)L + (1 —b)?> —a = 0.
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3
The bifurcation point for L is where L_ = L,. That is at a = 1(1 — b)2. The latter we

already found at the end of the previous section. The value of L at the bifurcation point is:

1-5 2 1
L= or, if you wish, L = or L =

3(1—b) V3a’

To find the bifurcation point where the period 2 limit cycle converts into a period 4 limit

cycle, we consider the stability of the period 2 limit by means of the Jacobian. To this end

we write the system (3.60) as
ITm+2 = f(f(mma ym))

(3.66)
Ym+2 = g(g(xmv ym)) ;
where
f(f(z,y) =1 —a+2d%* — a®z? — 2ay + 2a%2%y — ay® + ba (3.67)
and
g(g(z,y)) = b— abz® + by . (3.68)
The Jacobian for the two step system is
8f(fa(;’y)) 6f(];(;’y)) B 40?2z — 4a32® + 4a2xy +b —2a + 2a2x?% — 2ay
Outalea)  oatsla) | = b ) - (3.69)
Evaluated at (L, K) the Jacobian is
40°L — 40’ L? + 46’ LK +b  —2a+ 20°L* — 2aK
: (3.70)
—2abL b

The equation for the eigenvalues A of the Jacobian is
(4a’L — 4a°L? + 4a®LK + b — ) (b— \) — (—2a + 2a*L* — 2aK) (—2abL) = 0.  (3.71)
An eigenvalue is 1 if

(4L — 4a°L? + 4a®LK +b—1) (b— 1) — (—2a + 2a’L? — 2aK) (—2abL) = 0.  (3.72)

3
Together with system ([3.61) we obtain a = 1(1 —b)?. So, this corresponds to the left side of

the period 2 limit cycle. An eigenvalue is —1 if

(40’L — 40’ L® + 4®LK + b+ 1) (b+ 1) — (—2a + 2¢°L* — 2aK) (—2abL) = 0.  (3.73)

5 1
Together with system (3.61) we obtain a = b+ Z(l —b)? = 1(5 — 6b+5b%), which corresponds

to the right side of the period 2 limit cycle. For b = 0.3 this is at a = 0.9125.

For limit cycles with period 3 and larger the method is similar. However, the algebra be-

comes very complicated.
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3.8 Three dimensional plots for the Hénon map

To gain insight we will consider some three dimensional (3D) plots of orbits of the Hénon map.

In the next figure the orbit of (z,, ym) is plotted against a for b = 0.3.

A top view of it corresponds with figure A side view from the right delivers the next
figure.

0.5

- 0.0

We see that for all a the orbits (2, ym) are close to the attractor shown in figure
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In the following figure the orbits of x,, is shown for 0.0 < a < 1.4 and —0.4 < b < 0.3.

The black dots on the b = 0.3 plane (the blue back side) corresponds with figure The
black dots on the a = 1.4 plane (the green right side) corresponds with figure We see
planes for fixed b show bifurcations. The a values for which bifurcations take place depend on

b. As a consequence bifurcations have to take place in the b direction as well.

From the analysis in the previous two sections we obtained the single fixed point is between
a= —i(l —b)?and a = %(1 —b)%. For b =1 these points coincide at a = 0. The bifurcation
from a period 2 to a period 4 limit cycle is at @ = b + Z(l — b)2. The smallest a value for
this bifurcation is a = 4 and occurs for b = § For values of a a little larger than 0.8 the
orbit diagram in the b direction will therefore show a bifurcation from a period 2 to a period
4 limit cycle followed by a confinement to a period 2 limit cycle. It is illustrated in the left
panel of figure for a = 0.85. For a = 0.92 also a bifurcation from a period 4 to a period 8
limit cycle followed by a confinement to a period 4 limit cycle occurs, see right panel of figure
In both panels we see the orbits become already unstable before b = 1. The value of
b where the instability sets in differs more from 1 if a is relatively large. For or a = 0.9, as
in figure |3.11, instabilities start already at b =~ 0.7, while for instance for a = 0.5 instabilities
start rather at b = 0.9. For a < 0.3 the orbit is stable from b = —1 through b ~ 1.
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Figure 3.11: Bifurcation diagram for the Hénon map for a = 0.85 (left) and a = 0.92 (right).

3.9 Hénon map for b~ 1

For b ~ 1 the orbit diagrams differ completely form the ones with b smaller than, say, 0.9.
In figure the values of x19891 through x20000 are shown for b =1, zg =0, yo = 0 and a
running from 0.10 through 0.14.

_me:l—ax,zn—i—xm,l, z0=0,21=0

FRERY

x19801 through 20000

.10 A1 12 13 14

Figure 3.12: Orbit diagram for the Hénon map for b = 1.
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We see periodic structures which are not related to a period doubling cascade. For instance,
for b = 1 and a ~ 0.1031 the points of the orbit seem confined to 32 values. To see what is
actually going on we consider a 3D plot of the orbit (2, ¥, ) against a, see next three figures.
The counter m is taken sufficiently large: 9850 < m < 10000. A projection of the first figure
on the a, z-plane gives figure The three figures show the orbit diagrams from different
points of view. It is clear that the orbits are divided in two regions. The size of the regions

shrinks for increasing a.

-5

The two regions are a sort of rolls each with 16 holes for a ~ 0.103. The projection on the
a, z-plane therefore shows a confinement to 32 values if a ~ 0.103. Such periodic structures

also occur for other values of a. Unstabilities lead to void windows such as for a ~ 0.14.
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For b =1, 2o = 0 and x; = 0 the attractor is separated in two regions as shown in the next

figure for @ = 0.05 (left panel) and a = 0.1 (right panel).
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Figure 3.13: Hénon attractor for b =1, 29 = 0, yo = 0 and a = 0.05 (left) and a = 0.1 (right).

The size of the attractor shrinks for increasing a. For a small and b close to 1 the orbit either
converges to two points or to a two region kind of attractor as shown in the previous figure.
For instance, for ¢ = 0.2 and b = .99608128679148016938 the orbit converges to two points:
(2.2458, —2.21748) and (—2.22621,2.237), while for a = 0.2 and b = .99608128679148016937

the orbit converges to a period 18 limit cycle, see the next figure.
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The orbit of the period 18 limit cycle is depicted by the symbols A through R. For instance,
starting the cycle in point P the next point is @, then R, then A, then B etc., through O.

So, the orbit alternately jumps from one region to the other region.

Extreme sensitivity occurs also for other values of a and b. If we look in the neighborhood
of a = 1.4 and b = 0.3, then one obtains a period 18 cycle for (a,b) = (1.3999769098975, 0.3)
and a period 19 cycle for (a,b) = (1.4,0.30009066023), etc.[3].



Chapter 4
Lyapunov images.

4.1 Images of dynamical systems

There are many ways to create images which illustrate the dynamics of systems of difference
equations. One way is by plotting the orbits as we have seen before. Another way is by
plotting Lyapunov exponents. For a two dimensional system with x and y as the variables the
plot of Lyapunov exponents against (x,y) results in a two dimensional Lyapunov image for a
particular choice of the constants. For a system with two constants a and b the plot of Lya-
punov exponents against (a, b) results in a two dimensional Lyapunov image for a particular
choice of the initial values (z¢,yp). A two dimensional Lyapunov image against one variable

and one constant is also possible, see the figures in section 2.5.

In Lyapunov images different regions can be distinguished: regions for which the system
tend to infinity, regions for which the system shows chaotic behavior and regions for which

the system is attracted to a limit cycle.

Regions for which the system is attracted to a limit cycle with period n can be subdivided
into n regions for which the points (2o, y0), (Zn,Yn), (T2n, Y2n)s---s (Tkns Ykn), - , with k € N,
converges to one of the n limit points. In section 3.4 (page 50) we saw an example of a
limit cycle with period 2 which can be subdivided into 2 regions for which the points (z, 3o),
(x2,y2), (x2,Y2)se., (T2, Y21), -.. , with k € N, converges to one of the 2 limit points.

We will consider Lyapunov images for the Hénon map. Because of its interesting Lyapunov
images we will consider at the end of this chapter the so called z? + ¢ map. We will start
however with a particular type of Lyapunov images which occur for the logistic equation if

the parameter is periodically changed. Such images are called Markus-Lyapunov images.

67
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4.2 Markus-Lyapunov images

For the logistic equation x,,+1 = ax;, (1 — x,,) two dimensional Lyapunov images can be cre-
ated by alternately taking the value B and A for the parameter a during the iteration process.
To be specific, x1 = Bxo(l — x9), v2 = Az1(1 — 1), 3 = Bra(l —x9), x4 = Az3(1 — x3), etc.
For every (B, A) pair the Lyapunov exponent is calculated as an average over the iteration
process. We will look at density plots or contour plots of the Lyapunov exponents in a (B, A)

plane.

For the sequence BABABA... with 0 < A,B < 4 and 0 < A, B < 4, the (B, A) points

are colored dependent on the Lyapunov exponent A, see next figure.

4

0 1 2 3 4
B

Figure 4.1: Markus-Lyapunov image for 0 < A, B < 4. The black square and the red square

are the boundaries of two areas that will be zoomed in further on.
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In the previous figure the coloring is as follows: the A = 0.5 contour is between brown and
dark yellow, the A = 0.0 contour is between dark yellow and light yellow, the A = —0.5 contour
is between light yellow and white-blue, the A = —1.0 contour is between white-blue and light
blue, the A = —1.5 contour is between light blue and blue, the A = —2.0 contour is between
blue and dark blue, the A = —2.5 contour is between dark blue and white. The dark yellow

and brown colors in the upper right corner of the contour plot indicate a more chaotic behavior.

The previous figure contains repeating self-similar structures. To illustrate the self-similarity
the structure within the black square, 2.772 < B < 2.965 and 3.672 < A < 3.865, of figure
is shown in the next figure with a slightly different coloring.

2.80 2.85 2.90 2.95

Figure 4.2: Zoom of the black square of figure Brown and red are for positive Lyapunov

exponents while yellow, light blue, blue, etc. are for negative Lyapunov exponents.

Completely different coloring schemes may lead to beautiful pictures and more pronounced
repetitive self-similar structures. The figures [£.3] and [4.4] are the Markus-Lyapunov images of
figures [4.1] and [4.2] with a different coloring method.
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h

Figure 4.3: Different coloring of figure

B

The structure within the black square, 2.772 < B < 2.965 and 3.672 < A < 3.865, of figure
with a different coloring method:

B

Figure 4.4: Different coloring of figure
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The main structure in the previous figures is determined by intersecting parabola’s. With a

little fantasy it reminds us of swallows.

