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Preface
Di!erential equations form a very large subject of mathematics. For many ordinary di!erential
equations and some partial di!erential equations there exist methods to find solutions. The
discrete counterparts of di!erential equations are di!erence equations. Di!erence equations
are recurrence relations. Solutions can be found for simple linear di!erence equations. For
non-linear di!erence equations solutions can not be found in general. However one can inves-
tigate the stability properties of fixed points and periodic limit cycles in order to gain insight
in the dynamics. The latter can give rise to bifurcations. For a stable periodic limit cycle the
orbit does not diverge to infinity. There also exists orbits which do not diverge to infinity and
which are not periodic. Such orbits are chaotic and often attracted to a strange attractor.
Whether or not an orbit diverges to infinity depends on its starting values and on the values
of the constants in the di!erence equations. Investigation of dependency of orbits on starting
values leads to basins of attraction and the investigation of dependency of orbits on constants
of the di!erence equations leads to Lyapunov images. In these images fractals can occur.
Within this brief overview we already meet terms as di!erence equations, recurrence relations,
orbits, chaotic dynamics, periodic limit cycles, fixed points, bifurcations, basins of attraction,
Lyapunov images, fractals, etc. Moreover, a fixed point can be a node, a saddle, a spiral or
a center dependent on its stability behaviour. So, if, for example, somebody with a technical
background wants to learn something about dynamics of non-linear di!erence equations or,
as another example, a high school student wants to write a practical assignment on fractals,
they are forced to study the whole area including all kinds of terms which may be new to them.

The present book is intended to be a simple and informal introduction to dynamical sys-
tems and properties as fixed points, bifurcations, Feigenbaum constants, chaotic orbits, Julia
sets, the Mandelbrot set and Misiurewicz points. With simple is meant that a high school level
of mathematics (together with the willingness to study) su"ces to understand the contents.
With informal is meant that the book is not organised as an enumeration of theorems and
proofs. Instead it rather is a random walk through famous dynamical systems. In general,
proofs are omitted, formal language is avoided and citations are restricted to a few occasions.

The present book has just been written for educational purposes. It is intended for high
school students with talent for mathematics and for readers with (a little more than) a high
school level mathematical background.

may 2020, Hans Montanus, Ron Westdijk

kees
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Chapter 1

Stability

1.1 Stability of one dimensional systems

The modeling of a process (biological, chemical, physical, economical or whatever) often leads
to a di!erential equation or to a di!erence equation. Although our goal is to consider di!er-
ence equations, we will occasionally also consider di!erential equations for comparison. For
instance, the absolute growth of waterlilies in a pond will initially be proportional to the
number of waterlilies. The growth will be damped when the pond becomes full of waterlilies.
This can be casted in a di!erential equation:

dw

dt
= ωw ↑ εw2 , (1.1)

where w is the number of waterlilies, where time t is the evolution parameter and where ω and
ε are constants. Since w is a function of t we should actually write w(t) instead of w. However,
we just write w and keep in mind it actually is w(t). In reality the number of waterlilies will
be counted in the summer and not in the winter. A biologist may argue that the evolution of
waterlilies has to be considered from year to year. This can be casted in a di!erence equation:

wn+1 = awn ↑ bw2
n , (1.2)

where wn is the number of waterlilies in year n and wn+1 is the number of waterlilies one year
later. Here a and b are the constants. We will use greek symbols for constants in di!erential
equations and roman symbols for constants in di!erence equations.

In the foregoing equations the right hand side is a function of solely w respectively wn. That
is, ẇ = f(w) where the dot represents the derivative d/dt and where f(w) = ωw ↑ εw2, and
wn+1 = f(wn) where f(wn) = awn↑bw2

n. Di!erential equations such as ẇ = ωw↑εw2↑2e→t

and di!erence equations such as wn+1 = awn ↑ bw2
n + 3t can not be written as ẇ = f(w) or

wn+1 = f(wn).

5



6 CHAPTER 1. STABILITY

For a general quantity x we consider hereafter only di!erential equations and di!erence equa-
tions of the type ẋ = f(x) respectively xn+1 = f(xn).

We start with the stability analysis for a di!erential equation of the type ẋ = f(x). A
point of equilibrium is a point where the quantity x does not change in time: ẋ(t) = 0. The
equilibrium points x↑ therefore follow from f(x↑) = 0. For x close to x↑, that is, for x = x↑+ϑ

with ϑ small, we have

ẋ = f(x) ↓ ϑ̇ = f(x↑ + ϑ) → f(x↑) +
ϖf(x)

ϖx

∣∣∣∣
x→

ϑ ↓ ϑ̇ = f ↓(x↑)ϑ , (1.3)

where f ↓(x↑) is the derivative of f with respect to x evaluated at x↑. Thus f ↓(x↑) =
ϖf(x)

ϖx

∣∣∣∣
x→

.

From the equation above for ϑ it follows that an equilibrium point is stable if f ↓(x↑) < 0 and
unstable if f ↓(x↑) > 0.
We give an example by means of the following di!erential equation:

ẋ = ωx , (1.4)

where ω ↔= 0 is a constant. The equilibrium point is x↑ = 0. Since f ↓(x) = ω the equilibrium
point is stable if ω < 0 and unstable if ω > 0.

Writing the initial condition as x(0) = x0 we obtain by means of integration the solution

x(t) = x0e
ωt . (1.5)

If ω > 0 then |x(t)| increases exponentially for increasing t. If ω < 0 then |x(t)| decreases
exponentially for increasing t. Alternatively, lim

t↔→↗
x(t) = 0 if ω > 0 and lim

t↔↗
x(t) = 0 if

ω < 0. Indeed for ω > 0 the point x(↑↗) = 0 is an unstable equilibrium point (a source),
the larger ω the faster the divergence from the source. For ω < 0 the point x(↗) = 0 is a
stable equilibrium point (a sink), the larger ↑ω the faster the convergence towards the sink.
The situation is schematically illustrated in figure 1.1.

Suppose we wish to integrate equation (1.4) numerically. According to the Euler method
we write x as xn and ẋ as (xn+1 ↑ xn)/!t. The result is a di!erence equation:

xn+1 = xn + ω ·!t · xn = (1 + a)xn , (1.6)

where a = ω·!t. Starting with x0 we then successively obtain x1 = (1+a)x0, x2 = (1+a)x1 =

(1 + a)2x0, ..., xn = (1 + a)nx0. Stability requires ↑↗ < lim
n↔↗

(1 + a)n < ↗, which is, for
a ↔= 0, satisfied if ↑1 ↘ 1 + a < 1 or ↑2 ↘ a < 0. That is, the stability region has shrunk
from (↑↗, 0) to (↑2, 0) with respect to the continuous di!erential equation, see figure 1.2.
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↑3 ↑2 ↑1 0 1 2 3

0
sink source

ω

x

Figure 1.1: Sink and source structure of ẋ = ωx .

↑3 ↑2 ↑1 0 1 2 3

0
sinksource source

a

x

Figure 1.2: Sink and source structure of xn+1 = (1 + a)xn .
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As another example we consider the di!erential equation

ẋ = (ω↑ 1)x↑ ωx2 , (1.7)

where ω ↔= 0 is a constant. The di!erential equation is non-linear because of the x2. The
equilibrium points are x↑ = 1 ↑ 1/ω and x↑↑ = 0. Since f ↓(x) = ω ↑ 1 ↑ 2ωx we have
f ↓(x↑) = 1↑ω. So, the equilibrium point x↑ = 1↑1/ω is stable if ω > 1 and unstable if ω < 1.
Since f ↓(x↑↑) = ω↑ 1 the equilibrium point x↑↑ = 0 is stable if ω < 1 and unstable if a > 1.

Writing the initial condition as x(0) = x0, the analytical solution reads

x(t) =
(1↑ 1/ω)x0

x0 + (1↑ 1/ω↑ x0)e→(ω→1)t
. (1.8)

The solution is known as the logistic function. If ω < 1 then lim
t↔→↗

x(t) = 1 ↑ 1/ω and
lim
t↔↗

x(t) = 0. If ω = 1 then x(t) = x0. If ω > 1 then lim
t↔→↗

x(t) = 0 and lim
t↔↗

x(t) = 1↑ 1/ω.
For various x0 values the evolution of x(t) is shown in the next figure for ω = ↑1 (left panel)
and ω = 3 (right panel).

↑3 ↑2 ↑1 0 1 2 3

↑3

↑2

↑1

0

1

2

3

ω = ↑1 x
0
=

↑
0.
5

x
0 =

0.5

x
0 =

1.5

x
0
=

2.
5

t

x
(t
)

↑2 ↑1 0 1 2

↑2

↑1

0

1

2

ω = 3

x
0
=

↑
0.5

x0 = 0.2x0 =
0.5

x
0
=

1.0

t

x
(t
)

For ω < 1 the curves x(t) depart from 1 ↑ 1/ω and arrive at 0, while for ω > 1 the curves
x(t) depart from 0 and arrive at 1↑ 1/ω. The curves have an S-shape (Sigmoid curve) if x0 is
between 0 and 1↑1/ω, the curves are horizontal lines if x0 = 0 or x0 = 1↑1/ω and the curves
have a discontinuity otherwise. The sink and source structure is schematically illustrated in
the next figure.

Suppose we wish to integrate equation (1.7) numerically. The Euler method then leads to
the following discrete di!erence equation:

xn+1 = xn + (ω↑ 1)!t · xn ↑ ω ·!t · x2n . (1.9)
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↑3 ↑2 ↑1 0 1 2 3

0
sink

sink

source

source

ω

x

For the choice !t = 1 and writing ω as a we have:

xn+1 = axn ↑ ax2n . (1.10)

The latter di!erence equation is known as the logistic equation. The equilibrium points or
fixed points L follow from L = aL↑ aL2. It follows directly that L = 0 or L = 1↑ 1/a. The
curves of the fixed points as a function of a are the same as in the previous figure.

The stability analysis for the fixed points of a di!erence equation is somewhat di!erent than
for di!erential equation. For a first order di!erence equation xn+1 = f(xn) a fixed point L is
a solution of the equation

L = f(L) . (1.11)

A fixed point L is stable if

↑1 <
ϖf

ϖx

∣∣∣
L
< 1 . (1.12)

It can be seen from a first order Taylor expansion of f(xn) in the neighborhood of L:

f(xn) → f(L) +
ϖf

ϖxn

∣∣∣
L
(xn ↑ L) (1.13)

or
f(xn)↑ f(L) → ϖf

ϖxn

∣∣∣
L
(xn ↑ L) . (1.14)

Since f(xn) = xn+1 and f(L) = L we have

xn+1 ↑ L → ϖf

ϖxn

∣∣∣
L
(xn ↑ L) . (1.15)
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The stability condition
∣∣xn+1 ↑ L

∣∣ <
∣∣xn ↑ L

∣∣ is satisfied if
∣∣∣∣
ϖf

ϖxn

∣∣∣
L

∣∣∣∣ < 1 . (1.16)

The latter will be briefly written as |f ↓(L)| < 1. The following diagrams illustrate the stability
condition.

L

f(x)unstable

ϖf

ϖx

∣∣∣
L
< ↑1

x
=
y

L

f(x)

stable

↑1 <
ϖf

ϖx

∣∣∣
L
↘ 0

x
=
y

L

f(x)

stable

0 <
ϖf

ϖx

∣∣∣
L
< 1

x
=
y

L

f(x) unstable

ϖf

ϖx

∣∣∣
L
> 1

x
=
y

A stable fixed point L for which L = f(L) can be regarded as a limit cycle with period 1.

A period 2 limit cycle occurs if both the conditions L = f(f(L)) and ↑1 <
ϖf(f(x))

ϖx

∣∣∣
L
< 1
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are satisfied. A period 3 limit cycle occurs if the conditions L = f(f(f(L))) and ↑1 <
ϖf(f(f(x)))

ϖx

∣∣∣
L
< 1 are both satisfied, and so on.