Lyapunov images in the (B, A) plane for two values B and A of the periodically changing
parameter of the logistic equation were first described by M. Markus and B. Hess [6, [7]. In
both references a picture is presented for the BABA... sequence for 3.808 < A, B < 3.867.
This B, A region is shown as the red square in figure A zoom of this region is shown in
the figure below:

B

Figure 4.5: Zoom of the red square of figure in different colors.

At many positions ‘swallows’ are present.
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Enlargement of the white square region of figure [£.5] 3.836 < A, B < 3.858, delivers similar
structures as in figures [4.4] and

Figure 4.6: Zoom of white square region of figure

No matter how much one zooms in, at every level ‘swallows’ are present.
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One can also take other repetitive sequences like AAB or AABB etc. For the repetitive se-
quence BBABABA with 3.212 < A < 4.0 and 2.759 < B < 3.744 the next figure is obtained.
Again, similar structures as in figures and [4.5] can be seen.

Figure 4.7: Markus-Lyapunov image for repetitive BBABABA sequence.

Another often used sequence is the repetition of BBBBBBAAAAAA for 0 < A,B < 4.

On the next page we see a contour plot and a density plot of the of the Lyapunov exponents.
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B

Figure 4.9: Different coloring of figure
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The red area in figures and with 3.394 < A < 4.0 and 2.516 < B < 3.647 has a very

rich structure, see the figure below. It is known as Zircon Zity.

Figure 4.10: Zircon Zity.

4.3 Lyapunov image for the Hénon map

The largest Lyapunov exponent of the Hénon map for each pair of constants (a,b) can be
created by assigning a color to each pixel with coordinates (a,b). The color depends on the
largest Lyapunov exponent. An example is shown in figure In figure [4.11 a pixel is
yellow if the Lyapunov exponent is negative, red if the Lyapunov exponent positive and blue

if the orbit runs to infinity. Notice the presence of ‘swallows’ in the red region.
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-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

a

Figure 4.11: A Lyapunov image for the Hénon map. See the text for the coloring.

In the previous chapter we already obtained that a single fixed point is between the curves

1
a= —1(1 —b)? and a = Z(l — b)2. In figure 4.11 they are shown as an orange curve and a

white curve respectively.

3 5
The period 2 limit cycle is between the curves a = Z(l —b)?anda=0b+ Z(l —b)2.

In figure

4.11

5
the curve a = b + 1(1 — b)? is shown as a green curve.

The period 4 limit cycle will be between the green curve and the border between red and

yellow regions.

The end of the period 2" limit cycle bifurcations is at the border between red and yellow

regions.
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4.4 Basins of attraction for the Hénon map

If, for a certain map, one follows the orbit for a given starting point, it either diverges to in-
finity or is attracted to a stable fixed point or a limit cycle or a strange attractor. All starting
points that do not diverge to infinity form the basins of attraction. In the case of the Hénon
map, points in the real plane are either attracted to the Hénon attractor or escape to infinity.

The larger the Lyapunov exponent, the faster it escapes to infinity.

In the next figure the starting points (xg,yo) with —4.0 < x9 < 4.0, —4.0 < yo < 4.0,
a = 1.4 and b = 0.3, are colored depending on how quickly they go to ‘infinity’. Here we
simply consider a point (x,,,) to be at ‘infinity’ if 22 4+ y2 > 20000. Take for example

(w0, y0) = (4.0,4.0) then (x1,y1) = (—=17.4,1.2) and 2% + y} = 304.2.

A further step leads to (z9,y2) = (—421.664, —5.22) and 22 + y3 = 177 828.

So, already after 2 iterations ‘infinity’ is reached.
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In the latter figure the Hénon attractor for (xo,y0) = (0,0) is drawn in black. All white
starting points (zg, yo) iterate towards the Hénon attractor, so they form the basin of attrac-
tion for the Hénon map. The other colors indicate the number of iterations needed before
22 +y2 > 20000: from orange (close to the white basin) for 7 iterations through purple (more

in the outer parts) for 2 iterations.

A similar picture for the Hénon map with a = 0.155 and b = 0.996 is shown in the next
figure. Again the Hénon attractor for (xg,yo) = (0,0) is drawn in black. For the escape to
‘infinity’ the coloring is different: from pink (close to the white basin) in 5 steps through blue

(outer parts) in 1 step.
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For a = 0.2 and b = 0.999 the result is shown in the next figure. Also here the Hénon attractor
for (zg,y0) = (0,0) is drawn in black. As we already saw on page 65, the attractor is split in

two regions.
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For a = 0.31552 and b = 0.99004 the result is shown in the next figure. In comparison with
the previous figure, the attractor seems to ‘evaporate’: in each of the two regions there only

is a clustering to 6 small ‘clouds’ away from the center.
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For a = 1.2 and b = 0.99 the attractor is completely vanished, all points go to ‘infinity’, but
with different ‘speed’.

4.5 The 2z*> + ¢ map

Here we will consider the following map:

2 2
Tmi1 =22, — 92, +a

4.1
Ym+1 = 2TmYm + 0, ( )

where a and b are constants. With z = z 4 iy and ¢ = a + ib it takes the simple form 22 + c.

For this reason it is known as the 2z 4+ ¢ map.
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For many values of a and b the orbit end in a periodic cycle. For a = 0.2, b = 0.541 and

(xo,y0) = (0,0) the evolution of points (zy,, ym) is as shown in the next figure.

0.8
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0.6 |
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0.4
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0.2 — R -

0.1 ' : -
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Figure 4.12: Time series of (2, ym) for a = 0.2, b = 0.541 and (z, yo) = (0,0).

We recognize 21 clockwise and 34 anti-clockwise spirals, both are Fibonacci numbers. In the
long run the points tend to a single point (—0.044658,0.49664). For other values of a the
points (Z,, ¥m) may end up in a periodic limit cycle or diverge to infinity. For b = 0.541 the
orbits are plotted against a in figure [4.13. Curves are periodic cycles, points on a vertical
line are part of a chaotic orbit, and the absent of points for a value of @ means the orbit has

diverged to infinity.
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Figure 4.14: Orbit diagram for the 2% + ¢ map with b = 0 and (g, 0) = (0,0).
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A special situation occurs for b = 0 and yg = 0. Then y,,, = 0 for all m. As a consequence
the system is reduced to x,,+1 = 22, + a, which is, up to a trivial transformation, equal to
the logistic equation. The orbit diagram is shown in figure The single fixed points start
at a = 1/4, the bifurcation to two fixed points is at a = —3/4, and the bifurcation to 4 fixed
points is at a = —5/4. The next bifurcation is at a ~ —1.3681, etc.

A Lyapunov image for the 22 + ¢ map is shown in the next figure.

-2 -1.5 -1 -0.5 0 0.5
a

Figure 4.15: A Lyapunov image for the 22 + ¢ map. Pixels are colored yellow for a negative
Lyapunov exponent, red for a positive Lyapunov exponent and blue in case the iterative values

(T, Ym) Tun to infinity.

The yellow part in the figure is called the Mandelbrot set. The big part with a kidney shape
is a cardioid with the cusp at a = 1/4. A circle touches the cardioid in (a,b) = (—3/4,0),
which in turn is touched by a smaller circle in (a,b) = (=5/4,0), and so on. It is illuminating
to draw the b = 0 line in figure and put it together with the orbit diagram and the

corresponding Lyapunov image in a single picture, see the next page.
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Tmi1 = To, — Yo + 0
Ym+1 = 2TmYm + 0.541
z0=0,y0=0

X\
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The vertical brown lines show the connection between bifurcation points and the touching
points. Since the ratio of the distances between successive bifurcations approach to the
Feigenbaum number 4.66920..., the ratio of the radii of successive circles also approach to

the Feigenbaum number.

For b = 0.541 we also combine three diagrams, see the previous page. From left to right
the green b = 0.541 line enters at a = —0.537 a circle which corresponds to period 5 limit
cycles.For a =~ 0.47 it leaves the circle and enters the main cardioid. The latter corresponds to
period 1 limit cycle. It leaves the cardioid for a ~ 0.208 to arrive in the blue area of divergence
to infinity. The green line enters a circle for a ~ 0.238. The circle corresponds to period 4

cycles. The green line leaves this circle for a ~ 0.323.

4.6 Analytical solutions for the 2> 4+ ¢ map

So far the investigations were numerical. To a certain extent the Mandelbrot set can be
investigated in an analytic way. By means of the complex variable z = x + iy and the complex
constant ¢ = a + ib the system (|4.1)) takes the form

Zma1 = 22, 4+ C. (4.2)

That is, f(z) = 22 + c. For a fixed point there holds f(z) = z and the stability requires the
absolute value of the derivative to be smaller than 1: [0f/0z] < 1. At the boundary between

stable and unstable regions we have |0f/0z| =1 = }ew , where the angle 6, is from 0 through

2.
For f(z) = 22 + ¢ we therefore have the following two conditions for the boundary: 22+ ¢ = z
and 2z = €. Substituting z = ¢?/2 in ¢ = z — 22 we obtain
Lo 1 2
— it _ 220 4.3
c=ge 1¢ (4.3)

This is the equation for a cardioid. The fixed point is stable inside this region, see the blue

cardioid in figure 4.16. The equation for the cardioid can also be written as

1+ 3(1—cosf)cosd

\ (4.4
b= 3(1—cosf)sinf. .

For a period 2 cycle we have f(f(z)) = z — c+c —2+2c2%+ 2% = 0 and 423 +4cz = ¢, The
first equation can be written as (¢ — z + 22)(c+ 14 2 + 2%) = 0. The solution (¢ —z+2%) =0
corresponds the period 1 cycle (single fixed point). Substitution of the second solution ¢ =
—1— z — 22 into the equation 423 + 4cz = ¥ gives: —z — 22 = ¢ /4. Substituting this result

2

back into ¢ = —1 — z — z° we obtain [4]

c=—1+ %e“’ : (4.5)
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The latter is the equation for a circle with radius 1/4 and center (—1,0). The period 2 limit
is stable inside this circle, see the cyan disk in figure [4.16. The cyan disk touches the blue

cardioid in (—3/4,0). The equation for the circle can also be written as

a:—1+40089 (4.6)
b= 481119 '

For a period 3 cycle we have f(f(f(2))) =2z = (c—z+22)(1+c+22 + 3 +2+2cz+ 22+ 22+
3c224+3c222 + 224 2e23 + 24 432+ 25 +20) = 0 and 22+ 32+ c24+3¢223 +3c25 + 27 = et /8.