For the logistic equation xn+1 = axn ↑ ax2n we have f ↓(L) = a ↑ 2aL. For L = 0 this is
f ↓(0) = a and for L = 1 ↑ 1/a this is f ↓(1 ↑ 1/a) = 2 ↑ a. So, L = 0 is stable if ↑1 < a < 1

and L = 1 ↑ 1/a if 1 < a < 3. What happens for L = 0 at a = ↑1 and for L = 1 ↑ 1/a at
a = 3 is that two fixed points come into existence, a bifurcation. For other values of a new
bifurcations can occur (multiple fixed points) or the dynamics can become chaotic (no stable
fixed points at all). Bifurcations and chaos will be considered in chapter 2.

1.2 Mathematical terms

We already met some terms: di!erential equation, di!erence equation, non-linear, first order.
It may be clarifying to make a list of terms with small explanations.

• For a di!erential equation the evolution is continuous. For example, the variable is a
function of time t: x(t).

• For a di!erence equation the evolution is evaluated only for fixed increments. The
number of increments is counted by an integer n: xn. A di!erence equation is also
called a discrete equation and a recursion equation.

• A di!erential equation and a di!erence equation is one dimensional if there is one
variable, x for instance.

• A di!erential equation and a di!erence equation is two dimensional if there are two
variables, x and y for instance.

• A di!erential equation and a di!erence equation is linear if it contains only linear terms
of the variables, such as x, y, etc.

• A di!erential equation and a di!erence equation is non-linear if it contains non-linear
terms of the variables, such as x2, xy, y3, etc.

• A di!erential equation is first order if it contains only the first derivative, ẋ. It is m-th
order if there is a m-th derivative in the equation. For example, ẍ + ωẋ + ε = 0 is
second order.

• A di!erence equation is first order if the maximum di!erence in subscripts is only 1,
as for xn+1 = axn + b. It is m-th order if the maximum di!erence in subscripts is m.
For example, xn+1 = axn + bxn→1 is second order.
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1.3 Stability analysis for two dimensional systems

In the previous section we considered stability analyses for one dimensional systems. An
example of a (non-linear, first order) two dimensional system of di!erential equations is

v̇ = ωv ↑ εv2 ↑ ϱvw

ẇ = ςw ↑ φw2 + µwv ,
(1.17)

where the greek symbols are constants. It will be written as

v̇ = f(v,w)

ẇ = g(v,w) .
(1.18)

The equilibrium point is the point where both v̇ = 0 and ẇ = 0. Let (v↑,w↑) be a point of
equilibrium, then for v = v↑ + ϑ and w = w↑ + ↼ with ϑ and ↼ small the system becomes

ϑ̇ → ϖf(v,w)

ϖv

∣∣∣∣
(v→,w→)

ϑ +
ϖf(v,w)

ϖw

∣∣∣∣
(v→,w→)

↼

↼̇ → ϖg(v,w)

ϖv

∣∣∣∣
(v→,w→)

ϑ +
ϖg(v,w)

ϖw

∣∣∣∣
(v→,w→)

↼ .

(1.19)

In matrix notation this is (
ϑ̇

↼̇

)
→

(
εf
εv

εf
εw

εg
εv

εg
εw

)∣∣∣∣∣
(v→,w→)

·
(
ϑ

↼

)
(1.20)

The matrix with the derivatives is the Jacobian. The Jacobian evaluated at (v↑,w↑) will be
denoted as J(v↑,w↑). Thus (

ϑ̇

↼̇

)
→ J(v↑,w↑) ·

(
ϑ

↼

)
(1.21)

The stability of an equilibrium point (v↑,w↑) depends on the eigenvalues of J(v↑,w↑). The
eigenvalues follow from

∣∣∣∣∣
J11 ↑ ↽ J12

J21 J22 ↑ ↽

∣∣∣∣∣ = 0 ↓ ↽2 ↑ (J11 + J22)↽+ J11J22 ↑ J12J21 = 0 . (1.22)

The equation can be written shortly as

↽2 ↑ T↽+D = 0 , (1.23)

where T is the trace of the Jacobian (the trace is the sum of the elements of the main diagonal)
and where D is the determinant of the Jacobian. The solutions are

↽± =
T ±

≃
T 2 ↑ 4D

2
. (1.24)
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An equilibrium point is a

• stable node or sink if both eigenvalues are real and negative.

• unstable node or source if both eigenvalues are real and positive.

• saddle if both eigenvalues are real and have opposite sign.

• stable focus or spiral sink if both eigenvalues have an imaginary part and a negative
real part.

• unstable focus or spiral source if both eigenvalues have an imaginary part and a
positive real part.

• center if both eigenvalues are pure imaginary.

An example of a (first order, non-linear) two dimensional system of di!erence equations is

vn+1 = avn ↑ bv2n ↑ cvnwn

wn+1 = rwn ↑ kw2
n +mwnvn ,

(1.25)

where the roman symbols without subscripts are constants. In general it is

vn+1 = f(vn,wn)

wn+1 = g(vn,wn) .
(1.26)

The equilibrium point is the point where both vn+1 = vn and wn+1 = wn. Let (L,K) be a
point of equilibrium:

L = f(L,K)

K = g(L,K) .
(1.27)

A first order Taylor expansion with respect to (L,K) gives

f(vn,wn) = f(L,K) +
ϖf

ϖv

∣∣∣
(L,K)

(vn ↑ L) +
ϖf

ϖw

∣∣∣
(L,K)

(wn ↑K)

g(vn,wn) = g(L,K) +
ϖg

ϖv

∣∣∣
(L,K)

(vn ↑ L) +
ϖg

ϖw

∣∣∣
(L,K)

(wn ↑K) .
(1.28)

Substituting f(vn,wn) = vn+1, f(L,K) = L, g(vn,wn) = wn+1 and g(L,K) = K we have

vn+1 ↑ L =
ϖf

ϖv

∣∣∣
(L,K)

(vn ↑ L) +
ϖf

ϖw

∣∣∣
(L,K)

(wn ↑K)

wn+1 ↑K =
ϖg

ϖv

∣∣∣
(L,K)

(vn ↑ L) +
ϖg

ϖw

∣∣∣
(L,K)

(wn ↑K) .
(1.29)

In matrix notation this is
(

vn+1 ↑ L

wn+1 ↑K

)
→

(
εf
εv

εf
εw

εg
εv

εg
εw

)∣∣∣∣∣
(L,K)

·
(

vn ↑ L

wn ↑K

)
(1.30)
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The Jacobian evaluated at (L,K) will be denoted as J(L,K). Thus
(

vn+1 ↑ L

wn+1 ↑K

)
→ J(L,K) ·

(
vn ↑ L

wn ↑K

)
(1.31)

The stability of an equilibrium point (L,K) depends on the eigenvalues of J(L,K). For this
the modulus of a complex eigenvalue is important. The modulus is the square root of the
sum of the real part squared and the imaginary part squared, thus the modulus of x + iy is√
x2 + y2. An equilibrium point is a

• stable node if both eigenvalues are real and both moduli smaller than 1.

• unstable node if both eigenvalues are real and both moduli larger than 1.

• saddle if both eigenvalues are real and just one modulus is smaller than 1.

• stable focus or stable spiral point if both eigenvalues have a non-zero imaginary part
and a modulus smaller than 1.

• unstable focus or unstable spiral point if both eigenvalues have a non-zero imaginary
part and a modulus larger than 1.

• center if both eigenvalues have a non-zero imaginary part and a modulus equal to 1.

The stability analysis and classification of equilibrium points can be extended to three and
more dimensional systems, but that is beyond our scope.

1.4 One dimensional, first order, linear di!erence equations

A recursion formula of the type un+1 = aun + b, with a ↔= 0 and b constants, is a one dimen-
sional, first order, linear di!erence equation. The equation (1.6) is an example.

The di!erence equation un+1 = aun+b has a fixed point L =
b

1↑ a
as follows from L = aL+b.

The fixed point is stable if ↑1 < a < 1.
Starting with u0 we successively obtain
u1 = au0 + b,
u2 = au1 + b = a2u0 + b(1 + a),
u3 = au2 + b = a3u0 + b(1 + a+ a2),
...
un = anu0 + b(1 + a+ a2 + ... + an→1) .

The latter is equal to un = anu0+ba
n→1
a→1 . Hence, a direct equation for un is un = (u0↑L)an+L,

where L =
b

1↑ a
.
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In case a = 1 there is no equilibrium, un grows forever: un = u0 + nb.

An alternative way is to substitute un = vn + L where L =
b

1↑ a
is the fixed point. Then

un+1 = aun + b is reduced to

vn+1 + L = a(vn + L) + b ↓ vn+1 = avn ↑ L+ aL+ b ↓ vn+1 = avn . (1.32)

Hence, vn = anv0 and thus un ↑ L = anu0 ↑ anL. The latter also gives un = anu0 + ba
n→1
a→1 .

First order linear di!erence equations, un+1 = aun + b, have simple sum rules:

If a ↔= 1 there holds
m∑

k=0

uk =
am+1 ↑ 1

a↑ 1

(
u0 ↑

b

1↑ a

)
+

(m+ 1)b

1↑ a
.

If a = 1 there holds
m∑

k=0

uk = (m+ 1)

(
u0 +

1

2
mb

)
.

1.5 One dimensional, second order, linear di!erence equations

A recursion formula of the type un+1 = aun + bun→1 + c, with a, b ↔= 0 and c constants is a
one dimensional, second order, linear di!erence equation. As follows from L = aL + bL + c

it has a fixed point L =
c

1↑ a↑ b
. Here it is advantageous to substitute un = vn + L with

L =
c

1↑ a↑ b
. Then the equation un+1 = aun + bun→1 + c is reduced to

vn+1 = avn + bvn→1 . (1.33)

Starting with v0 and v1 we successively obtain
v2 = av1 + bv0,
v3 = av2 + bv1 = (a2 + b)v1 + abv0,
v4 = av3 + bv2 = (a3 + 2ab)v1 + (a2 + b)bv0,
etc. As shown in appendix A for arbitrary n ⇐ 2 this is

vn = v1

↘n/2→1/2≃∑

k=0

(
n↑ 1↑ k

k

)
an→1→2kbk + bv0

↘n/2→1≃∑

k=0

(
n↑ 2↑ k

k

)
an→2→2kbk . (1.34)

When we substitute vn = gn, with g a constant, the equation (1.33) reduces to the character-
istic equation:

g2 ↑ ag ↑ b = 0 . (1.35)

It has two solutions:

g+ =
1

2

(
a+

√
a2 + 4b

)
, g→ =

1

2

(
a↑

√
a2 + 4b

)
. (1.36)
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It is shown in appendix B that for a2 +4b ↔= 0 the equation (1.34) is identical to the equation

vn =
v0g+ ↑ v1
g+ ↑ g→

gn→ ↑ v0g→ ↑ v1
g+ ↑ g→

gn+ . (1.37)

If a2 + 4b = 0 then g+ = g→ = a/2. For this situation we will write both g+ and g→ as g. So,
g = a/2 and g2 = a2/4 = ↑b. It is shown in appendix C that for a2 + 4b = 0 the equation
(1.34) is identical to the equation

vn = nv1g
n→1 ↑ (n↑ 1)v0g

n . (1.38)

As a result we have two expressions for the solution of linear second order di!erence equations.
The first one is the equation (1.34). The second one is the equation (1.37) if a2 + 4b ↔= 0 and
the equation (1.38) if a2 + 4b = 0.

For the stability analysis we write vn as wn+1. Then the equation (1.33) becomes a two
dimensional system:

vn+1 = avn + bwn

wn+1 = vn .
(1.39)

In matrix form this is (
vn+1

wn+1

)
→

(
a b

1 0

)∣∣∣∣∣
(L,K)

·
(
vn

wn

)
. (1.40)

The fixed point is (L,K) = (0, 0). The equation for the eigenvalues of the Jacobian is equation
↽2 ↑ a↽↑ b = 0. This is equal to the characteristic equation. The eigenvalues are

↽+ =
1

2

(
a+

√
a2 + 4b

)
, ↽→ =

1

2

(
a↑

√
a2 + 4b

)
. (1.41)

Obviously, g± is identical to ↽±.