Discarding the period 1 solution (¢ — z + 2z?) = 0 and eliminating z we obtain
A N\ 2
64> + 128¢2 + 8c (8 - ew) n (8 - ew) —0. (4.7)

It has three solutions. By means of the variable

w = —1600 + 288" — 27¢% 4 3\/5\/ (8 — €i9)2(1472 — 176€i0 + 27¢2i0) (4.8)

()@@ =
<§+; >( + = \f)( )1/3+1(—7+ f)( )1/3 (4.10)

c:—+<§—|—1ei6>( 7+—z\f)< ) v i(1 —Z\f)( )1/3 (4.11)

2 12°2

the solutions read

The three solutions correspond with two circles and one cardioid. The stable regions are
therefore two disks and a cardioid, see the three brown shapes in figure [£.16. One disk touches
the cardioid at the top (—1 4 v/3)/8 and one disk at the bottom (—1 — v/3)/8 respectively.
The third brown shape is a small cardioid (same shape and same orientation as the big blue
cardioid) with its cusp point at (—7/4,0), and it intersects the b = 0 line at (v,0), where

2 2 1915 — 135y/201
v _2_25 \/ 915 = 135201 1 76852915, (4.12)
3 6\ 1915 —135v/201 12 2

The latter was found by evaluating equation for ¢ at 8 = 7. The equation describes
for 0 < # < 7 the upper half of the small cardioid, and for m < # < 27 the left half of the
circle in the upper half plane. The equation describes for 0 < 6 < 7 the left half of the
circle in the lower half plane, and for 7 < § < 27 the lower half of the small cardioid. The
equation describes for 0 < € < 7 the right half of the circle in the upper half plane,
and for 7 < 6 < 27 the right half of the circle in the lower half plane. With the use of the

constant v the solution for the small cardioid can be written as

21 1 7T 1 ; 7 1 ;
=4z L _Zyp)e? — 4= 2ig 4.1
c 16—1-41)—1—( g 2v>e +<16+4v>e (4.13)
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By means of the variable

x = (74 4v)(1 — )2 (4.14)
it can be written as
__7 + L (4.15)
AT '

The equation for the two circles then read

11 1
= —— — —y+ —1\/—4324+ 136 — 3x2 — 164/—x(x — 28)2. 4.16
c 3 32X 32\/ + X X x(x ) ( )

The relation between ¢ and 6 is given by

; 1 1
e =1+ XT3 —x(x —28)2. (4.17)

Upon substitution of equation (4.14) for x and then equation (4.12) for v the relation becomes

tedious.

For a period 4 cycle we have f(f(f(f(2)))) = z = (c—z+2*)(1+c+2+22)(1+2c2+3c3+3c* +
3P+ +2c2+ 24232+ a4 22+ 522246322 +12¢4 22 460 22 4+ 22+ 4?23 +4c3 23 + dezt +
3c224 +18c3 24 +15¢ 24 +2¢2° + 6227 + 26 +12¢2 25 + 2063 26+ 4c2" + 328 + 156228 + 27 +-6¢21 0+
212) = 0and z4+2c*2+3c°2+3c8 2 4+-c" 2+ 223443 2349 23+ 152 23+ 7823 +-3¢22° +9¢3 25+
30t 2% 4+21P 2% +c2"4+3c2 27 +30¢3 27 +35¢1 2"+ 156227 4356327 + 3¢ 14212 21 14+ Tzt 3+ 215 =
¢ /16. Discarding the period 1 solution (¢ — z + 22) = 0, the period 2 solution (14 ¢+ z + 22)

and eliminating z we obtain

4096¢5 +12288¢° 4 256¢* (48 4 €) + 2563 (48 + ) +16¢% (512 — 16e% — e*?) + (16 — )3 = 0.

(4.18)
The equation has 6 solutions which are determined numerically. The solutions correspond
with the red shapes in figure [.16. Two of the shapes are disks of which one touches the blue
cardioid in (1/4,1/2) and the other one in (1/4,—1/2). Two other shapes are small disks in
the neighborhood of (—.158,1.034) and (—.158, —1.034) respectively. The fifth shape is a disk
which touches the cyan circle in (—5/4,0). The sixth shape is a very small cardioid (more
than 1000 times smaller than the blue cardioid) and is situated around (—1.941,0).

For a period 5 cycle we obtain 15 solutions. They correspond with: 1 small cardioid with its
cusp at (a,b) =~ (—1.98541,0), 1 small cardioid with its cusp at (a,b) =~ (—1.86049,0), 1 small
cardioid with its cusp at (a,b) ~ (—1.6242,0), 2 small cardioids at (a, b) ~ (—1.256, £0.380), 2
small cardioids at (a,b) ~ (—0.1982,£1.1002), 2 small cardioids at (a,b) ~ (—0.044, £0.987),
2 small cardioids at (a,b) ~ (0.359,40.643), 4 disks which touch the blue cardioid. These 15

shapes are drawn green in figure [4.16
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Figure 4.16: Analytical solutions for the border of the Mandelbrot set. The numbers inside
or nearby a disk indicate the period of the limit cycle.

4.7 Number of period n solutions of the 2> 4 ¢ map

Let us write the n-th iterate of z as zp,]. The largest power of ¢ in 2, is 27~ The period
1 solution was partly based on the condition z;) — 2z = 0; the other part was dz;) = 1. The
largest power of ¢ in zy) — 2 is 20 = 1. Therefore there is 1 period 1 solution. The period
2 solution was partly based on the condition (zjg) — 2)/(21] — 2) = 0; the other part was
Ozjg) = 1. The division by z[;) — 2 is to exclude the period 1 solution. The largest power of
cin (219 — 2)/(zp) — 2) is 28 — 20 = 1. Therefore there is 1 period 2 solution. The period 3
solution was partly based on the condition (23] — 2)/(2;1) — 2) = 0. The division by 2 — z is
to exclude the period 1 solution. The largest power of ¢ in (23 — 2)/(21) — 2) is 22 —20 =3,
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Therefore there are 3 period 3 solutions. The period 4 solution was partly based on the con-
dition (z4) — 2)/(2[g) — 2) = 0. The division by 29 — 2 is to exclude the period 2 solution. The
largest power of ¢ in (z(4 —2)/(z[g — 2) is 23 —2! = 6. Therefore there are 6 period 4 solutions.
The period 5 solution was partly based on the condition (z(5) —2)/(21) — 2) = 0. The division
by 2] — 2 is to exclude the period 1 solution. The largest power of ¢ in (2[5 — 2)/ (2] — 2) is
24 — 29 = 15. Therefore there are 15 period 5 solutions. The period 6 solution is based on the
condition (zj) — 2) /(231 — 2)/ (22 — 2) * (1] — 2) = 0. The division by z(3) — 2 and 2}y — z is to
exclude the period 3 and period 2 solution. Since both z(3) — 2z and z[3) — z contain the period
1 solution, we have divided by z|;) — 2 one time too much. To repair it we multiply by z[y) — 2.
The largest power of ¢ in (21 — 2)/ (213 — 2)/(22) — 2) * (2] — 2) is 2° — 22 — 21 420 = 27
Therefore there are 27 period 6 solutions. Continuing this line of arguments we obtain the
following series of numbers of period n solutions 1,1,3,6,15,27,63,120,252, .... The series is
known as A000740 in OEIS [5].

For a period n solution we write n as its products of powers of distinct primes, the prime
k
decomposition: n = Hp}nj. For instance, the prime decomposition of 30 is 2! - 3' - 5! and
j=1
contains no squares and has three distinct primes. The prime composition of 84 is 22 - 31 . 7!
and contains a square: 22. The prime decomposition of 882 is 2! - 32 - 73 and contains three
squares: 3%, 72 and (3 - 7)2. The Mobius function y(n) is defined as

1 ifn =1
un) =< 0 if n contains one or more squares; (4.19)

(—=1)F if n is a square free product of k distinct primes.

For instance, pu(4) =0, pu(5) = —1, u(6) =1, u(12) = 0 and w(30) = —1.

By means of the Mébius function the number s(n) of period n solutions is given by

s(n)=>_ p(n/d)2*". (4.20)

dn

where d |n are the numbers d which are a divisor of n. A recurrence relation for s(n) is

s(n)=2""1= " s(n/d), (4.21)

djn,d>1

with s(1) =1 as initial value.

A property of s is Z s(d) =2"1.
din
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4.8 Mandelbrot set and Fibonacci

If we follow the circumference of the main cardioid in figure the largest object we meet
is the cyan disk with number 2. Since the Mandelbrot set is symmetric with respect to the
x-axis, we consider only the upper half plane from here. If we follow in the upper half of figure
the circumference of the main cardioid from the cyan disk with number 2 towards the
cusp of the blue cardioid, then the largest object is an orange disk with number 3. From the
orange disk with number 3 to the cusp the largest object is a red disk with number 4. The
largest disk between the disk with number 4 and the cusp is a green disk with number 5. If
we had plotted more disks, the next largest disk between 5 and the cusp would be a disk with

number 6. Continuation of the procedure leads to the sequence: 1, 2, 3,4, 5,6, 7, 8, ...

The largest disk in figure between the cyan disk with number 2 and the orange disk
with number 3 is a green disk with number 5. If we had plotted more disks, the largest disk
between the orange disk with number 3 and the green disk with number 5 would be a disk
with number 8. The largest disk between number 5 and number 8 is a disk with number 13.
The largest disk between 8 and 13 is a disk with number 21. Continuation of the procedure
results in the Fibonacci sequence: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ....

The situation is illustrated in the figure below.




Chapter 5

Fractals

5.1 Koch snowflake

We start with five points A(0,0), B(2,0), C(3,v/3), D(4,0) and F(6,0), and the four line
segments AB, BC, CD and DE. The curve ABCDE is shown in the upper left panel of
the next figure. Each of the four line segments has length 2. The distance between A and
FE is 6. The curve ABCDFE is used as the building block of a structure with self-similarity.
First every segment is replaced by a 3 times smaller version of ABCDFE. The result is 16
line segments, see the upper right panel. Since every segments is 3 times smaller the length
of the new segmented curve is 32/3. Next every segment is replaced by a 9 times smaller
version of ABCDE. The result is 64 line segments, see lower left panel. The length of the
new segmented curve is 128/9. Next every segment is replaced by a 27 times smaller version
of ABCDE. The result is 256 line segments, see lower right panel. The length of the new
segmented curve is 512/27.
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If the procedure is continued through infinity, the resulting figure has the following property:
if one zooms in on a line segment, then it looks as the original figure. In other words, the
resulting figure is self similar at all scales. Such a figure is called a fractal. In this case it is

known as the Koch fractal.