We distinguish three cases:

1. a2+4b > 0, then g+ and g→ are real. As an example we consider the di!erence equation

Fn+1 = Fn + Fn→1 , (1.42)

with F0 = 0 and F1 = 1. That is, a = 1 and b = 1. According to the equation (1.34) we
therefore have

Fn =

↘n/2→1/2≃∑

k=0

(
n↑ 1↑ k

k

)
(1.43)

and according to the equation (1.37) we have

Fn =
gn+ ↑ gn→
g+ ↑ g→

=
(1 +

≃
5)n ↑ (1↑

≃
5)n

2n
≃
5

. (1.44)
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Both lead to the Fibonacci series 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, .... For increasing
n the Fibonacci numbers diverge to infinity, while their ratio Fn/Fn→1 converges to
⇀ = (1 +

≃
5)/2; the golden ratio.

As another example we consider the di!erence equation is

vn+1 =
1

2
vn +

1

4
vn→1 , (1.45)

with v0 = 0 and v1 = 4. That is, a = 1/2 and b = 1/4. According to the equation (1.34)
we obtain

vn = 23→n
↘n/2→1/2≃∑

k=0

(
n↑ 1↑ k

k

)
(1.46)

and according to the equation (1.37) we obtain

vn = 4
gn+ ↑ gn→
g+ ↑ g→

= 23→n (1 +
≃
5)n ↑ (1↑

≃
5)n

2n
≃
5

. (1.47)

Both lead to the series 0, 4, 2, 2,
3

2
,
5

4
, 1,

13

16
,
21

32
,
17

32
, .... The series converge to 0. Notice

the connection with the Fibonacci numbers: vn = 23→nFn.

2. a2+4b = 0, then g = a/2 and g2 = ↑b. Expressed in the constant a the equation (1.38)
reads

vn =
(a
2

)n
(
v0 + n

(
2v1
a

↑ v0

))
. (1.48)

For |a| > 2 the series diverges. If a = 2 the series grows linear with n:

vn = v0 + n (v1 ↑ v0) . (1.49)

For |a| < 2 the series converges.

3. a2 + 4b < 0, then g+ and g→ are complex numbers. As an example we consider the
di!erence equation

vn+1 = vn ↑ vn→1 , (1.50)

with v0 = 0 and v1 = 1. That is, a = 1 and b = ↑1. According to the equation (1.34)
we therefore have

vn =

↘n/2→1/2≃∑

k=0

(
n↑ 1↑ k

k

)
(↑1)k (1.51)

and according to the equation (1.37) we have

vn =
gn+ ↑ gn→
g+ ↑ g→

=
(1 + i

≃
3)n ↑ (1↑ i

≃
3)n

2ni
≃
3

. (1.52)
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The latter can also be written as

vn =
1

i
≃
3

((
cos

⇁

3
+ i sin

⇁

3

)n
↑
(
cos

⇁

3
↑ i sin

⇁

3

)n)
. (1.53)

By means of the de Moivre’s theorem this is equal to

vn =
1

i
≃
3

((
cos

n⇁

3
+ i sin

n⇁

3

)
↑
(
cos

n⇁

3
↑ i sin

n⇁

3

))

=
1

i
≃
3

(
cos

n⇁

3
+ i sin

n⇁

3
↑ cos

n⇁

3
+ i sin

n⇁

3

)

=
2≃
3
sin

n⇁

3

(1.54)

All expressions lead to the series 0, 1, 1, 0,↑1,↑1, 0, 1, 1, 0,↑1,↑1, 0, 1, 1, 0, .... From a
two dimensional perspective this is (0, 1), (1, 1), (1, 0), (0,↑1), (↑1,↑1), (↑1, 0), (0, 1), ....
Since the modulus is of ↽± is 1 the fixed point (0, 0) is a center of clockwise rotation.
As another example we consider the di!erence equation

vn+1 = vn ↑ 1

2
vn→1 , (1.55)

with v0 = 0 and v1 = 1. That is, a = 1 and b = ↑1/2. According to the equation (1.37)
we have g± = (1± i)/2 and

vn =
gn+ ↑ gn→
g+ ↑ g→

=
(1 + i)n ↑ (1↑ i)n

2ni
=

2

(
≃
2 )n

sin
n⇁

4
. (1.56)

It leads to the series 0, 1, 1, 1/2, 0,↑1/4,↑1/4,↑1/8, 0, 1/16, 1/16, 1/32, 0, .... From a
two dimensional perspective this is (0, 1), (1, 1), (1, 1/2), (1/2, 0), (0,↑1/4), .... Since the
modulus is of g± is 1

2

≃
2 < 1 the fixed point (0, 0) is a stable focus. The successive points

spiralize (clockwise rotation) towards the fixed point.



Chapter 2

One dimensional di!erence equations

2.1 Introduction

In this chapter we will consider di!erence equations of the type

xm+1 = f(xm) , (2.1)

where f may depend on one or more parameters. For instance, for f(x) = a(1↑ x) with a a
parameter, the di!erence equation is as follows:

xm+1 = a(1↑ xm) . (2.2)

An equilibrium point, L, also called a fixed point, follows from L = a(1↑L). The fixed point
is L =

a

a+ 1
. For a = 3/4, for instance, the fixed point is L = 3/7 and it is stable. To

illustrate it we take a = 3/4 and start with x0 = 1/3. Then x1 = 1/2, x2 = 3/8, x3 = 15/32,
x4 = 51/128, etc. In the long run the values of xm converge to 3/7, see the next figure.
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For a = 0.99 and x0 = 1/3 the successive xm slowly converge to 99/199 → 0.4974874, see the
next figure.
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For a = 1 and x0 = 1/3, we obtain x1 = 2/3, x2 = 1/3, x3 = 2/3, x4 = 1/3, etc. That is, the
xm alternate are 1/3 and 2/3, see next figure.
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There is neither convergence nor divergence. Of course, for all x0 we will obtain x1 = 1↑ x0,
x2 = 1 ↑ (1 ↑ x0) = x0, x3 = 1 ↑ x0, x4 = x0, etc. For a = 1 and x0 ↔= 1/2 we obtain an
alternating sequence. For a = 1 and x0 = 1/2 we have xm = x0 = 1/2 for all m.
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For a = 5/4 and x0 = 1/3 the successive xm diverge from 5/9, see the next figure.
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In a similar manner it is found for a < 0 that subsequent xm converge if ↑1 < a < 0, and
diverge if a < ↑1.

The foregoing mapping function was linear: the power of x in f(x) is 1. Things become
more of interest when we consider more general functions with larger powers of x, such as
f(x) = x2 + a or f(x) = a sin(x). For a general function f(x) a fixed point L is a solution of
the equation

L = f(L) . (2.3)

As shown in chapter 1 a fixed point L is stable if

↑1 <
ϖf

ϖx

∣∣∣
L
< 1 . (2.4)

A stable fixed point L for which L = f(L) can be regarded as a limit cycle with period 1.

A period 2 limit cycle occurs if both the conditions L = f(f(L)) and ↑1 <
ϖf(f(x))

ϖx

∣∣∣
L
< 1

are satisfied.

A period 3 limit cycle occurs if the conditions L = f(f(f(L))) and ↑1 <
ϖf(f(f(x)))

ϖx

∣∣∣
L
< 1

are both satisfied, and so on.
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2.2 Logistic equation

A one dimensional, first order, non-linear di!erence equation is the logistic equation:

xm+1 = axm(1↑ xm) . (2.5)

The function f(x) = ax ↑ ax2 is the logistic function. The additional condition 0 ↘ a ↘ 4

guarantees 0 ↘ xm+1 ↘ 1 for xm ⇒ [0, 1]. A fixed point L occurs if L = aL ↑ aL2. There

are two solutions: L = 0 and L =
a↑ 1

a
. Since

ϖf

ϖx

∣∣∣
L

= a ↑ 2aL, the stability requires
↑1 < a↑ 2aL < 1. Substituting L = 0 into the stability requirement leads to 0 ↘ a < 1 and
substituting L =

a↑ 1

a
into the stability requirement leads to 1 < a < 3. So, this is what

happens: for a close to 0 the sequence x0,x1,x2, ... quickly converges to 0. It is illustrated in
the left panel of the next figure.
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For a a little smaller than 1 the sequence x0,x1,x2, ... slowly converges to 0, see right panel
of previous figure. For a a little larger than 1 the sequence x0,x1,x2, ... slowly converges to
a↑ 1

a
. For a close to 2 the sequence x0,x1,x2, ... quickly converges to

a↑ 1

a
, see the left panel

of next figure. For a a little smaller than 3 the sequence x0,x1,x2, ... slowly converges to
a↑ 1

a
, see the right panel of next figure.

The speed with which the sequence x0,x1,x2, ... converges to a stable fixed point L is deter-

mined by
ϖf

ϖx
at this point. If, for instance,

ϖf

ϖx

∣∣∣
xm

=
1

8
the speed of convergence is three

times larger in comparison to the situation where
ϖf

ϖx

∣∣∣
xm

=
1

2
. Actualy,

|xm+1 ↑ L| → eϑm |xm ↑ L| , (2.6)

where φm = ln

∣∣∣∣
ϖf

ϖx

∣∣∣
xm

∣∣∣∣, as will be derived in section 2.4.
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In particular for a = 3 and xm = 2/3 we have φm = 0: no convergence. Beyond a = 3 a
period 2 limit cycle sets in, see next figure.
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Alternatively, for a = 3 there is a bifurcation to two fixed points. The fixed points follow from

L = f(f(L)) ↓ L = af(L)↑ af2(L) ↓ L = a(aL↑ aL2)↑ a(aL↑ aL2)2. (2.7)

The latter equation can be elaborated to

a3L4 ↑ 2a3L3 + (a2 + a3)L2 ↑ a2L+ L = 0 . (2.8)

This polynomial for L can be reduced to
(
aL2 + (1↑ a)L

) (
a2L2 ↑ (a+ a2)L+ 1 + a

)
= 0 . (2.9)
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The expression between the first pair of brackets is the 1 limit cycle. This is not a surprise
since a 2 limit cycle contains a 1 limit cycle. The expression between the second pair of
brackets is for a 2 limit cycle with two di!erent limit values. The two limit values follow from

a2L2 ↑ (a+ a2)L+ 1 + a = 0 . (2.10)

The two solutions are

L± =
a+ 1±

√
(a+ 1)(a↑ 3)

2a
. (2.11)

We also find
ϖf(f(L))

ϖL
= a2 ↑ 2a2(1 + a)L+ 6a3L2 ↑ 4a3L3 . (2.12)

for L = L± it is reduced to
ϖf(f(L))

ϖL

∣∣∣
L±

= a2 ↑ 2a↑ 4 . (2.13)

The requirement for stability therefore is

↑1 < a2 ↑ 2a↑ 4 < 1 ↓ 3 < a < 1 +
≃
6 . (2.14)

At a = 1 +
≃
6 → 3.449... a new bifurcation occurs. The two limit values for a = 1 +

≃
6

are
1

5

(
2 +

≃
3 +

√
2↑

≃
3

)
and

1

5

(
2↑

≃
3 +

√
2 +

≃
3

)
. As a result there will be a 4 limit

cycle for values of a slightly larger than a = 1 +
≃
6, see the left panel of next figure. At

a → 3.544090... a new bifurcation occurs and an 8 limit cycle comes into existence, see right
panel of next figure.
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At a → 3.564... the 8 limit cycle turns into a 24 limit cycle, etc. The sequence of 2n limit
cycles for n ↓ ↗ ends at a → 3.56994567.... In the next diagram the limit values are plotted
against a. It visualizes the bifurcations. It is called a bifurcation diagram.
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2.3 Feigenbaum constants

The value of a where a limit cycle with period 2n changes in a limit cycle with period 2n+1 is
denoted as an, see next figure.
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The ratio of di!erences between two successive an values is:

an ↑ an→1

an+1 ↑ an
. (2.15)

In the limit where n ↓ ↗ the series of ratios converges to a constant value ϑ which is known
as a Feigenbaum constant:

ϑ := lim
n↔↗

an ↑ an→1

an+1 ↑ an
= 4.6692016091... . (2.16)

We denote the width of a 2n bifurcation at the value of a where L = 1/2 as wn, see next
figure.
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In the limit where n ↓ ↗ this series of ratios of successive widths

wn→1

wn
. (2.17)

converges to a constant value ω:

ω = lim
n↔↗

wn→1

wn
= 2.502907875... . (2.18)

The latter also is a Feigenbaum constant.
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2.4 Chaos

For the logistic equation the 2n limit cycle ends for n ↓ ↗ at a → 3.5699.... So far we only
considered the situation for a smaller than this value. For a slightly larger value of a, say
3.57, the sequence of xm’s, the orbit, does not converge to a limit cycle. Instead, the sequence
shows chaotic behaviour. From every starting point 0 < x0 < 1 the orbit is quite irregular.
The orbit never passes twice through the same point since then one would have periodic be-
haviour. For increasing a ‘windows’ with chaotic behaviour and windows with periodic limit
cycles alternate. To visualize the chaotic behaviour and periodic limit values one can for every
a iterate the starting value x0 for instance 20 000 times and plot the final 50 values of the xm

sequence. The result is shown in the next figure.

xm+1 = axm(1↑ xm)
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Figure 2.1: Orbit diagram for the logistic equation. The dashed, orange line is where the 2n

limit cycles end and where the first chaos sets in.