If the procedure which leads to the Koch fractal is applied to the sides of an equilateral
triangle in the outside direction, we obtain the so called Koch snowflake, see left panel of next

figure. In the inside direction it is an anti-snowflake, see right panel of next figure.

5.2 Designing fractals

Here we consider another building block. We start with six points A(0,0), B(2,0), C(2,2),
D(4,2), E(4,0) and F(6,0), and the five line segments AB, BC, CD, DE and EF. The
curve ABCDEF is shown in the upper left panel of the next figure. Each of the five line
segments has length 2. The distance between A and F' is 6. Every segment is replaced by
a 3 times smaller version of ABCDFEF. The result is 25 line segments, see the upper right
panel. Since every segments is 3 times smaller the length of the new segmented curve is 50/3.
Next every segment is replaced by a 9 times smaller version of ABCDEF'. The result is 125
line segments, see lower left panel. The length of the new segmented curve is 250/9. Next
every segment is replaced by a 27 times smaller version of ABCDFEF. The result is 625 line
segments, see lower right panel. The length of the new segmented curve is 1250/27.
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If the procedure is repeated many times and applied to the sides of a square in the outside
direction, we obtain a pattern as shown in the left panel of next figure. Application to the

inside direction leads to the pattern shown in the right panel of next figure.
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Next we consider another building block. We start with eight line segments connecting the
nine points (0,0), (1,0), (1,1), (2,1), (2,0), (2,—-1), (3,—1), (3,0) and (4,0) as shown in the
left panel of the next figure. Each of the line segments has length 1. The curve has length 8.
Every segment is replaced by a 4 times smaller version of the initial building block. The result
is 64 line segments, see the middle panel. Since every segment is 4 times smaller the length
of the new segmented curve is 16. Repeating the procedure we obtain 512 line segments, see
the right panel. The length of the new segmented curve is 32. Repeating the procedure leads
to the so called Minkowski fractal. As for the previous fractals it can be applied to the sides

of a triangle, a square or any polygon to obtain mathematical art figures.

T T T
o 1 2 3 4 0 1 2 3 40 1 2 3 4

5.3 Two dimensional fractals

We can also start with a two dimensional object and add smaller versions of the object. For

instance, when we start with a square and add two smaller squares as shown below.

i
L] ||

o o

Taking more steps results in the Pythagoras tree, see the first figure on next page. Every
branch is a smaller copy of the original tree. The self similarity is at all scales; the Pythagoras

tree is a fractal. We can also make an asymmetric tree, see the second figure on next page.

Another example of a two dimensional fractal is obtained by starting with an isosceles tri-
angle and place a smaller copy at the top of the original triangle with its base adjacent and

perpendicular to one of the equal sides.
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Figure 5.1: Pythagoras tree.

Figure 5.2: Pythagoras tree.

97
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The two equal base angles are a.. After each step the triangle is a factor v smaller than the
previous triangle. As a consequence each new triangle is rotated over an angle « in clockwise

direction. The next figure gives the first two steps.

14

|- £ £

After many steps a spiral is obtained, see the next figure.

After n steps the left side of the triangle is parallel to the right side of the initial triangle if

o
n—2"

(5.1)

The first value of n for which o« < w/2 is n = 5. Then a = 7/3; the triangle is equilateral.
For this situation the spiral is shown in the first figure on the next page. By increasing v we

can obtain a situation where the spiral fills the inside area, see the second figure on next page.

For n = 5 the spiral fills the area when v satisfies the equation v + v3 = 1. One of the

three solutions is real:

1 3/25 —3v69  3/254 3v69
3 * 2 * 2

~ 0.754878 . (5.2)
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For n = 6 we have @ = 7/4. An area-filling spiral then is obtained when v satisfies the
equation v2 + /213 4+ v* = 1. One of the four solutions is real and positive: v ~ 0.652523.
The situation is shown in the next figure.

For n = 7 we have a = 7/5. For an area-filling spiral v has to satisfy the condition

1 1
V24 3 (1 + \/5) 3+ 3 (1 + \/5) v*+ 15 = 1. One of the five solutions is real: v ~ 0.600610.

For n = 8 we have a = 7/6. The area-filling condition is 1% + V313 + 20* + V305 + 16 = 1.

One of the six solutions is real and positive: v a 0.570841.
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In general the area-filling condition is

= km T
. k+1 — .
g_ sin (n_2>y sin (n—2> . (5.3)

For n = 9,10,11,13,15,16, ... and most other values for n the latter equation does not lead

to a polynomial in v with algebraic coefficients. A polynomial in v with algebraic coefficients
only occur if the sine of 7/(n — 2) is algebraic, which is the case if
n—2e{2m.3,2m.4,2™m.5 2™ .15}, where m =0,1,2,....

The area-filling values for v are plotted against n in the next figure.
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The total area S of a spiral of isosceles triangles is given by

sin o cos a
S=——. 5.4
1—V2 ( )

§— 1 sin< 2n > (5.5)

2 — 212 n—2

For area-filling spirals this is

where v is the solution of equation (5.3). The areas for area-filling spirals are plotted against

n in the next figure.
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A two dimensional fractal with branches can be obtained by repeatedly placing two smaller
copies at the top of the previous triangles with their base adjacent and perpendicular to the

equal sides. The next figure gives an impression.

\ I P\
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For a = 7/3 and v = 0.6 the tree is as follows.

For a = /4 and v = 0.6 the tree is as in the next figure.
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5.4 Fractal dimension

A stick with length [ fits 1/ times in a unit length. A square with side length [ fits 1/I in a
unit square. A cube with edge length [ fits 1/I? times in a unit cube. In general, N = 1/i7,
where N is the number of times a smaller copy fits in the object with unit sizes and where
D is the dimension of the object. From the relation between N and [ we can determine the

dimension:

In N(1)
Inl
For non-fractal objects as sticks, squares and cubes it does not matter how small we take the

D=—

(5.6)

sizes. That is,

In N (1)

D =lim — 5.7

S0 Inl (5.7)

leads to the same value for D. The situation changes for fractals. To this end we once more
consider the construction of the Koch fractal:

2 -9 -
C

1 L1 =

014 B D g 0 |
I I I I I I I I I I

o 1 2 3 4 5 6 0 1 2 3 4 5 6

27 | | | | | 727 | | | | | .

1 -1 =

0 -0 -
I I I I I I I I I I

If a stick has length 2, it would fit 4 times along the curve between A and E. If the length of
the stick is 2/3 it would fit 16 times along the curve between A and E. Each time the length
of the stick is decreased with a factor 3 the number of line segments that can be measured
increases with a factor 4. If [ is the length of the stick and N(I) the number of line segments
that can be measured, then the fractal dimension D is defined as

D — fim — 2N

[—0 Inl (5.8)

If we start with a stick with length 6, that is [ = 6, then Ny = 1. Next we take a stick with
length 2, that is I; = 2, then N; = 4. In the next step we take a stick with length lo = 2/3,
then Ny = 42. For the n-th step we then have [,, = 6/3" and N,, = 4". We thus find
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_lnNn_ In4™ nln4
Inl, In6/3" In6-nln3’

In the limit n — oo, which is equivalent to the limit [ — 0, the part In6 is negligible with

(5.9)

respect to nln3. For the fractal dimension of the Koch fractal we therefore obtain

In4

— . 1
In3 (5.10)

DKoch =

As another example we consider the Minkowski fractal. After each step of the construction of
the Minkowski fractal the length of the line segments is 4 times smaller while the number of

segments is 8 times larger. Hence

In8 3ln2 3
D inkowski — = = = 5.11
Minkowski = 7,0 = 21n2 ~ 2 (5.11)

For arithmetic fractals such as the Koch fractal and the Minkowski fractal an alternative

definition is
_ In(Nny1/Nn)

D=
In(ly/lnt1)

The concept of a fractal dimension for one dimensional fractals can be generalized to two- and

(5.12)

three dimensional fractals by replacing the length [ by the square root of the area, v/A and
the cubic root of the volume, v/V, respectively. For instance, for two dimensional fractals the

equation for the fractal dimension is

L In N(A)
D =l —2— = (5.13)
. (N, 1/N,)
n n+1 n
D=2————"1 5.14
ln(An/An+1) ( )

For the Pythagoras tree every square generates two squares, each with half the area of the

generating square. Hence
In2 B

In2
An example of a three dimension fractal is the Menger sponge. The fractal dimension of the

DPythagoras tree = 2 2. (515)

Menger sponge is

In20 1n20
DMenger sponge — In27 = n3 (516)
5.5 Julia fractals
Here we will consider once more the 22 4 ¢ map:

Ym+1 = 2ZmYm +b.
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This time we focus on the orbit of points starting with (zg,y0). As an example we consider
the situation for a = 0.279, b = 0. In the next figure the first few iterates are shown for
(o,y0) = (0.5,0.3) (green) and (xg,yo) = (—0.54259166167..., —0.81811547324...) (blue).
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For (xo,yo0) = (0.5,0.3) the orbit spiralizes outwards; it diverges towards infinity.

For (x0,y0) = (—0.54259166167..., —0.81811547324...) the orbit ends after three iterations in
point (0.5,0.17029386365926...) and stays there; (0.5,0.17029386365926...) is a fixed point. If
one starts at a slightly different position the orbit diverges, after many iterates, to infinity.
That is, (0.5,0.17029386365926...) is an unstable fixed point. The set of all points which do not
diverge to infinity is called the Julia set J(a, b). The point (—0.54259166167..., —0.81811547324...
belongs to the Julia set J(0.279,0) since it does not diverge to infinity. The same holds for
the other blue points in the figure above. The point (—0.54259166167..., —0.81811547324...)
is, as all the other blue points, a predecessor of (0.5,0.17029386365926...). All predecessors of
unstable periodic cycles belong to the Julia set. The fixed point (0.5, —0.17029386365926...)
is not a predecessor of (0.5,0.17029386365926...). So, (0.5, —0.17029386365926...) and its pre-
decessors form a different set than (0.5,0.17029386365926...) and its predecessors. The first
is the mirror set of the latter with the y-axis as the mirror. Both sets belong to the Julia
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set J(0.279,0). The complete Julia set J(0.279,0) is a set of disconnected points. The Julia
set J(0.279,0) is shown in the left panel of the next figure. The Fatou set is the set of all
points (zg, yp) which are not part of the Julia set . The iterates of the elements (xg, yo) of the
Fatou set diverge to infinity. We can color the pixel around (xg,yo) depending on the speed
of divergence to infinity, see the right panel of the next figure. Yellow is for a slow divergence,
green for an intermediate speed and red for a quick divergence to infinity. The Fatou set joined
with the Julia set fill the x, y-plane. A complete picture is obtained by plotting the Julia set
on top of the Fatou set, see the figure at the bottom of the page. It illustrates the Julia set is

to a certain extent the border between different colored parts of the Fatou set.
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For other values of a and b we obtain other Julia and Fatou sets. In the figure below the sets

J(—0.5,0) (left panel) and F(—0.5,0) (right panel) are shown.