There are several windows of periodic cycli present. An obvious window is for the 3 ⇑ 2n

limit cycle. It is a 3 limit cycle for n = 0. From L = f(f(f(L))) it follows, after factor-
ing out L = f(L), that 1 + a + a2 ↑ (a + 2a2 + 2a3 + a4)L + (a2 + 3a3 + 3a4 + 2a5)L2 ↑
(a3 + 3a4 + 5a5 + a6)L3 + (a4 + 4a5 + 3a6)L4 ↑ (a5 + 3a6)L5 + a6L6 = 0. Together with the

condition
ϖf(f(f(x)))

ϖx

∣∣∣
L
= 1 we obtain ↑49 ↑ 28a ↑ 18a2 + 24a3 + 4a4 ↑ 6a5 + a6 = 0. It

factorizes into (7 ↑ 5a + a2)(↑7 ↑ 2a + a2)(1 + a + a2) = 0. The factor (↑7 ↑ 2a + a2) = 0

has the analytical solution a = 1+2
≃
2. Hence, a 3 limit cycle sets in at a = 1+2

≃
2 → 3.8284...
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A less obvious window is a 4 limit cycle for a close to 4. From L = f(f(f(f(L)))) to-

gether with the condition
ϖf(f(f(f(x))))

ϖx

∣∣∣
L
= 1 we obtain (1 + a2)(5 ↑ 4a + a2)(↑5 ↑ 2a +

a2)(↑135 ↑ 54a ↑ 9a2 + 28a3 + 3a4 ↑ 6a5 + a6) = 0. The factor ↑5 ↑ 2a + a2 has a root
a = 1 +

≃
6 as we already met before. The factor ↑135↑ 54a↑ 9a2 + 28a3 + 3a4 ↑ 6a5 + a6

has a root 1 +
√

4 + 3⇑ 3
≃
4 → 3.96010188.... It turns into an 8 limit cycle at a → 3.96076....

The sequence of 4 ⇑ 2n limit cycles ends at a → 3.9612.... The window for this cycle is very
narrow; !a → 0.001.

In between the windows of limit cycles there is chaotic behaviour: the sequence of xm’s is
sensitive for the initial value x0. A slightly di!erent x0 may lead to a completely di!erent
orbit. Starting with x0 we are after one step at x1 = f(x0). Starting with x0 + ϑ0 we arrive
after one step at x1 + ϑ1 = f(x0 + ϑ0). Taking a first order Taylor expansion of f the latter is

x1 + ϑ1 → f(x0) + ϑ0
ϖf

ϖx

∣∣∣
x0

. Since x1 = f(x0) it is reduced to
ϑ1
ϑ0

→ ϖf

ϖx

∣∣∣
x0

. The rate of change

is
∣∣∣∣
ϑ1
ϑ0

∣∣∣∣ →
∣∣∣∣
ϖf

ϖx

∣∣∣
x0

∣∣∣∣. Calculating ϑ2 from ϑ1, ϑ3 from ϑ2,etc. through ϑn leads to the equation

∣∣∣∣
ϑn
ϑ0

∣∣∣∣ =
∣∣∣∣
ϑn
ϑn→1

∣∣∣∣ ·
∣∣∣∣
ϑn→1

ϑn→2

∣∣∣∣ · ... ·
∣∣∣∣
ϑ2
ϑ1

∣∣∣∣ ·
∣∣∣∣
ϑ1
ϑ0

∣∣∣∣ →
∣∣∣∣
ϖf

ϖx

∣∣∣∣
xn↑1

· ... ·
∣∣∣∣
ϖf

ϖx

∣∣∣∣
x1

·
∣∣∣∣
ϖf

ϖx

∣∣∣∣
x0

, (2.19)

or ∣∣∣∣
ϑn
ϑ0

∣∣∣∣ → eϑn↑1+...+ϑ1+ϑ0 , (2.20)

where
φm = ln

∣∣∣∣
ϖf

ϖx

∣∣∣
xm

∣∣∣∣ . (2.21)

It can be written as
|ϑn| → enϑ̄ |ϑ0| , (2.22)

where

φ̄ :=
1

n

n→1∑

m=0

φm . (2.23)

In the limit where n goes to infinity it is known as the Lyapunov exponent ↽:

↽ = lim
n↔↗

φ̄ . (2.24)

In case of a convergence to a periodic limit cycle the Lyapunov exponent is smaller than 0. In
case of chaotic behaviour the Lyapunov exponent is larger than 0: small di!erences initially
grow each step. In the next figure the Lyapunov exponent is plotted against the parameter a

for the logistic equation.
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Figure 2.2: Lyapunov exponent for the logistic equation.

2.5 Starting points

So far we only considered 0 ↘ a ↘ 4 and starting values x0 between 0 and 1 for the logistic
equation, since the orbit either is periodic or chaotic for 0 ↘ a ↘ 4 and 0 ↘ x0 ↘ 1. For other
starting values x0 and other values for a the orbit may either be attracted to a periodic limit
cycle, stay in a chaotic region or diverge to infinity. The situation is shown in the next figure.
If the orbit tends to infinity the pixel at (a,x0) is coloured yellow, orange through red
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x
0
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dependent on a slow, intermediate through fast velocity with which the orbit goes to infinity.
If the orbit ends in a stable periodic limit cycle or is at an unstable fixed point (as x0 = 0 or
x0 = 1) or stays in a chaotic region, that is, if the orbit does not diverge to infinity, the pixel
at (a,x0) is coloured white. The region of x0’s which do not lead to divergence to infinity has

the borders
1

a
↘ x0 ↘ a↑ 1

a
if ↑2 ↘ a ↘ 0,

a↑ 1

a
↘ x0 ↘ 1

a
if 0 ↘ a ↘ 1 and 0 ↘ x0 ↘ 1 if

1 ↘ a ↘ 4. In the next figure the orbit diagram is shown on top of the previous figure.
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2.6 Other di!erence equations

In this section we will investigate how the orbit diagrams look for other di!erence equations.
First we consider the sine map:

xm+1 = b sin(⇁xm) . (2.25)

The additional condition 0 ↘ b ↘ 1 guarantees 0 ↘ xm+1 ↘ 1 for xm ⇒ [0, 1]. The orbit
diagram for the sine map is shown in the figure 2.3. Although the logistic map di!ers from
the sine map, their orbit diagrams look almost identical. The Feigenbaum numbers ϑ and ω

for the sine map are identical to the ones for the logistic equation. This suggests that the
Feigenbaum numbers are universal constants. Except for some scaling e!ects, power sine maps
such as b sinc(⇁x) have a comparable orbit diagram.

With the linear transformation x ↓
(
1

4
a↑ 1

2

)
x +

1

2
the logistic equation takes the form

f(x) = 1↑ µx2 with µ =
1

4
a(a↑ 2). The iterations

xm+1 = 1↑ µx2m , 0 ↘ µ ↘ 2 (2.26)

lead to the diagram in figure 2.4. Also here the Feigenbaum numbers ϑ and ω are identical to
the ones for the logistic equation.
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xm+1 = b sin(⇁xm)
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Figure 2.3: Orbit diagram for the sine map.

xm+1 = 1↑ µx2m
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Figure 2.4: Orbit diagram for the map f(x) = 1↑ µx2.



32 CHAPTER 2. ONE DIMENSIONAL DIFFERENCE EQUATIONS

Another often used example is the hyperbolic tangent map: f(x) = gx(1 ↑ tanhx). The
iterations xm+1 = gxm(1 ↑ tanhxm), with g ⇐ 1, lead to the orbit diagram and Lyapunov
diagram as shown in figure 2.5 and figure 2.6 respectively.

xm+1 = gxm(1↑ tanhxm)
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Figure 2.5: Orbit diagram for the hyperbolic tangent map f(x) = gx(1↑ tanhx).
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Figure 2.6: Lyapunov exponent for the hyperbolic tangent map.
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Of course, one can create an arbitrary smooth function with a maximum value on its domain.
Let us try, for instance, f(x) = hxe→x. The iterations xm+1 = hxmexm , with h ⇐ 1, lead to
the orbit diagram and Lyapunov diagram as shown in figure 2.7 and figure 2.8 respectively..

xm+1 = hxme→xm
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Figure 2.7: Orbit diagram for the map f(x) = hxe→x.
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Figure 2.8: Lyapunov exponent for the map f(x) = hxe→x.
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For all these examples the Feigenbaum numbers ϑ and ω are identical to the ones for the
original logistic map. For one-dimensional maps f(x) the Feigenbaum numbers are universal
if the Schwarzian derivative of f(x),

DSchwarzian =

(
f ↓↓(x)

f ↓(x)

)↓
↑ 1

2

(
f ↓↓(x)

f ↓(x)

)2

=
f ↓↓↓(x)

f ↓(x)
↑ 3

2

(
f ↓↓(x)

f ↓(x)

)2

, (2.27)

is negative on the given domain.

An example of a one-dimensional di!erence equation whose Schwarzian derivative is not neg-
ative is the tent map f(x) = dmin(x, 1 ↑ x). The iterations xm+1 = d min(xm, 1 ↑ xm) on
the domain [0, 1] lead to the diagram of figure 2.9.
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Figure 2.9: Orbit diagram for the tent map f(x) = d min(xm, 1↑ xm).

The diagram for the tent map contains unstable periodic orbits and chaotic orbits. Cascades
of bifurcations are not present.



Chapter 3

Two dimensional di!erence equations

In this chapter the main characteristics of non-linear, two dimensional systems will be ex-
plained by means of the Lotka-Volterra model and the Hénon map. We start with the Lotka-
Volterra model.

3.1 Lotka-Volterra model

The Lotka-Volterra model describes the evolution of the size of the population of two interact-
ing species, predators and prey. For concreteness we take stoats as the predators and rabbits
as the prey. If s is the number of stoats and r the number of rabbits then the Lotka-Volterra
system in di!erential form is [1, 2]

ṙ =
dr

dt
= ωr ↑ εrs , ṡ =

ds

dt
= ↑ϱs+ ϑsr , (3.1)

where t is the time parameter and where the constants are defined by:
ω is the growth rate of rabbits in the absence of stoats,
ε is the death rate of rabbits due to the presence of stoats,
ϱ is the natural death rate of stoats in the absence of rabbits,
ϑ is the growth rate of stoats in the presence of rabbits.
All four constants are larger than 0.

The equilibrium points of the system follow from ṙ = 0 and ṡ = 0. They are (r↑, s↑) =
(
ϱ

ϑ
,
ω

ε

)

and (r↑↑, s↑↑) = (0, 0). For the stability analysis we write the system as

ṙ = f(r, s) , ṡ = g(r, s) , (3.2)

where f(r, s) = ωr ↑ εrs and g(r, s) = ↑ϱs+ ϑsr. The Jacobian is

J(r, s) =

(
εf
εr

εf
εs

εg
εr

εg
εs

)
=

(
ω↑ εs ↑εr

ϑs ↑ϱ + ϑr

)
(3.3)

35
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At the equilibrium point (r↑↑, s↑↑) = (0, 0) this is

J(r↑↑, s↑↑) =

(
ω 0

0 ↑ϱ

)
(3.4)

The eigenvalues are ↽+ = ω and ↽→ = ↑ϱ. Since ↽+ > 0 and ↽→ < 0 the equilibrium point
(r↑↑, s↑↑) = (0, 0) is a saddle point.