—1.5 ‘ ‘ .
-15 -1 =05 0 05 1 1.5 -15 -1 -05 0 05 1 1.5

X T

The Julia set J(—0.5,0) is a set of connected points. The points outside the region enclosed by
the Julia set J(—0.5,0) diverge to infinity and are therefore colored light. The points inside
the region enclosed by the Julia set J(—0.5,0) converge to the Julia set J(—0.5,0). They
never come outside this region. In a way it can be regarded as if they tend to infinity in an
extremely slow way. Therefore the region enclosed by the Julia set J(—0.5,0) is colored black

in the Fatou set.

Julia sets are fractals. For a = —0.75 and b = 0 the Julia set J(—0.75,0), which is a connected

set, is known as the San Marco fractal, see the figure below.

—1 a=-0.75
b=

—-1.5 ‘ ‘ .
-15 -1 =05 0 05 1 1.5 -15 -1 -05 0 05 1 1.5
z x
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As another example with b = 0 we show the Julia set and Fatou set for a = —1.25. The Julia
fractal J(—1.25,0) is connected.

1.5 -
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Next we will consider Julia sets and fatou sets for b £ 0. Below are shown the Julia set and
Fatou set for a = 0 and b = 1.25 . The Julia fractal J(0, 1.25) is disconnected.
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For b # 0 the Julia set and Fatou set are point symmetric around the origin. The sets for —b

are the mirror images of the sets fore b, with the z-axis or the y-axis as the mirror axis.

Next are shown the Julia set and Fatou set for:
a =0 and b= 0.75, the Julia fractal J(0,0.75) is disconnected.
a =0 and b= 0.6, the Julia fractal J(0,0.6) is connected.

a =0 and b= 0, the Julia fractal J(0,0) is connected and is a circle with unit radius.
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Finally we consider Julia and Fatou sets for the situation where both a # 0 and b # 0.
Next are shown the Julia set and Fatou set for:

a = 0.125 and b = —0.75, the Julia fractal J(0.125, —0.75) is disconnected.

a = 0.125 and b = —0.625, the Julia fractal J(0.125, —0.625) is connected.

a = —0.125 and b = —1, the Julia fractal J(—0.125, 1) is disconnected.

a = —0.125 and b = —0.85, the Julia fractal J(—0.125, —0.85) is connected.

a = —0.125 and b = —0.75, the Julia fractal J(—0.125,—0.75) is connected.

a = —0.125 and b = —0.65, the Julia fractal J(—0.125, —0.65) is connected.

a = —0.8 and b = —0.15, the Julia fractal J(—0.8, —0.15) is connected.

a = —0.79 and b = —0.15, the Julia fractal J(—0.79, —0.15) is disconnected.
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If we blow up 100 times the right part of the latter Fatou set for a = —0.79, b = —0.15 we
still see the same kind of shapes. No matter how much we blow up small sections, the fractal

structure is present at every level.

Figure 5.3: The 1.465 < x < 1.525 and 0.06 < y < 0.09 section of the Fatou set for a = —0.79
and b = —0.15.

5.6 Mandelbrot fractal

From the figures of the previous section we see that Julia sets are point symmetric around
(0,0). As a consequence, for connected Julia sets the point (0,0) is inside the region enclosed
by the Julia set. If we take (0,0) as a starting point (xo,yo), then (z1,y1) = (a,b). Therefore
the point (a, b) also is inside the region enclosed by the connected Julia set. As a consequence,
there is an easy way to determine whether a Julia sets is connected or disconnected. Take the
parameter values for a and b as the starting point, thus (zg, yo) = (a, b). If the orbit (2, ym)

tends to infinity the Julia set J(a,b) is disconnected else the Julia set J(a,b) is connected.

For each pair (a,b) we place a black dot if J(a,b) is found to be connected. The result is
shown in the next figure. We recognize the Mandelbrot set as we met it in the previous
chapter. This is no surprise since in the previous chapter the Mandelbrot set was the set of
pairs (a,b) for which (xg,yo) =~ (0,0) leads to a non diverging series (Zy,, ym ), while here the
Mandelbrot set is the set of pairs (a,b) for which (zg,y0) =~ (a,b) leads to to a non diverging
series (T, Ym), and for the divergence test there is no difference between starting at a point

very close to (0,0) and starting at (a,b).
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0.5

—0.5 |

—2 —-1.5 -1 —-0.5 0 0.5

The Mandelbrot set is a fractal, the Mandelbrot fractal. Its fractal dimension is 2.



Chapter 6

Misiurewicz points

6.1 Polynomials for zp =1/2

In the figure below the orbit diagram for the logistic equation x,,+1 = axy, (1 — x,,) is shown.

0.75

219950 through 220000
(e}
ot
|

0.25

Q

In the chaotic regions we clearly recognize dark curves. Point A is a point of intersection
of such dark curves. It also is the most right point of the ‘large void region’, see the red
point in the figure above. Since the curve of the function (1 — x) is almost horizontal in the
neighborhood of x = 0.5, points near = 0.5 are mapped close a/4 and thus close to each
other. As a consequence, subsequent mappings will also be close to each other. Therefore the

dark regions originate from orbits which pass near the critical point x = 0.5.

115
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Because of the special role of the critical point we take o = 1/2 as a starting point and

calculate some further . It leads to polynomials in a:

CL2

4

w

A= To = r3=—————+———, and soon.

r—l‘g
(=]

a
4 )

In the next 8 figures the polynomials x; through xg are plotted against a.
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a a

In the next figure the foregoing 8 polynomials are plotted in a single diagram. The function

To =5 is plotted in blue.

Figure 6.1: Polynomials zy(a) for zo = 1/2.

Two points of intersection are indicated by red dots and the symbols A and B.
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6.2 Points of intersection

For the points A and B: x3 = x4 = 5 = .... = ) = ..., while ¢ # x3, 1 # x3, T2 #* x3,
1 # xo, T2 # xo and xo # x1. The fixed point condition x4 = x3 is satisfied if either

a—1

1
ars(l1—xz3) =23 — l—ax3=- — 2x3= (6.1)
a

a

a—1
or x3 = 0. The solution 3 = x4 = ... = corresponds to point A. In chapter 2 we
a

already found that the fixed point solution z; = a4 is only stable if 1 < a < 3. The
a

solution z3 = x4 = ... = 0 corresponds to point B. In chapter 2 we already found that the
fixed point solution x; = 0 is only stable if —1 < a < 1. The points A and B are unstable
fixed points. The periodicity sets in at 3.

a—1

To find the predecessor xo of point A we substitute z3 = in 3 = axa(1l — x9):

a—1 9 a—1
—  axr;—axrz+

axs(l—x9) = =0 — 2ar3=1%++/a®2—4(a—1). (6.2)

The latter is reduced to

2ax9 =1+ (a—2). (6.3)
-1
For the + sign the solution is xo = L, which is ruled out by the condition zo # x3. For
a
the — sign the solution is zo = —. To find its predecessor x; we substitute the latter into
a

x9 = ax1(l —z1):

at++va?—4

> (6.4)

1 2
E:axl(l—:nl) — :1:1—3314—?:0 - r =

The substitution of the latter into x; = axo(1 — zp) finally leads to the desired value for a:

a++a?—4
g = zo(1 — z0) - (6.5)

1
For out point of interest, xy = 3 this is

+va2—4 1
%:Z S ot 4a3416=0 — (a—2)(a® -2 —4a—8)=0. (6.6)
a
The solution a = 2 implies x3 = 1/2 which is ruled out by the condition xy # z3. Two of the

three roots of a® — 2a% — 4a — 8 are complex. An analytic expression for the real root is

) ,
3 1+ €/19 — 333+ </19 + 3V 33). Its numerical value, 3.67857351, is the a value of

point A in figure The x value of point A is approximately (3.67857351 —1)/3.67857351 =~
0.728155.

a =
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To find the predecessor 3 of point B we substitute x3 = 0 in 3 = aza(1l — x2):
ara(l —xz2) =0. (6.7)

One of its solutions, zo = 0, is ruled out by the condition xo # x3. The other solution is
x9 = 1. For its predecessor x; there necessarily holds 1 = ax1(1 — 1), which in turn leads to
1 = a?z0(1 — 20) (1 — azg(1 — xg)). For 29 = 1/2 this is reduced to a® — 4a® + 16 = 0. Two
of the three roots of a® — 4a® 4 16 are complex.

The real root, a = ; (2 — 6/19 + 333 — {’/19 — 3\/§> ~ —1.67857, is the a value of point
B in figure[6.1] The z value of point B is 0.

In order to illustrate that our green polynomials are the dark curves of the orbit diagram,
we have plotted the polynomials z; through xg on top of part of the orbit diagram, see next

figure.
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0.5

Z19950 through 20000

0.25 |

T T :
3 3.25 3.5 3.75 4

Figure 6.2: Polynomials xi(a) for zp = 1/2 on top of the orbit diagram for the logistic

equation.

As mentioned before, the Fibonacci numbers are generated by wugy1 = ug + ug—1 with ug =0
and u; = 1. In the limit where k — oo the ratio r between two successive Fibonacci numbers

satisfies the equation r2 — 7 — 1 = 0. Its positive root, ¢ = (1 + v/5)/2, is known as the
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golden ratio. A generalization of the Fibonacci recurrence relation is ugy1 = ug + up—1 + ug—o
with ug = 0, u; = 0 and us = 1. The sequence of numbers are known as tribonacci numbers.
The first few tribonacci numbers are 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, ... In the limit

where & — oo the ratio r between two successive tribonacci numbers satisfies the equation

1 f
r3 —r2 —r —1=0. Its real root, t = 3 (1 + \3/ 19 — 3v33 + \3/ 19 4+ 3v 33) ~ 1.83929, hap-

pens to be half the a value for point A. Indeed t3—t?>—t—1 = 0 is equal to a® —2a*—4a—8 = 0
for t = a/2.