At the equilibrium point (r↑, s↑) =

(
ϱ

ϑ
,
ω

ε

)
the Jacobian is

J(r↑, s↑) =

(
0 ↑ϖϱ

ς
ςω
ϖ 0

)
(3.5)

The eigenvalues follow from
∣∣∣∣∣
↑↽ ↑ϖϱ

ς
ςω
ϖ ↑↽

∣∣∣∣∣ = 0 ↓ ↽2 + ωϱ = 0 . (3.6)

The eigenvalues are ↽+ = i
≃
ωϱ and ↽→ = ↑i

≃
ωϱ. Since the eigenvalues are pure imaginary

the equilibrium point (r↑, s↑) = (ϱ/ϑ,ω/ε) is a center. The solutions near this center are
periodic. We consider the dynamics close to the equilibrium point (r↑, s↑). That is, we take
r(t) = r↑ + η(t) and s(t) = s↑ + ↼(t). Then we have the system

dη

dt
= ↑εϱ

ϑ
↼↑ ε↼η ,

d↼

dt
=

ϑω

ε
η + ϑη↼ . (3.7)

For η and ↼ very small we have the approximation

dη

dt
→ ↑εϱ

ϑ
↼ ,

d↼

dt
→ ϑω

ε
η , (3.8)

from which it follows that η̈ → ↑ωϱη and ↼̈ → ↑ωϱ↼. The solutions are η(t) → χ sin(
≃
ωϱ t+▷)

and ↼(t) → ◁ sin(
≃
ωϱ t+ ⇀), where ▷ = arcsin(η(0)/χ) and ⇀ = arcsin(↼(0)/◁).

There is no analytical solution for r(t) and s(t). One can eliminate t by dividing the two
equations of motion:

dr

ds
=

ωr ↑ εrs

↑ϱs+ ϑsr
=

(ω↑ εs) r

(↑ϱ + ϑr) s
. (3.9)

Separation of variables gives

(↑ϱ + ϑr)

r
dr =

(ω↑ εs)

s
ds ↓

(
↑ϱ

r
+ ϑ

)
dr =

(ω
s
↑ ε

)
ds . (3.10)

Integration gives
∫ (

↑ϱ

r
+ ϑ

)
dr =

∫ (ω
s
↑ ε

)
ds ↓ ↑ϱ ln r + ϑr + c = ω ln s↑ εs , (3.11)
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where c is the constant of integration. Exponentiation of both sides leads to

K = rϱsωe→ςr→ϖs , (3.12)

where K = ec is a constant of motion: K̇ = 0. Its value is therefore determined by the initial
conditions:

K = rϱ0s
ω
0 e

→ςr0→ϖs0 . (3.13)

For a given r the equation (3.12) delivers two values for s. If after a while the number of
rabbits is again the earlier r, the values for s will be the earlier values since K is a constant
of motion. As a consequence the parametric plot of (r(t), s(t)) is a closed curve.

As an example we consider the situation for ω = 0.05, ε = 0.005, ϱ = 0.025 and ϑ = 0.00025.

The equilibrium point
(
ϱ

ϑ
,
ω

ε

)
is the point (100, 10). For the initial condition r0 = 50 and

s0 = 10 the evolution of r and s is shown in the left panel of figure 3.1. The parametric plot
is shown in the right panel of figure 3.1. The arrow in the parametric curve indicates the
evolution in forward time. The time unit is arbitrary, something like days or weeks or so.
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Figure 3.1: Evolution of the population size of rabbits r and stoats s (left panel) and the
parametric plot (right panel). See the text for the initial conditions and the constants.

Next we consider the population dynamics close to the equilibrium point (100, 10). To be
specific, we take the initial conditions r0 = 90 and s0 = 10. The result is shown in figure 3.2.
As expected, the closer the populations are to the equilibrium point (100, 10), the more the
parametric plot looks like an ellipse. And the closer the populations are to the equilibrium
point (100, 10), the closer is the period of the oscillation to 2⇁/

≃
ωϱ = 177.7. Indeed, in figure

3.2 the period is approximately 177.7, while in figure 3.1 the period is approximately 182.
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Figure 3.2: Evolution of the population size of rabbits r and stoats s (left panel) and the
parametric plot (right panel). See the text for the initial conditions and the constants.

If we take the equilibrium point (100, 10) as the initial populations, then the r(t) and s(t)

curves are horizontal lines and the parametric plot is the single point (100, 10). From the
figures 3.1 and 3.2 we see the shape of the parametric curve depends on the initial condition.
Parametric curves are drawn for s0 = 10 and r0 = 10 through 100 in steps of 10 in figure 3.3.
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Figure 3.3: Parametric plots for various initial conditions. The rotation is anti-clockwise.
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Close to the equilibrium point (100, 10) the parametric curve is almost an ellipse, while far
away from the equilibrium point (100, 10) it rather is a triangle with rounded corners.

Since we do not have an analytical solution for r(t) and s(t) we have to resort to numeri-
cal methods for the plots. To this end we write ṙ as

rn+1 ↑ rn
!t

and ṡ as
sn+1 ↑ sn

!t
. Then

rn+1 = rn + ω!t rn ↑ ε!t rnsn

sn+1 = sn ↑ ϱ!t sn + ϑ!t snrn ,
(3.14)

with r0 and s0 as the starting values. Absorbing !t in the constants, thus a = ω!t, b = ε!t,
etc., we obtain

rn+1 = rn + a rn ↑ b rnsn

sn+1 = sn ↑ c sn + d snrn ,
(3.15)

The latter is a discrete system of di!erence equations. It often is considered as a more appro-
priate model for the prey-predator system than the continuous system.

The equilibrium points of the discrete system follow from rn+1 = rn = L and sn+1 = sn = K.
They are (L,K) = (0, 0) and (L,K) =

( c

d
,
a

b

)
. For the stability analysis of the equilibrium

points we write the system of equations as rn+1 = f(rn, sn) and sn+1 = g(rn, sn), where
f(r, s) = r + a r ↑ b rs and g(r, s) = s↑ c s+ d sr. The Jacobian of the system is

J(r, s) =

(
εf
εr

εf
εs

εg
εr

εg
εs

)
=

(
1 + a↑ b s ↑b r

d s 1↑ c+ d r

)
(3.16)

At the equilibrium point (0, 0) the Jacobian is

J(0, 0) =

(
1 + a 0

0 1↑ c

)
(3.17)

The eigenvalues are ↽+ = 1+ a and ↽→ = 1↑ c. For a > 0 and 0 < c < 2 there holds |↽+| > 1

and |↽→| < 1. That is, for a > 0 and 0 < c < 2 the equilibrium point (0, 0) is a saddle.

At the equilibrium point
( c

d
,
a

b

)
the Jacobian is

J
( c

d
,
a

b

)
=

(
1 ↑ bc

d
ad
b 1

)
(3.18)

The eigenvalues follow from
∣∣∣∣∣
1↑ ↽ ↑ bc

d
ad
b 1↑ ↽

∣∣∣∣∣ = 0 ↓ (↽↑ 1)2 + ac = 0 . (3.19)

The eigenvalues are ↽+ = 1 + i
≃
ac and ↽→ = 1 ↑ i

≃
ac. Since the eigenvalues are complex

the solutions are periodic. Since the moduli of the complex eigenvalues are larger than 1
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the equilibrium point
( c

d
,
a

b

)
is an unstable focus. The curve is spiralizing outwards. For

a = 0.05, b = 0.005, c = 0.025, d = 0.00025, r0 = 50 and s0 = 10 the evolution of r and s and
the parametric plot is shown in figure 3.4.
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Figure 3.4: Evolution of the population size of rabbits r and stoats s (left panel) and the
parametric plot (right panel) according to the di!erence equations as given in the text.

3.2 Modified Lotka-Volterra model

According to the system of equations (3.1) the population of rabbits will grow to infinity when
stoats are absent. Of course this is not realistic. In reality the population of rabbits cannot
grow to infinity because of the limited amount of food. When stoats (and other predators)
are absent the evolution of rabbits will be rather something like the logistic equation:

ṙ =
dr

dt
= ωr ↑ µr2 , (3.20)

where ω > 0 and µ > 0 are constants. The equilibrium points are r↑ =
ω

µ
(stable) and r↑↑ = 0

(unstable). Writing the initial condition as r(0) = r0, the analytical solution reads

r(t) =
ωr0

µr0 + (ω↑ µr0)e→ωt
. (3.21)

The solution has the property: lim
t↔↗

r(t) =
ω

µ
as required.
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If we do take the limited growth of the rabbit population into account the rabbit-stoat system
is modified to

ṙ =
dr

dt
= ωr ↑ µr2 ↑ εrs , ṡ =

ds

dt
= ↑ϱs+ ϑsr . (3.22)

The modified Lotka-Volterra system has the equilibrium points (0, 0),
(
ω

µ
, 0

)
and

(
ϱ

ϑ
,
ωϑ ↑ ϱµ

εϑ

)
. The Jacobian of the system is

J(r, s) =

(
ω↑ 2µr ↑ εs ↑εr

ϑs ↑ϱ + ϑr

)
(3.23)

At the equilibrium point (0, 0) the Jacobian is

J(0, 0) =

(
ω 0

0 ↑ϱ

)
(3.24)

with eigenvalues ↽+ = ω > 0 and ↽→ = ↑ϱ < 0. The equilibrium point (0, 0) therefore is a
saddle.
At the equilibrium point

(
ω

µ
, 0

)
the Jacobian is

J

(
ω

µ
, 0

)
=

(
↑ω ↑ωϖ

µ

0 ↑ϱ + ως
µ

)
(3.25)

The eigenvalues are ↽+ = ↑ω and ↽→ = ↑ϱ + ως
µ . Now ↽+ < 0 while ↽→ > 0 if ωϑ > ϱµ and

↽→ < 0 if ωϑ < ϱµ. Thus
(
ω

µ
, 0

)
is a stable node if ωϑ < ϱµ and a saddle if ωϑ > ϱµ.

At the equilibrium point
(
ϱ

ϑ
,
ωϑ ↑ ϱµ

εϑ

)
the Jacobian is

J

(
ϱ

ϑ
,
ωϑ ↑ ϱµ

εϑ

)
=

(
↑ϱµ

ς ↑ϖϱ
ς

ως→ϱµ
ϖ 0

)
(3.26)

The eigenvalues are

↽± = ↑ϱµ

2ϑ
±
√(ϱµ

2ϑ

)2
+

ϱ2µ

ϑ
↑ ωϱ (3.27)

Also for the modified Lotka-Volterra model we consider the situation for ω = 0.05, ε = 0.005,
ϱ = 0.025 and ϑ = 0.00025. Suppose we take µ = 0.0001. For these numerical values of

the constants the equilibrium point
(
ϱ

ϑ
,
ωϑ ↑ ϱµ

εϑ

)
is the point (100, 8) and the eigenvalues

of the Jacobian at this point are ↽± → ↑0.005 ± i 0.031225. So, (100, 8) is a stable focus.

The equilibrium point
(
ω

µ
, 0

)
is (500, 0) and the eigenvalues of the Jacobian at this point are

↑0.05 and 0.1. So, (500, 0) is a saddle for these constants. For the initial condition r0 = 20

and s0 = 5 the evolution of r and s is shown in the left panel of figure 3.5. The parametric
plot is shown in the right panel of figure 3.5.
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Figure 3.5: Evolution of the population size of rabbits r and stoats s (left panel) and the
parametric plot (right panel). See the text for the initial conditions and the constants.

Applying Euler’s method we obtain the discrete equivalent of the modified system of equations:

rn+1 = rn + ω!t rn ↑ µ!t r2n ↑ ε!t rnsn

sn+1 = sn ↑ ϱ!t sn + ϑ!t snrn ,
(3.28)

with r0 and s0 as the starting values. Absorbing !t in the constants, thus a = ω!t, b = ε!t,
etc., we obtain

rn+1 = rn + a rn ↑mr2n ↑ b rnsn

sn+1 = sn ↑ c sn + d snrn .
(3.29)

The equilibrium points (L,K) of the discrete system follow from rn+1 = rn = L and sn+1 =

sn = K. Thus L = L + aL ↑ mL2 ↑ b LK and K = K ↑ cK + dKL. Solving for L and

K we obtain the following three equilibrium points: (0, 0),
( a

m
, 0
)

and
(
c

d
,
ad↑ cm

bd

)
. For

the stability analysis of the equilibrium points we write the system as rn+1 = f(rn, sn) and
sn+1 = g(rn, sn), where f(r, s) = r+a r↑mr2↑b rs and g(r, s) = s↑c s+d sr. The Jacobian
of the system is

J(r, s) =

(
εf
εr

εf
εs

εg
εr

εg
εs

)
=

(
1 + a↑ 2mr ↑ b s ↑b r

d s 1↑ c+ d r

)
(3.30)

At the equilibrium point (0, 0) the Jacobian is

J(0, 0) =

(
1 + a 0

0 1↑ c

)
. (3.31)
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The eigenvalues are ↽+ = 1 + a and ↽→ = 1 ↑ c. For a > 0 and 0 < c < 2 we have |↽+| > 1

and |↽→| < 1 and the equilibrium point (0, 0) is a saddle.

At the equilibrium point
( a

m
, 0
)

the Jacobian is

J
( a

m
, 0
)
=

(
1↑ a ↑ab

m

0 1↑ c+ ad
m

)
. (3.32)

The eigenvalues are ↽+ = 1↑ a and ↽→ = 1↑ c+ ad
m . Depending on the values of a, c, d and

m the equilibrium point
( a

m
, 0
)

is a stable node or an unstable node.

At the equilibrium point
(
c

d
,
ad↑ cm

bd

)
the Jacobian is

J

(
c

d
,
ad↑ cm

bd

)
=

(
1↑ cm

d ↑ bc
d

ad→cm
b 1

)
. (3.33)

The eigenvalues are

↽± = 1↑ cm

2d
±
√(cm

2d

)2
+

c2m

2d
↑ ac . (3.34)

For a = 0.05, b = 0.005, c = 0.025, d = 0.00025 and m = 0.0001 the latter is ↽± →

0.995± i0.031225 and the equilibrium point
(
c

d
,
ad↑ cm

bd

)
= (100, 8). Since the modulus of

0.995± i0.031225 is smaller than 1 the equilibrium point (100, 8) is a stable focus. The node( a

m
, 0
)
= (500, 0) and the eigenvalues of the Jacobian at this node are ↽+ = 1↑a = 0.95 and

↽→ = 1 ↑ c + ad
m = 1.1. So, (500, 0) is a saddle. For r0 = 20 and s0 = 5 the parametric plot,

see next figure, is quite similar to the parametric plot in figure 3.5.
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3.3 Hénon map

The Hénon map is non-linear map. The two dimensional first order Hénon map reads

xm+1 = 1↑ ax2m + ym

ym+1 = bxm ,
(3.35)

where a and b are constants and where (x0, y0) is the starting position. For a = 1.4 and
b = 0.3 the points (xm, ym) are attracted to a so called strange attractor, see next figure.
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0.3
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xm+1 = 1↑ 1.4x2m + ym

ym+1 = 0.3xm

xm

y m

Figure 3.6: Attractor of the map xm+1 = 1↑ ax2m + ym, ym+1 = bxm for a = 1.4 and b = 0.3.

Periodic limit cycli are also possible. For b = 0.3 a period 1 limit changes to a period 2 limit
when a = 0.3675. The period 2 limit changes to a period 4 limit when a = 0.9125, which in
turn changes to a period 8 limit when a → 1.026, etc. A period 16 limit is shown in the next
figure. The period 16 limit cycle is depicted by the symbols A through P . For instance, start-
ing the cycle in point N the next point is O, then P , then A, then B etc., through M . The
larger n the more the n points of the period 2n limit cycle approaches the strange attractor
of figure 3.6.
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The two dimensional first order Hénon map (3.35) can also be written in the form of a one
dimensional second order map:

xm+1 = 1↑ ax2m + bxm→1 (3.36)

with x0 and x1 as the initial values.

Linear, one dimensional, second order di!erence equations, such as xm+1 = c↑ axm + bxm→1,
can be solved analytically, as we saw in chapter 1. It is the square in the one dimensional,
second order di!erence equation (3.36), or in general the non-linearity, which makes the sit-
uation complicated: bifurcations and chaotic behaviour. Before we proceed we first have to
outline the calculation of the Lyapunov exponent for two dimensional maps.

3.4 Lyapunov exponents for two dimensional maps

For a one dimensional map we already met the concept of a Lyapunov exponent when we
considered the logistic equation. For a one dimensional iterative function f(x), xm=1 = f(xm),
the Lyapunov exponent ↽ is given by
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↽ = lim
n↔↗

1

n

n∑

m=0

ln

∣∣∣∣
ϖf

ϖx

∣∣∣∣
xm

. (3.37)

For a two dimensional map xm+1 = f(xm, ym) and ym+1 = g(xm, ym), we have to first order

x1 + ϑ1 = f(x0 + ϑ0, y0 + ↼0) → f(x0, y0) + ϑ0

∣∣∣∣
ϖf

ϖx

∣∣∣∣
(x0,y0)

+ ↼0

∣∣∣∣
ϖf

ϖy

∣∣∣∣
(x0,y0)

y1 + ↼1 = g(x0 + ϑ0, y0 + ↼0) → g(x0, y0) + ↼0

∣∣∣∣
ϖg

ϖx

∣∣∣∣
(x0,y0)

+ ϑ0

∣∣∣∣
ϖg

ϖy

∣∣∣∣
(x0,y0)

.

(3.38)

Since x1 = f(x0, y0) and y1 = g(x0, y0) there holds
(
ϑ1

↼1

)
=

(
ϖf(x, y)/ϖx ϖf(x, y)/ϖy

ϖg(x, y)/ϖx ϖg(x, y)/ϖy

)

[0]

(
ϑ0

↼0

)
, (3.39)

where [0] expresses that the derivatives are evaluated at (x0, y0). The matrix with derivatives
is the Jacobian: J[0]. From (x1, y1) to (x2, y2) the errors go as

(
ϑ2

↼2

)
=

(
ϖf(x, y)/ϖx ϖf(x, y)/ϖy

ϖg(x, y)/ϖx ϖg(x, y)/ϖy

)

[1]

(
ϑ1

↼1

)
, (3.40)

where [1] expresses that the derivatives are evaluated at (x1, y1). The matrix with derivatives
is the Jacobian: J[1]. For 2 ⇑ 2 matrices there are 2 eigenvalues and therefore 2 Lyapunov
exponents. We are interested in the largest Lyapunov exponent. For the situation after two
steps we have the product of 1 step Jacobians J[1] and J[0]:

(
ϑ2

↼2

)
=

(
ϖf(x, y)/ϖx ϖf(x, y)/ϖy

ϖg(x, y)/ϖx ϖg(x, y)/ϖy

)

[1]

(
ϖf(x, y)/ϖx ϖf(x, y)/ϖy

ϖg(x, y)/ϖx ϖg(x, y)/ϖy

)

[0]

(
ϑ0

↼0

)
. (3.41)

For increasing n the resulting product matrix becomes almost singular: determinant ↓ 0.
Because of limited machine precision an almost singular matrix leads to large inaccuracies in
the numerical calculation of the eigenvalues. For this reason the product of Jacobians is not
used. Instead, the largest Lyapunov exponent will be extracted from the single step Jacobians.

To illustrate the method we follow the dynamics of the Hénon map a few steps. For the
constants we take a = 1.4 and b = 0.3. For these values the orbit is chaotic. For the present
purpose we take (x0, y0) = (0.25,↑0.25) as the initial point. We will follow the evolution of
a circle with a small enough radius, r = 0.00015, with the initial point as its center. Then
(x1, y1) = (0.6625, 0.075) and (x2, y2) = (0.46053125, 0.19875). The evolution of the circle is
shown in the next figure. For educational purposes the circle and its evolutionary curves are
shown thousand times too large.
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We see the initial blue circle has transformed into the green elliptic shape after the first step
and to the brown elliptic shape after the second step. The blue points A through D have
transformed in the green points A through D and brown points A through D respectively.
The distance between brown point A and (x2, y2) is grown with respect to the distance between
the blue point A and (x0, y0). In case of a positive Lyapunov exponent the distance will grow
and grow. After about hundred steps the distance is such large that second order e!ects are
no longer negligible. To avoid a situation where second order e!ects are no longer negligible,
the distance is resized after every step. We will outline the procedure step by step. For the
blue circle the di!erence between the blue point A and (x0, y0) is the error vector 0v0:

0w0 =

(
ϑ0

↼0

)
=

(
0.00015

0

)
(3.42)

The vector 0v0 is shown 1000 times too large in the left panel of the next figure. If we let the
Jacobian for starting point (x0, y0) act on 0v0 we get the vector 0w1. Explicitly

0w1 = J[0]0v0 =

(
↑0.7 1

0.3 0

)(
0.00015

0

)
=

(
↑0.000105

0.000045

)
. (3.43)

The vector 0w1 is with respect to point (x1, y1). Together with the transformed circle it is
drawn, 1000 times magnified, in the right panel of the next figure.
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Now we proceed with a circle of radius 0.00015 with (x1, y1) as the center. From 0w1 we
construct a new vector 0v1, which has length 0.00015 and the same direction as 0w1:

0v1 =

(
↑0.00013787

0.000059088

)
(3.44)

We let the Jacobian for point (x1, y1) act on the vector 0v1 to obtain the vector 0w2:

0w2 = J[1]0v1 =

(
↑1.855 1

0.3 0

)(
↑0.00013787

0.00005908

)
=

(
0.00031484

↑0.00004136

)
. (3.45)

The evolution of 0v1 to 0w2 is shown in the next figure.

0.5 0.6 0.7 0.8

↑0.1

0

0.1

0.2

(x1, y1)

0v1

0 0.2 0.4 0.6 0.8

0

0.2

0.4

(x2, y2)
0w2

From 0w2 we construct a new vector 0v2, which has length 0.00015 and the same direction as
0w2. Then we let the Jacobian for point (x2, y2) act on the vector 0v2 in order to obtain the
vector 0w3. The procedure is repeated as long as desired. Often the length of 0wk is close to
the length of the semi-major axis of the elliptic curve. One calculates for k = 0, 1, 2, 3, ... the



3.4. LYAPUNOV EXPONENTS FOR TWO DIMENSIONAL MAPS 49

ratio of the length of wk+1 and 0.00015 and take the logarithm of it in order to obtain φk:

φk = ln





∣∣∣wk+1

∣∣∣

0.00015



 . (3.46)

The results of the first 16 steps are shown in the next table.

k 0 1 2 3 4 5 6 7

φk -0.27236 0.74999 0.36451 0.99076 -1.14860 0.76630 1.24989 0.89729

k 8 9 10 11 12 13 14 15

φk 0.17350 0.25303 0.40657 0.95979 -0.85634 1.16730 1.18259 0.57448

The average value of the 16 φk values shown in the table is φ̄ → 0.466. After 100 steps the
average is φ̄ → 0.453, after 1000 steps φ̄ → 0.429, after 10 000 steps φ̄ → 0.427 and after 100 000
steps φ̄ → 0.420. For the present example of the Hénon map with a = 1.4 and b = 0.3 the
largest Lyapunov exponent found this way is 0.42.

Next we will consider the situation in case the largest Lyapunov exponent is negative. This is
the case if the Hénon map converges to a limit cycle. For example, for a = 0.45 and b = 0.3

the Hénon map converges to a period 2 limit. The two fixed points are (0.13949, 0.42482)

and (1.4161, 0.041848). For this example we will consider the evolution. As for the previous
example we start with the initial point (0.25,↑0.25). From (x0, y0) = (0.25,↑0.25) it follows
(x1, y1) = (0.721875, 0.075) and (x2, y2) = (0.840503, 0.216563). The successive points are
shown in the figure at the top of next page. We see initially big steps between successive
points until the points are close to (0.90, 0, 27). From there the points alternately jump be-
tween two branches, to the left for even k and to the right for odd k. For k > 100 the points
(xk, yk) are very close to the fixed points. The first five steps of the evolution of a circle
with radius 0.00015 and center (x0, y0) is shown in the figure at the bottom of the next page.
Also here the initial blue circle has transformed into a green elliptic shape after the first step
and to a brown elliptic shape after the second step. The curve after the third step is cyan,
after the fourth step yellow and after the fifth step purple. All curves are 1000 times magnified.