6.3 Misiurewicz points

The parameter value(s) for which a periodic limit cycle has a critical point as a predecessor, is

called a Misiurewicz point. For a map f(x) a point where df /dz = 0 is a critical point. For the

daz(l—
logistic function we have a:v((ix) = a(1—2x) = 0if x = 1/2. Therefore, the point g = 1/2
x

2 . .
is the only critical point. Taking a = 3 <1 + </19 —3v33+ 6/19 + 3\/33) =~ 3.67857 and

starting at zo = 0.5 we obtain x1 ~ 0.919643, xo ~ 0.271845, x3 ~ 0.728155, x4 ~ 0.728155,
x5 ~ 0.728155, etc. That is, starting at the critical point xg = 1/2 we arrive after 3 steps at
the single fixed point A. Let us denote Misiurewicz points for the logistic map as ay,, where
k and n are positive integers. The integer k is the number of steps it takes from the critical

point to arrive at a periodic cycle and the integer n is the period of the cycle. For instance,

2
the parameter value a = (1 - {’/ 19 —3v/33 + {/ 19 + 3@) ~ 3.678573510428322265 is a

Misiurewicz point. Since it takes 3 steps from xy = 1/2 to arrive at a cycle with period 1, it

is denoted as a3 1: a3;1 ~ 3.678573510428322265.

In the first figure on the next page we have indicated two points which are part of a pe-
riod 2 cycle and which have g = 1/2 as a predecessor. The a value for these two red points is
approximately 3.592572184106978649. It takes 5 steps from xg = 1/2 to arrive at the period
2 cycle. We therefore write a2 ~ 3.592572184106978649.

In the second figure on the next page we have indicated four points which are part of a
period 4 cycle and which have xg = 1/2 as a predecessor. The a value for these four red points
is approximately 3.5748049387592. It takes 9 steps from zp = 1/2 to arrive at the period 4
cycle. We therefore write ag 4 ~ 3.5748049387592. Continuation of the procedure leads to
ar7g ~ 3.57098594034161, aszsz 16 ~ 3.570168472496375, aes 32 ~ 3.56999338855913, and so
on.

In the limit m — oo the sequence agm+1,1 9m converges to 3.56994567187, which is the same

value for a where the period doubling series 2 ends at the 2°° limit cycle [§].
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6.3. MISIUREWICZ POINTS
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equation. The two red points are part of an (unstable) period 2 cycle.

Figure 6.3: Polynomials xy
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Figure 6.4: The orbit diagram for the logistic equation. The four red points are part of an

period 4 cycle.
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For the ratio of the distances between the first few Misiurewicz points we obtain:

9317052 g gqoaa2, D27 DA ge52331, ATy 67174t

as2 — a9 4 ag4 — G178 a17,8 — 33,16

ai7,8 — 133,16
—=—=2" ~4.669005, and so on.
433,16 — 65,32

a2m+1 _;’_172771 - a2m+2+1’2m+1

In the limit m — oo the ratio converges to the Feigenbaum

a2m+2+172m+1 — a2m+3+172m+2
constant 4.669201609... [8].

6.4 Misiurewicz points for the 22 + ¢ map

For the complex function f(z) = 22 + ¢ we have ﬂ =2z =0if z = 0. Therefore, the point
zo = 0 is the only critical point. A complex paramet%r c is a Misiurewicz point My, ,, if it takes
k steps from the starting point zg = 0 to arrive at a cycle with period n. Let us start with
2o = 0 and look at the first few z,:

si=c , m=c+c , zm=c+AEA+23+ct
z=c++23 45 +6¢°+68+4¢" + ¢, and so on.

Let us see if a Misurewicz point M exists. The requirements are zo = 21 and 21 # zp.
The first requirement gives ¢ + ¢ = c. Its solution, ¢ = 0, is ruled out by the second require-

ment. A point My ; therefore does not exist.

Next we try Ms 1. Then the requirements are z3 = 29, 22 # 21, 22 # zoand 21 # z9. The
condition z3 = 25 leads to ¢3(c +2) = 0. The first solution, ¢ = 0, is ruled out by 21 # 2.
The second solution, ¢ = —2, is a Misiurewicz point: My = —2. It leads to the sequence
{0,-2,2,2,2,...} for the z,.

For M, 2 the requirements are z3 = 21, 22 # 21, 22 # zpand 21 # zp9. The condition z3 = 2;
leads to c2(¢+1)? = 0. The first solution, ¢ = 0, is ruled out by 21 # zp. The second solution,
¢ = —1, is ruled out by 22 # zp. In fact, M;, does not exist for all (positive integer) n. If
it would exist the condition z,11 = 21 together with the equalities 2,41 = 2:7% 4+cand z; = ¢

would imply z, = 0, which is ruled out by z, # zo.

Points M3 1 are roots of 3 + 2¢% 4 2¢ + 2. For the real root this is
Ms, = % <—2 ~ {’/17 +3V33+ i‘/—17 + 3@) ~ —1.543689.
It leads to the sequence {0, —1.54369,0.839287, —0.839287, —0.839287, ...}.
For the complex roots we get
. +1+2i‘/§317+3\/§1_2i\/§3

M371 — g *2
with sequence {0, —0.228155 + 1.11514¢, —1.41964 + 0.6062914, 1.41964 — 0.6062914, 1.41964 —
0.6062914, ...} and

—17 43V 33) ~ —0.228155 + 1.11514¢
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1 1—iV3 143
Mg,1=(2+ 22[317+3\/33 +iv3 s

3 2
with sequence {0, —0.228155 — 1.115144, —1.41964 — 0.6062914, 1.41964 + 0.6062914, 1.41964 +
0.6062911, ...}.
Points Ms 9 are roots of 2+ 1. The two imaginary roots are Mso = —i and Mo = i. They
lead to the sequences {0, —i, —1—1,4, —1—14,4, —1—4,4,...} and {0,4, =1+, —i, —1+14, —i, —1+

i,—1,...} respectively.

—17 43V 33) ~ —0.228155 — 1.115144

Points My, 1 are roots of "+ 48 4 6¢° + 6¢* + 6¢3 4+ 4¢? + 2¢ + 2. The real root is

My ~ —1.89291 with sequence {0, —1.89291, 1.6902, 0.963869, —0.963869, —0.963869, ...}.
For the complex roots: My ~ —1.29636 = 0.4418527, My ~ —0.101096 £ 0.956287: and
My 1 =~ 0.343907 & 0.700623.

Points M3 o are roots of 3+ ¢ — ¢+ 1. The real root is minus the tribonacci constant:

1
Mso = = (—1 — {’/19+3\/37— {’/19 —3@) ~ —1.83929.

3
It leads to the sequence {0., —1.83929, 1.54369, 0.543689, —1.54369, 0.543689, —1.54369, ...}.
For the complex roots we get

1 141 1—-1v3
My = 2 (—1 + +2“/§ V19 + 3v/33 + ;\f v/ 19 — 3\/33> ~ 0.419643 + 0.606291i
with sequence {0.,0.419643+40.606291¢,0.228155+1.115144, —0.771845+1.115144, —0.228155—
1.115144, —0.771845 + 1.115144¢, —0.228155 — 1.115144, ...} and

1 1—iV/3 14+iv3
Mso== -1+ iv3 g 19+ 3v33 4 — iv3 g 19 — 3\/33> ~ 0.419643 — 0.6062917

3 2 2
with sequence {0.,0.419643—0.606291¢,0.228155—1.115144, —0.771845—1.115144, —0.228155+
1.115144, —0.771845 — 1.115144, —0.228155 + 1.115144, ... }.
Points M 3 are roots of S+ 26 +2¢* +2¢® + 2 + 1. The 6 complex roots are My, ~
—1.23923 £ 0.412602¢, My 1 ~ —0.155788 £ 1.11222¢ and My ~ 0.395014 % 0.5556251.

In summary, we found 1 Misiurewicz point M 1, 3 points M3 and 2 points Ms 2, 7 points
My 1, 3 points M3 and 6 points M 3. That is a total of 22 Misiurewicz points for which the
sum of the indices is smaller than 6. In the figure on the next page we have plotted the 22

Misiurewicz points we obtained so far.
The number N}, ,, of Misiurewicz points Mj, ,, is given by

Nim = $n (2"3—1 - t;m) , (6.8)
where #; 1 = 1 and
1 if kmodn =1

tk,n>1 = (6.9)
0 if kmodn # 1
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and where s, is the same function as we found in chapter 4 for the number of period n solutions
of the Mandelbrot set:
Sp = Z,u(n/d) d=L (6.10)
din
with p the Mobius function. The equation gives a relation between the number Ny, of

Misiurewicz points M}, , and the number of period n solutions of the Mandelbrot set.

1.5

1.0 | B i

0.0 - .- . B

Im(c)

0.5 ° ) .

1.0 | " -

-1.5 T T T T T T

Figure 6.5: Misiurewicz points Mo 1, M3 1, Mao, My1, M3 2 and M 3 for the map 22+

We give some explicit calculations for the calculation of Ny ,:

Nog=s3 (2271 —ty3) =3(2' —0) =6, (6.11)
N3p =55 (2271 —t30) =1(2° — 1) = 3, (6.12)
Nyp=s1 (27 —ty1)=1(2°-1) =7, (6.13)
Nip=s3 (2" —t42) =1(2°-0) =38, (6.14)
Nig=s3(2"1 —t43) =3(2°—-1) =21 (6.15)
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The number Ny, of Misiurewicz points M}, ,, are tabulated in next table.

’ 1| 2 3 4 ) 6 7 8 9 10 | 11 | 12 | 13 | 14 S
kE+n

2 0 0
3 0] 1 1
4 0| 2 3 )
5 0] 6 | 3 7 16
6 0] 12 | 12 8 15 47
7 0] 30 | 24 | 21 | 15 | 31 121
8 0] 54 | 60 | 48 | 48 | 32 | 63 305
9 0] 126 | 108 | 120 | 90 | 96 | 63 | 127 730
10 0] 240 | 252 | 216 | 240 | 192 | 189 | 128 | 255 1712
11 0| 504 | 480 | 504 | 432 | 465 | 384 | 384 | 255 | 511 3919
12 0] 990 |1008| 960 [1008| 864 | 960 | 768 | 768 | 512 [1023 8861
13 012046 |1980|2016|1920|2016|1701 1920|1530 {1533 /1023|2047 19732
14 0]4020|4092|3960|4032|3840(4032|3456 | 3840|3072|3072|2048|4095 43559
15 0]8190|8040|8184|7920|8064 | 7680 |8001|6912| 7680|6144 (6144|4095 |8191|95245

In the final row is the sum of numbers of Misiurewicz points for which k£ + n is a constant, say
m—1

m. That is, S = Z Nim—rk-

Their cumulative sums are shown in the next table.

t 314156 7 | 8 9 10 11 12 13 14 15

—

m—

t
Z Nim—r |16 [22]69 190|495 | 1225 | 2937 | 6856 | 15717 | 35449 | 79008 | 174253

m=3 k=2
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In the final figure the 15717 Misiurewicz points have been plotted for which the sum of the
indices is 12 or smaller. The Mandelbrot set is also shown in order to illustrate that the

Misiurewicz points form an ‘envelope’ of the Mandelbrot set.