As for the previous example the error vector is resized at each new point. We should, because
we do not know in advance whether or not the Lyapunov exponent is larger than zero.
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The di!erence between A(0.4,↑0.25) and (x0, y0) = (0.25,↑0.25) is the error vector 0v0:

0v0 =

(
ϑ0

↼0

)
=

(
0.00015

0

)
(3.47)

The vector 0v0 is shown in the left panel of the next figure. If we let the Jacobian for starting
point (x0, y0) act on 0v0 we get the vector 0w1:

0w1 = J[0]0v0 =

(
↑0.225 1

0.3 0

)(
0.00015

0

)
=

(
↑0.00003375

0.000045

)
. (3.48)

The vector 0w1 and the transformed circle are drawn in the right panel of the next figure.
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Again 0w1 is resized to vector 0v1. Then 0w2 is obtained from 0v1 via 0w2 = J[1]0v1, and so on.

The φ values of the first 16 steps are shown in the next table.

k 0 1 2 3 4 5 6 7

φk -0.98083 0.18511 -0.05628 0.11209 0.06605 0.09703 0.07254 0.09795

k 8 9 10 11 12 13 14 15

φk 0.07087 0.10024 0.06825 0.10301 0.06510 0.10629 0.06134 0.11016

For the first 16 steps we find for the average value of the φk: φ̄ → 0.017. So, initially there is
a little growth of the error. After 100 steps this is φ̄ → ↑0.083 , after 1000 steps φ̄ → ↑0.228,
after 10 000 steps φ̄ → ↑0.243 and after 100 000 steps φ̄ → ↑0.244. For the Hénon map with
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a = 0.45 and b = 0.3 the largest Lyapunov exponent found this way is ↑0.244.

When the points are close to the fixed points the situation is as shown below.
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When the points alternate between the two fixed points, the errors also alternate. That is,
w2k+4 is the same as w2k+2 and w2k+3 is the same as w2k+1. For large k, say 1000 or more,
the length of vector w2k+2 is a fraction 0.385052 of the length of v2k+1, while the length of
vector w2k+3 is a fraction 1.59261 of the length of v2k+2. In e!ect there is a net decrease of≃
0.385052 · 1.59261 → .783 per step. Taking the logarithm of it we find indeed a Lyapunov

exponent of ↑0.244.

If we would have taken point B instead of A for the initial error, the φk will be di!erent.
When the points have arrived at the fixed points, the error vector happens to be opposite
with respect to the situation for A, compare the figures on the next page with the ones above.
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It makes clear that the Lyapunov exponent is independent of the direction of the error vector
we start with. The question arises which initial errors lead, on the long run, to the same error
vectors as initial error A and which to the same error vectors as initial error B. In the next
diagram the part of the initial circle which leads to the same error vectors as A or B is shown
red respectively green.
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In case of two fixed points, say F1 and F2, there are three possibilities:

1. for increasing k the points (x2k, y2k) converge to F1 and the points (x2k+1, y2k+1) con-
verge to F2,

2. for increasing k the points (x2k, y2k) converge to F2 and the points (x2k+1, y2k+1) con-
verge to F1,

3. the points (xk, yk) diverge to infinity.

We can colour each starting point (x0, y0) accordingly. As an example, for the Hénon map
with a = 0.45, b = 0.3 the two fixed points are F1(0.13949, 0.42482) and F2(1.4161, 0.041848).
In case of possibility 1, 2 or 3 a starting point (x0, y0) is coloured blue, orange or white re-
spectively. The result is shown in the next figure.
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3.5 Orbits for the Hénon map

For x0 = 0, x1 = 0 and b = 0.3 a plot of xm against a for a = 0.3 through a = 1.426 is shown
in figure 3.7. Under the same conditions the largest Lyapunov exponent is plotted against a

in figure 3.8. The main period doubling cascade, the one with 1,2,4,8,... limit cycles, runs
from a = ↑0.1225 through a → 1.058. By inspection it is found that at a → 1.072374 a period
12 limit cycle shows up. At a → 1.07288 it turns into a period 24 limit cycle, a little further
a period 48 cycle, etc. The whole 3 · 2n, n = 2, 3, 4, ..., cascade takes place in a small window.
A small change in a leads to a discontinuous change of the orbit at a → 1.0772 and a → 1.0808

and at other places. At a → 1.07878 starts a period 18 limit cycle. Its period doubles at
a → 1.07893. The whole 9 · 2n, n = 1, 2, 3, ..., cascade ends at a → 1.07903. So, also this
cascade takes place on a very small window. At a → 1.1001 a period 5 · 2n, n = 1, 2, 3, ..., sets
in. At a → 1.1724 a period 9 · 2n, n = 0, 1, 2, ..., limit cycle sets in. At a → 1.17675 a period
5 · 2n, n = 1, 2, 3, ..., sets in. At a → 1.226 a period 7 · 2n, n = 0, 1, 2, ..., limit cycle sets in.
The window is clearly visible in figure 3.7. At a → 1.299 again a period 7 · 2n, n = 0, 1, 2, ...,
limit cycle sets in. Since it ends at a → 1.3065 it also is visible in figure 3.7. At a → 1.3233 a
period 2n, n = 3, 4, 5, ..., limit cycle sets in and ends at a → 1.3238. At a → 1.3539 a period
13 · 2n, n = 0, 1, 2, ..., limit cycle sets in and ends at a → 1.3542. At a → 1.36546 a period
13 · 2n, n = 0, 1, 2, ..., limit cycle sets in and at a → 1.36615 a period 11 · 2n, n = 0, 1, 2, ...,
limit cycle sets in. There exist many more periodic limit cycles, all with small windows.
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Figure 3.7: Orbit diagram for the Hénon map.
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Figure 3.8: Largest Lyapunov exponent for the Hénon map, with b = 0.3.

If we zoom in on the red rectangle in figure 3.7 we see that bifurcation branches sometimes
do intersect, see the next figure.
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Figure 3.9: Part of the orbit diagram for the Hénon map.
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Instead of varying a for a fixed value of b we can vary b for a fixed value of a. For x0 = 0,
x1 = 0 and a = 1.4 the xm are plotted against b in the next figure.
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Figure 3.10: Orbit diagram for the Hénon map.

In this orbit diagram one also recognizes various limit cycles.

3.6 Single fixed points of the Hénon map

In order to understand the orbit diagrams we will analyse the Hénon map by means of the
methods shown in the previous chapters. We start with a single fixed point (L,K). According
to the Hénon map (3.35) the point (L,K) should satisfy

L = 1↑ aL2 +K

K = bL .
(3.49)

Elimination of K leads to aL2 + (1↑ b)L↑ 1 = 0. The solutions are

L± =
b↑ 1±

√
(b↑ 1)2 + 4a

2a
. (3.50)

For real solutions (b↑ 1)2 + 4a has to be larger than zero. At the edge we have L =
b↑ 1

2a
if

(b ↑ 1)2 + 4a = 0. That is, if a = ↑(b ↑ 1)2/4. For b = 0.3 this is at a = ↑0.1225, see the
position of green dashed line in the next figure.
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For the stability of the solutions we consider the Jacobian of system (3.35):
(
↑2axm 1

b 0

)
. (3.51)

At the point (L,K) this is (
↑2aL 1

b 0

)
. (3.52)

The equation for the eigenvalues is

↽2 + 2aL↽↑ b = 0 . (3.53)

Since L can be L+ and L→ there are four solutions

↽1 = ↑aL+ ↑
√
a2L2

+ + b , ↽2 = ↑aL+ +
√
a2L2

+ + b

↽3 = ↑aL→ ↑
√
a2L2

→ + b , ↽4 = ↑aL→ +
√
a2L2

→ + b .
(3.54)

For (b ↑ 1)2 + 4a > 0 the equilibrium L→ is unstable since ↽4 > 1, see appendix D. For the
equilibrium L+ the stability depends on a and b. As an example we consider the case b = 0.3.
In the next figure we have plotted L+ (black), ↽1 (red) and ↽2 (blue) against a for b = 0.3.
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The fixed point L+ becomes unstable when ↽1 < ↑1. To determine the value of a for which
this occurs, we substitute ↽ = ↑1 into the equation (3.53):

1↑ 2aL↑ b = 0 ↓ L =
1↑ b

2a
. (3.55)

The latter is in agreement with L+ if
√
(b↑ 1)2 + 4a = 2↑ 2b . (3.56)
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Taking the square we obtain
(b↑ 1)2 + 4a = 4(1↑ b)2 . (3.57)

Hence, the single fixed point bifurcates to a period 2 limit cycle at

a =
3

4
(1↑ b)2 . (3.58)

For b = 0.3 this is at a = 0.3675, see the position of orange dashed line in the previous figure.

3.7 Period 2 limit cycles of the Hénon map

The system (3.35) is for the single step from (xm, ym) to (xm+1, ym+1). For two steps we have

xm+2 = 1↑ ax2m+1 + ym+1 = 1↑ a
(
1↑ ax2m + ym

)2
+ bxm

ym+2 = bxm+1 = b
(
1↑ ax2m + ym

)
.

(3.59)

Expanding the brackets we obtain

xm+2 = 1↑ a+ 2a2x2m ↑ a3x4m ↑ 2aym + 2a2x2mym ↑ ay2m + bxm

ym+2 = b↑ abx2m + bym .
(3.60)

For (L,K) to be a period 2 limit point, the other period 2 limit point has to be (K/b, bL).
The substitution of these period 2 limits into the period 2 system gives

L = 1↑ a+ 2a2L2 ↑ a3L4 ↑ 2aK + 2a2L2K ↑ aK2 + bL

K = b↑ abL2 + bK .
(3.61)

The elimination of K leads to
(
aL2 + (1↑ b)L↑ 1

) (
a2L2 ↑ a(1↑ b)L+ (1↑ b)2 ↑ a

)
= 0 . (3.62)

The solution aL2 + (1↑ b)L↑ 1 = 0 with the roots

L± =
b↑ 1±

√
(b↑ 1)2 + 4a

2a
(3.63)

corresponds to the single fixed point we already met in the previous section. The other solution
a2L2 ↑ a(1↑ b)L+ (1↑ b)2 ↑ a = 0 with the roots

L± =
1↑ b±

√
4a↑ 3(1↑ b)2

2a
(3.64)

corresponds to a period 2 cycle with two di!erent limit points. The corresponding K± is given
by

K± = b(1↑ b)/a↑ bL± , (3.65)

as can be derived from K = b↑ abL2 + bK and a2L2 ↑ a(1↑ b)L+ (1↑ b)2 ↑ a = 0.
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The bifurcation point for L is where L→ = L+. That is at a =
3

4
(1 ↑ b)2. The latter we

already found at the end of the previous section. The value of L at the bifurcation point is:

L =
1↑ b

2a
or, if you wish, L =

2

3(1↑ b)
or L =

1≃
3a

.

To find the bifurcation point where the period 2 limit cycle converts into a period 4 limit
cycle, we consider the stability of the period 2 limit by means of the Jacobian. To this end
we write the system (3.60) as

xm+2 = f(f(xm, ym))

ym+2 = g(g(xm, ym)) ,
(3.66)

where
f(f(x, y)) = 1↑ a+ 2a2x2 ↑ a3x4 ↑ 2ay + 2a2x2y ↑ ay2 + bx (3.67)

and
g(g(x, y)) = b↑ abx2 + by . (3.68)

The Jacobian for the two step system is
(

εf(f(x,y))
εx

εf(f(x,y))
εy

εg(g(x,y))
εx

εg(g(x,y))
εy

)
=

(
4a2x↑ 4a3x3 + 4a2xy + b ↑2a+ 2a2x2 ↑ 2ay

↑2abx b

)
. (3.69)

Evaluated at (L,K) the Jacobian is
(
4a2L↑ 4a3L3 + 4a2LK + b ↑2a+ 2a2L2 ↑ 2aK

↑2abL b

)
. (3.70)

The equation for the eigenvalues ↽ of the Jacobian is

(
4a2L↑ 4a3L3 + 4a2LK + b↑ ↽

)
(b↑ ↽)↑

(
↑2a+ 2a2L2 ↑ 2aK

)
(↑2abL) = 0 . (3.71)

An eigenvalue is 1 if

(
4a2L↑ 4a3L3 + 4a2LK + b↑ 1

)
(b↑ 1)↑

(
↑2a+ 2a2L2 ↑ 2aK

)
(↑2abL) = 0 . (3.72)

Together with system (3.61) we obtain a =
3

4
(1↑ b)2. So, this corresponds to the left side of

the period 2 limit cycle. An eigenvalue is ↑1 if

(
4a2L↑ 4a3L3 + 4a2LK + b+ 1

)
(b+ 1)↑

(
↑2a+ 2a2L2 ↑ 2aK

)
(↑2abL) = 0 . (3.73)

Together with system (3.61) we obtain a = b+
5

4
(1↑ b)2 =

1

4
(5↑6b+5b2), which corresponds

to the right side of the period 2 limit cycle. For b = 0.3 this is at a = 0.9125.