Figure 6.6: The 15717 Misiurewicz points My, ,, (green) for which k4 n < 12 and the Mandel-
brot set (black). Close to the Mandelbrot set the divergence to infinity is slow (orange) and

further away from the Mandelbrot set the divergence is faster (blue).



Appendix A

A series solution

In this appendix we derive a recursion formula of the type v,+1 = av, + bv,—1 with vy and vy
as initial values. For n > 2 we successively obtain

vg = avy + buy,

v3 = avy + buy = (a® + b)vy + abuy,

vy = avs + bvg = (a® + 2ab)vy + (a? + b)bvy, etc.

For n > 2 this is

e T Y e T
Up = U1 Z f a b" + bug Z f a b . (A.1)

k=0 k=0

The latter will be proven below by induction. We have to distinguish between n is even and
n is odd. For even n we write n = 2m. Then the equation (A.1) reads

m—1

Z <2m _k;2 - k) q2m—2-2kpk (A.2)

L am—1—k
Vom = U1 Z < i >a2m_1_2kbk + by
k=0 k=0

For odd n we write n = 2m + 1. Then equation (A.1) reads

" om — k T om—1—k
Vomi1 = U1 Z < i >a2m2kbk + bug Z < i >a2m12kbk . (A.3)
k=0 k=0

Assuming the equations to be true for n = 2m and n = 2m + 1 we will show it to be true for

n = 2m + 2. That is we will derive
m m
2m+1—k _ 2m — k _
Voo = U1 Z ( k >a2m+1 ZKpR 1 bug Z ( i >a2m Zkpk (A.4)
k=0 k=0

Assuming the equations to be true for n = 2m + 1 and n = 2m + 2 we will show it to be true

for n = 2m + 3. That is we will derive

m+1 m

2 2—k 2 1-k

Vomss = V1 Z < m +k >a2m+22kbk + bug Z ( m +k; )a2m+12kbk' (A.5)
k=0 k=0

127
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For n = 2 the equation (A.2) indeed gives

v = U1 kzo::o <1 ; k> a2yl 4 bvogo::o <_kk> a 2kpF = auy + bug . (A.6)
For n = 3 the equation indeed gives
(2R g N (LR kg 2
vgzvlkz()( . )a b —l—bvokzo< i )a b" = (a® + b)vy + abyy . (A7)

For the induction we substitute the equations (A.2) and (A.3) into the recurrence relation
Upt1 = aUp + bup—1. For n = 2m + 1 this is

Vam+2 = GU2m+1 + bvom,

m m—1
2m — k 2m —1—k
—avn Y :( " >a2m_2kbk +aboy Y ( . >a2m_1_2kbk+
k=0 k=0
m—1 m—1
2m — 1 — 2m — 2 —
T by Z ( m ; k> g2m—1-2kpk +b2v0 Z < m ; k) g2m—2-2kpk

k=0 k=0
m m—1
2m — k 2m —1—k
. [Z ( 5 )ammkbk s ( ) >mb .
k=0 k=0

+ by

m— m—1
T <2m —1- > m—2kpf | 3 <2m k2 - k) a2m—2—2kbk+1]
k=0

k=0

m—1
2m — k 2m —1 —
_ 2m+1 2m+1-2kpk | om—1—2kyk+1
_m[a +Z< B > b Z( B ) b+
k=1 k=0
m—2
4 bug a2+ Z <2m _kl k) a2m=2kyl L gm <2m -2- ) 2m—2—2kbk+1]
k=1 k=0

= (2m —k "L (2m — -
— oy | a2+ Z < . >a2m+1—2kbk + Z ( i 1J>a2m+1—2]b] +

k=1 J=1
m—1

2 '« (2 —1 -
—‘rb’l)() a2m+ Z ( m— ) 2m— 2kbk’+bm Z < m ) 2m—2]bj
=1

2m 2m — k
_ 2m+1 2m+1-2k1k
—vlla —1—;(( 1 > (k_1)>a b¥ | +

m—1
2m —1—k 2m —1—k
2m m 2m—2k1k
a®™ +b ;(( )+< 1 ))a b]

By means of Pascal’s rule,

+ b’UO

(A.8)

(0 (2)=(3) 0
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it is further reduced to

m
2 1—-k
Vam+42 = U1 [an“ + Z ( m +k >a2m+1—2kbk "
k=1

+ byg

2m — k
2m pm 2m—2kbk A10
a”” 4+ 0" + ; i ( )

N (2m+1—k = (2m—k
~ o Z ( m +k; >a2m+1—2kbk + bug Z ( mk; >a2m—2kbk_
k=0

k=0

Indeed the latter is equal to the equation (A.4).
For n = 2m + 2 we get

Vom43 = QU242 + b2 11

N (2m 41— = (2
—an} ( m +k k’) Q2R gy S < m— k’) a2m—2kpk
k=0 k=0
m m—1

—l—ble(Qm k) 2m— 2kbk+b2 OZ Qm_l_ ) 2m—1-2kpk

k=0 0

2 1—k " 2m—k
~ [ m+ ) 2m+2— kak+z< mk )a2m2kbk+1 n
k=0 k=0
m m—1
2m — k 2m —1—k
+ bug Z( mk )a2m+1—2kbk T < m ; >a2m—1—2kbk+1]
k=0 k=0
L om4+1—k o2m — k
_ 2m+2 om42-2kik | pmtl 2m—2k pk+1
—m[a +§:< L > W+ b +§:( L ) Aian .
k=1 k=0
m—2
2m — k 2m —1—k
2m—+1 2m—~+1-2k1 k m 2m—1—2k1k+1
+ by |a —i—Z( 1 > b" + mab —i—Z( I )a b
k=1 k=0
N (2m41—k _ T 2m41— i
_ 2m+2 2m+2—2k1k m+1 2m+2—2
Sl et 9l (i e R ol A P B
k=1 Jj=1
2 k 2 .
+ bug a2l gy 4 Z ( mk > 2m1=2kpk |0 pm 4 Z ( ;n_ 1]) q2m+1-2pj
k=1 j=1
2m+1—k 2m+1—k
_ 2m-+2 m—+1 2m+2—2k1k
—Ul[ +b +;;<< ) >4—< 1 >>a b

+ bug

el rom—k 2m — k
2m-+1 m - - 2m+1—-2k1 k
a + (m+1)ab +,§1<< i )+<k_1>)a b

(A.11)
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By means of Pascal’s rule it is further reduced to

m
2 2—k
Vom+3 = U1 [a2m+2 + 4 Z < m >a2m+2_2kbk +

k
k=1

+ bUO

m—1

2 1-k

a®™ 4 (m 4 1)ad™ + Z ( i +k: )a2m+12kbk] (A.12)
k=1

m—+41

2m+2 —k\ omio- SN 2m A=k g
_UIZ< " >a2 +2 kak_I_vaZ( " >a2 +1 Zkbk.
k=0 k=0

Indeed the latter is equal to the equation (A.5). This completes the proof.



Appendix B

A binomial identity

In this appendix it will be shown by induction that for a? 4+ 4b # 0 the equation (1.34),

R n—1=Fk\ , 1 ok e n—=2=Fk\ , 9 ok
Uy = V1 Z ) a b + by Z f a b, (B.1)
k=0 k=0

is identical to the equation ([1.37),

oy = Vog+ — V1 7_7, _ Vog— — V1 i, (BQ)
g+ — 9- g9+ — 9-

where g is a root of the equation g — ag — b = 0.

First we take n = 0. Then the equation (B.2) gives

v — Vog+ — V1 _ Vog- — U1 _ Yog+ — Vog- _ v . (B.3)

9+ — 9- 9+ — 9- 9+ — 9-
For n = 1 the equation (B.2) gives

_ Vog+ — U1 Vog— — U1 _ Y0g+9- — Yg-9+ V1§- —V1g+ _
v = g— — g+ = - =0 (B.4)
9+ — 9- 9+ — 9- 9+ — 9- 9+ — 9-

For n = 2 the equation (B.2) gives

vy = Yog+ — V1 9 UVog- — V1 9 _ U09+93 - Uogfgi _ Ulgg - Ulgi
9+ —9- " gy —g- 9+ — 9- 9+ —9- (B.5)

= —v0g-g+ +v1(g+ +g-) = bvo + avy .

For n = 3 the equation (B.2) gives

3 3 3 3
_Yg+ —v1 3 V- — V1 3  Vog+9g- —Vog-gr Vig- —U1gy

v3 = - g+ =
9+ — g— gr—g- " 9+ — g— 9+ —g-
2 2 3 3
92— g 93 —-g B.6
= —vog_g4 + v = (B-6)
g+ — g— g+ — g—

= —v09-g+(9+ + 9-) + v1(95 + g+9- + g°) = abvg + (a® + b)vy .
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Now we will show that equation (B.2) equals equation (B.1) for any n > 2.

If n is an even number, n = 2m, the equation (B.1) reads

m—1 m—1
2m—-1—-k 1 2m -2 -k o
Vo = V1 Z < i >a2m 1=2kpk 4 by Z < i >a2m 2 2kbk, (B.7)
k=0 k=0
while the equation (B.2) becomes
. _ 2m—1 _  2m-—1 2m _ . 2m
Vo — Vogd+ — V1 2m _ Vog— — V1 gim — bug 9+ g + oy gy g- ‘ (B.8)
9+ — 9- 9+ — 9- 9+ — 9- 9+ — 9-
The latter is equal to equation (B.7) if both
2m—-1_ 2m-1 m—1
g-‘rm - g—m _ <2m -2- k) a2m7272kbk (Bg)
9+ — 9- prrd k
and .
2m __ . 2m m— 1
9% 9= _ <2m 1 k) a2m—1—2kbk (BlO)
9+ — g- — k
are true identities.
If n is an odd number, n = 2m + 1, the equation (B.1) reads
m m—1
2m — k 2m —1—k
Vomi1 = V1 Z ( mk >a2m_2kbk + bug Z ( " i )an_l_kak, (B.11)
k=0 k=0

while the equation (B.2) becomes

— _ 2m __ ,2m 2m+1 _  2m+1
9+ — 9- 9+ — 9- 9+ — 9- 9+ — 9-
The latter is equal to equation (B.11) if both
2 2 m—1
g+m — g_m _ Z <2m —k;]. — k) a2m7172kbk (B13>
9+ — 9- =0
and 2m+1 2m+1 m
m o _m 2 _ k
g+ —9-  _ > < " )a2m2kbk (B.14)
9+ — 9- Pt k

are true identities. Identity (B.13) is equal to identity (B.10) and identity (B.14) is identity
with m replaced by m + 1.

For the induction step we multiply gim —g*™ by g4 + g_. The result is

(03" = 92") (94 +9) =g = g2 g g (67" =92 ) . (BID)
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Hence,
2m+1 2m+1 2m __ 2m 2m—1 2m—1
A S k" Y —— (B.16)
g+ — 9- 9+ — 9- g9+ — 9-

Assuming the two identities and (B.10) are true, we obtain

2m+1 2m+1 -1
e amz: <2m —-1- > 2m—1-2kyk bmz <2m —2- /f) 222k k-
9+ — g- Pt — k
(B.17)
This can be elaborated to
1 -1
g = S (2m = 1R s N (2m =2 =K amaon ki
= I a b + Z i a b
g+ = 9~ k=0 k=0
—1 -2
_ a2y X <2m _kl - k) 2m—2kplk X <2m _k2 - k) g 2m—2- 2kt
b=l h=0 (B.18)
m—1 m—1 .
2m y ym Z 2m—1-k a2m—2kpk 2m - -y o 2m—24p
k ; j—1
k=1 j=1
-1 -1
2m 4 pm X 2m—1-k am—2kpk | X 2m—1-k g2m—2kpk
k k—1
k=1 k=1
By means of Pascal’s rule
T r r+1
— B.19
)+ (2= (%) 19
it is further reduced to
2m+1 2m+1 -1
g+m+ gim"!‘ — a2m + b’m 4 "LZ <2mk_ k> a?m—?k}bk‘ — i <2mk_ k> an—kak ) (BQO)
g9+ — 9-

k=1 k=0

That is, assuming the identities to be true for the powers 2m — 1 and 2m of g+ and g_ we
find the first identity to be true for the power 2m + 1.

Next we multiply gngrl ¢ by g4 + g_ and elaborate the result to
2m+2 _  2m+2 2m+1 _  2m+1 2m __ 2m

9+ — g- g+ — g- 9+ — g-
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Assuming the identities (B.13) and (B.14) are true, we obtain

2m+2 2m+2 m m—1
gy — gt _ az (2mk_ k) a2m=2kpk g Z <2m _kl - k) g2m—1-2kpk

9+ — g- k=0

k=0
2m — k)2+12kk <2m—1 )2 1—2kpk+1
_ Z m b 4 Z m— pk+
k= o< k k=0
-2
2 k 2m —1—k
2m+1+mabm+z< mk ) q2m+1—2kpk Z ( m ; )a2m—1—2kbk+1 (B.22)

k=1 k=0

2m — k m—l 2m —j .
2m+1 pm 2m+172kbk 2m+172]b]
ma +kz( . ) +j§1(j_1)a

2m — k 2m — k
2m+1 m m 2m—~+1-2k1k 2m—+1-2k1 k
+ mab™ + ab —l—kEl( I ) b—l—E (k_1>a b".

By means of Pascal’s rule it further reduces to
2m+1 2m+1

9 79 a?™ 4 (m 4 1)ab™ + Z <2m 1o k) gt l=2kyk
9+ — 9- pt k

N (2m+1—k
-y ( m +k; >a2m+12kbk‘
k=0

That is, assuming the identities to be true for the powers 2m and 2m + 1 of g and g_ we
find the identity to be true for 2m + 2. This completes the proof.

(B.23)



Appendix C

Another binomial identity

In this appendix it will be shown by induction that for a? 4+ 4b = 0 the equation (1.34),

(n

VUp = U1

[n/2-1/2] (n .

k
k=0

is identical to the equation ([1.38),

Uy = m}lgnfl — (n—1)vog",

where g is a root of the equation g> — ag — b =0

First we take n = 0. Then the equation (C.2) gives

k) a2k 4 bug

[n/2-1]

D

k=0

v0:O——vogozv0.

For n = 1 the equation ((C.2) gives

vlzvlgo—Ozvl.

For n = 2 the equation (C.2) gives

a
vy = 2U1g — vog2 =avy — —vy = bug + avy .

2

4

—92_

k

k) an—?—?kbk ,

(C.1)

(C.4)

(C.5)

Now we show by means of induction that equation (C.2) equals equation (C.1) for any n > 2.

135



136 APPENDIX C. ANOTHER BINOMIAL IDENTITY

If n is an even number, n = 2m, the equation (C.1) reads

m—1 m—1
om—1—k om—2—k
Vo = V1 Z < m . >a2m—1—2kbk + bug Z < m ; >a2m—2—2kbk
k=0

k=0

3
L

m—1
= avy <2m —1- k) 2m=2-2kpk gy (2m 7k;2 - k) g2m—2-2kpk
k=0 k=0
m—1 -1
— an <2m - k) YL b <2m T k) (a2 kgt
k=0 k=0
" lom—1—k L om -2k (€0
= av; < ) —4b)™1RRR by < y )(—4mm/1kbk
k=0 k=0
m—1 m—1
2m—1-k m—1-kym—1 2m —2—k m—l—kpm—1
= av ( B >(—@ b bug Y ( | )(—@ b
k=0 k=0
m—1 m—1
2m—1— 2m —2 —
— abm—lvl Z m k (_4)m—1—k + bm’Uo m k (_4)m—1—k 7
k k
k=0 k=0
while the equation (C.2) becomes
Vo = 2mw1997" 2 — (2m — 1)vog®™ = mavi(g*)" — (2m — 1)vo(g*)™ (C.7)
= mab™ v (=1 = (2m — 1)b™vg(—1)™. ’
The latter is equal to equation (C.6) if both
m—1
— 2m -2 -k el
m - (-1t = 3 (P2 ()

k=0
and

%Zf(gnl—]~—k>(_4ym4—k (C.9)

k=0
are true identities.

If n is an odd number, n = 2m + 1, the equation (|1.34) reads

2m — k 2m—-1—-k 1
v2m+1—v1Z( i ) 2m= 2kb’“+bvoz< k: )azm 1=2kpk

k=0 k=0
m m—1
2m — om —1—
=0 Z < mk k> a?m—2kpk 4 abuvg ( m k> q2m—2-2kpk
k=0 k=0
m m—1
2m—k 2m —1—k
= V1 Z mk ) (a2)mfkbk =+ CLb’UO ( m . ) (a2)mflfkbk (ClO)
k=0 k=0
S 2m —k m—kypk e 2m—1—k mel—k1k
= Z i (—4b) b" + abuvy L (—4b) b
k=0 k=0
m m—1
m 2m —k m—k m 2m —1—k S
=b"v; Z: ( i )(—4) + ab™vy < " )(_4) :

Eod

k=0 =0
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while the equation (C.2) becomes

Vom41 = (2m + 1)1)1927” — 2mv0g2m+1 (2m + 1)vi(g ) — 2mvog(g2)m

(C.11)
= (2m + 1)b™ v (=1)™ + mab™vo(—1)™ L.
The latter is equal to equation (C.10) if both
m—1
2m —1—
m(-1)™ =) < m L k)(—4)m—1—k (C.12)
k=0
and
e (2m =k m—k
@m+1)(-1)" =) I (C.13)

k=0
are true identities. Identity (C.12)) is equal to identity (C.9) and identity (C.13]) is identity
(C.8) with m replaced by m + 1.

For the induction step we consider the expression

f: <2mk k)( T:Z <2m k) (—aymF (C.14)

k=0

Assuming the identities (C.8) and (C.9) are true, we obtain

> (0 k) (4

k=0
m—1
2m — k 2m—1—k
—1—-4 m 1 m—k 4 4 m—1—k
& +0<)>+§(k><>
m1 By m1 . (C.15)
=1 —4m(- m1+ (m > Z(m_ B )(—4)’”"“
=1 k=1
m—1
2m — 2m — 1 —
=1—dm(-1)™ !4 m—k AL Cgymen
k k
k=1
By means of Pascal’s rule, it is further reduced to
m m—1
Z (ka— k:) (—4)™F — 1 — dm(—1)"-1 + <2m -1- k:) (= 4yt
k=0 k=1
2 om -2 — A
=1—dm(-1)" "4+ > < J)(—4)m—1—ﬂ
j=0 (C.16)
m—1

= —4m(-1)"" 1+Z<2m_2_])( 4)ym=1-i

= —dm(=1)"™ 1+ 2m - )= = (=2m - D)(-1)"™F = 2m + 1)(-1)™.
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That is, if identity (C.8) is true for m then it is also true for m + 1.

Next we consider the expression

Zm: <2m 1= k) (—d)ym—h (C.17)

k
k=0

Assuming the identities (C.12) and (C.13)) are true, we obtain

i (Qm +k1 - k:> (_aymt

k=0

. (C.18)
= (2m+1)(-1)™ + kz_o { <2m +k1 — k) B <2mk— k:> } (gt
et S () - () e
By means of Pascal’s rule, it is further reduced to
gjo <2m +k1 - k) (—a)™F = (2m + 1)(—1)™ +g (221_—11@) gy
= (2m+1) m+m 1 (Zm_ 1 77)( g)m-1-3 (C.19)

=0

<.

= 2m+D(=D)"+m(-D)™ = 2m+ 1) (=)™ —m(-1)™ = (m + 1)(-1)™

That is, if identity (C.12) is true for m then it is also true for m+ 1. This completes the proof.



Appendix D

A Hénon eigenvalue inequality

The goal is to show for 4a > —(1 — b)? that Ay > 1, where

M =—al_ +/a?L% +0,

_b—1—-+/(1-0)%?+4a
= 5a .
By means of w := /(1 — b)? + 4a the latter equation can be written as

and

L_

2aL_ =b—-1—w.

For A4 we then obtain

2\y = —2aL_ + \/4a2L? + 4b

=1-b+w++/(1—-b+w)?+4b

=1-b+w++/(1-0)2+2(1—-bw+w?+4b
=1-b+w++/(1+b)?2+2(1-buw+ w?
(
(
(

)
=1-b+w++/(1+b)?—2bw + 2w + w?
=1-b+w++/(1+0)?2—2(1+bw+ 4w + w?
=1-b+w+/(1+b—w)?+4uw.

For 4a > —(1 — b)? we have w > 0. As a consequence

20 >1—-b+w++/(1+b—w)?

22 >1—-b4+w+14+b—w
2X4 > 2
A > 1.

This completes the proof.
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(D.1)

(D.2)

(D.5)
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