For limit cycles with period 3 and larger the method is similar. However, the algebra be-
comes very complicated.
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3.8 Three dimensional plots for the Hénon map

To gain insight we will consider some three dimensional (3D) plots of orbits of the Hénon map.
In the next figure the orbit of (xm, ym) is plotted against a for b = 0.3.

A top view of it corresponds with figure 3.7. A side view from the right delivers the next
figure.

a

x

y

We see that for all a the orbits (xm, ym) are close to the attractor shown in figure 3.6.
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In the following figure the orbits of xm is shown for 0.0 < a < 1.4 and ↑0.4 < b < 0.3.

The black dots on the b = 0.3 plane (the blue back side) corresponds with figure 3.7. The
black dots on the a = 1.4 plane (the green right side) corresponds with figure 3.10. We see
planes for fixed b show bifurcations. The a values for which bifurcations take place depend on
b. As a consequence bifurcations have to take place in the b direction as well.

From the analysis in the previous two sections we obtained the single fixed point is between
a = ↑1

4
(1↑ b)2 and a =

3

4
(1↑ b)2. For b = 1 these points coincide at a = 0. The bifurcation

from a period 2 to a period 4 limit cycle is at a = b +
5

4
(1 ↑ b)2. The smallest a value for

this bifurcation is a =
4

5
and occurs for b =

3

5
. For values of a a little larger than 0.8 the

orbit diagram in the b direction will therefore show a bifurcation from a period 2 to a period
4 limit cycle followed by a confinement to a period 2 limit cycle. It is illustrated in the left
panel of figure 3.11 for a = 0.85. For a = 0.92 also a bifurcation from a period 4 to a period 8
limit cycle followed by a confinement to a period 4 limit cycle occurs, see right panel of figure
3.11. In both panels we see the orbits become already unstable before b = 1. The value of
b where the instability sets in di!ers more from 1 if a is relatively large. For or a → 0.9, as
in figure 3.11, instabilities start already at b → 0.7, while for instance for a → 0.5 instabilities
start rather at b → 0.9. For a < 0.3 the orbit is stable from b = ↑1 through b → 1.
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Figure 3.11: Bifurcation diagram for the Hénon map for a = 0.85 (left) and a = 0.92 (right).

3.9 Hénon map for b → 1

For b → 1 the orbit diagrams di!er completely form the ones with b smaller than, say, 0.9.
In figure 3.12 the values of x19801 through x20000 are shown for b = 1, x0 = 0, y0 = 0 and a

running from 0.10 through 0.14.

xm+1 = 1↑ ax2m + xm→1 , x0 = 0, x1 = 0
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Figure 3.12: Orbit diagram for the Hénon map for b = 1.
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We see periodic structures which are not related to a period doubling cascade. For instance,
for b = 1 and a → 0.1031 the points of the orbit seem confined to 32 values. To see what is
actually going on we consider a 3D plot of the orbit (xm, ym) against a, see next three figures.
The counter m is taken su"ciently large: 9850 < m ↘ 10000. A projection of the first figure
on the a,x-plane gives figure 3.12. The three figures show the orbit diagrams from di!erent
points of view. It is clear that the orbits are divided in two regions. The size of the regions
shrinks for increasing a.

The two regions are a sort of rolls each with 16 holes for a → 0.103. The projection on the
a,x-plane therefore shows a confinement to 32 values if a → 0.103. Such periodic structures
also occur for other values of a. Unstabilities lead to void windows such as for a → 0.14.
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For b = 1, x0 = 0 and x1 = 0 the attractor is separated in two regions as shown in the next
figure for a = 0.05 (left panel) and a = 0.1 (right panel).
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Figure 3.13: Hénon attractor for b = 1, x0 = 0, y0 = 0 and a = 0.05 (left) and a = 0.1 (right).

The size of the attractor shrinks for increasing a. For a small and b close to 1 the orbit either
converges to two points or to a two region kind of attractor as shown in the previous figure.
For instance, for a = 0.2 and b = .99608128679148016938 the orbit converges to two points:
(2.2458,↑2.21748) and (↑2.22621, 2.237), while for a = 0.2 and b = .99608128679148016937

the orbit converges to a period 18 limit cycle, see the next figure.
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The orbit of the period 18 limit cycle is depicted by the symbols A through R. For instance,
starting the cycle in point P the next point is Q, then R, then A, then B etc., through O.
So, the orbit alternately jumps from one region to the other region.

Extreme sensitivity occurs also for other values of a and b. If we look in the neighborhood
of a = 1.4 and b = 0.3, then one obtains a period 18 cycle for (a, b) = (1.3999769098975, 0.3)

and a period 19 cycle for (a, b) = (1.4, 0.30009066023), etc.[3].



Chapter 4

Lyapunov images.

4.1 Images of dynamical systems

There are many ways to create images which illustrate the dynamics of systems of di!erence
equations. One way is by plotting the orbits as we have seen before. Another way is by
plotting Lyapunov exponents. For a two dimensional system with x and y as the variables the
plot of Lyapunov exponents against (x, y) results in a two dimensional Lyapunov image for a
particular choice of the constants. For a system with two constants a and b the plot of Lya-
punov exponents against (a, b) results in a two dimensional Lyapunov image for a particular
choice of the initial values (x0, y0). A two dimensional Lyapunov image against one variable
and one constant is also possible, see the figures in section 2.5.

In Lyapunov images di!erent regions can be distinguished: regions for which the system
tend to infinity, regions for which the system shows chaotic behavior and regions for which
the system is attracted to a limit cycle.

Regions for which the system is attracted to a limit cycle with period n can be subdivided
into n regions for which the points (x0, y0), (xn, yn), (x2n, y2n),...., (xkn, ykn), ... , with k ⇒ N,
converges to one of the n limit points. In section 3.4 (page 50) we saw an example of a
limit cycle with period 2 which can be subdivided into 2 regions for which the points (x0, y0),
(x2, y2), (x2, y2),...., (x2k, y2k), ... , with k ⇒ N, converges to one of the 2 limit points.

We will consider Lyapunov images for the Hénon map. Because of its interesting Lyapunov
images we will consider at the end of this chapter the so called z2 + c map. We will start
however with a particular type of Lyapunov images which occur for the logistic equation if
the parameter is periodically changed. Such images are called Markus-Lyapunov images.

67
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4.2 Markus-Lyapunov images

For the logistic equation xm+1 = axm(1↑ xm) two dimensional Lyapunov images can be cre-
ated by alternately taking the value B and A for the parameter a during the iteration process.
To be specific, x1 = Bx0(1↑x0), x2 = Ax1(1↑x1), x3 = Bx2(1↑x2), x4 = Ax3(1↑x3), etc.
For every (B,A) pair the Lyapunov exponent is calculated as an average over the iteration
process. We will look at density plots or contour plots of the Lyapunov exponents in a (B,A)

plane.

For the sequence BABABA... with 0 ↘ A,B ↘ 4 and 0 ↘ A,B ↘ 4, the (B,A) points
are colored dependent on the Lyapunov exponent ↽, see next figure.

0 1 2 3 4
0

1

2

3

4

B

A

Figure 4.1: Markus-Lyapunov image for 0 ↘ A,B ↘ 4. The black square and the red square
are the boundaries of two areas that will be zoomed in further on.
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In the previous figure the coloring is as follows: the ↽ = 0.5 contour is between brown and
dark yellow, the ↽ = 0.0 contour is between dark yellow and light yellow, the ↽ = ↑0.5 contour
is between light yellow and white-blue, the ↽ = ↑1.0 contour is between white-blue and light
blue, the ↽ = ↑1.5 contour is between light blue and blue, the ↽ = ↑2.0 contour is between
blue and dark blue, the ↽ = ↑2.5 contour is between dark blue and white. The dark yellow
and brown colors in the upper right corner of the contour plot indicate a more chaotic behavior.

The previous figure contains repeating self-similar structures. To illustrate the self-similarity
the structure within the black square, 2.772 ↘ B ↘ 2.965 and 3.672 ↘ A ↘ 3.865, of figure
4.1 is shown in the next figure with a slightly di!erent coloring.

2.80 2.85 2.90 2.95

3.70

3.75

3.80

3.85

B

A

Figure 4.2: Zoom of the black square of figure 4.1. Brown and red are for positive Lyapunov
exponents while yellow, light blue, blue, etc. are for negative Lyapunov exponents.

Completely di!erent coloring schemes may lead to beautiful pictures and more pronounced
repetitive self-similar structures. The figures 4.3 and 4.4 are the Markus-Lyapunov images of
figures 4.1 and 4.2 with a di!erent coloring method.
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B

A

Figure 4.3: Di!erent coloring of figure 4.1.

The structure within the black square, 2.772 ↘ B ↘ 2.965 and 3.672 ↘ A ↘ 3.865, of figure
4.1, with a di!erent coloring method:

B

A

Figure 4.4: Di!erent coloring of figure 4.2.
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The main structure in the previous figures is determined by intersecting parabola’s. With a
little fantasy it reminds us of swallows.

Lyapunov images in the (B,A) plane for two values B and A of the periodically changing
parameter of the logistic equation were first described by M. Markus and B. Hess [6, 7]. In
both references a picture is presented for the BABA... sequence for 3.808 ↘ A,B ↘ 3.867.
This B,A region is shown as the red square in figure 4.1. A zoom of this region is shown in
the figure below:

3.808 3.823 3.838 3.852 3.867

3.867

3.852

3.838

3.823
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B
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-2.0

-1.5
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-0.5

0
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A

Figure 4.5: Zoom of the red square of figure 4.1 in di!erent colors.

At many positions ‘swallows’ are present.
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Enlargement of the white square region of figure 4.5, 3.836 ↘ A,B ↘ 3.858, delivers similar
structures as in figures 4.4 and 4.5:

3.836 3.842 3.847 3.853 3.858

3.858
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3.847

3.842

3.836

B
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-1.5
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0
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Figure 4.6: Zoom of white square region of figure 4.5.

No matter how much one zooms in, at every level ‘swallows’ are present.
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One can also take other repetitive sequences like AAB or AABB etc. For the repetitive se-
quence BBABABA with 3.212 ↘ A ↘ 4.0 and 2.759 ↘ B ↘ 3.744 the next figure is obtained.
Again, similar structures as in figures 4.4 and 4.5 can be seen.
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4.000
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0
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Figure 4.7: Markus-Lyapunov image for repetitive BBABABA sequence.

Another often used sequence is the repetition of BBBBBBAAAAAA for 0 ↘ A,B ↘ 4.
On the next page we see a contour plot and a density plot of the of the Lyapunov exponents.
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Figure 4.8: Markus-Lyapunov image for repetitive BBBBBBAAAAAA sequence.
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Figure 4.9: Di!erent coloring of figure 4.8.
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The red area in figures 4.8 and 4.9 with 3.394 ↘ A ↘ 4.0 and 2.516 ↘ B ↘ 3.647 has a very
rich structure, see the figure below. It is known as Zircon Zity.
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Figure 4.10: Zircon Zity.

4.3 Lyapunov image for the Hénon map

The largest Lyapunov exponent of the Hénon map for each pair of constants (a, b) can be
created by assigning a color to each pixel with coordinates (a, b). The color depends on the
largest Lyapunov exponent. An example is shown in figure 4.11. In figure 4.11 a pixel is
yellow if the Lyapunov exponent is negative, red if the Lyapunov exponent positive and blue
if the orbit runs to infinity. Notice the presence of ‘swallows’ in the red region.
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(x0, y0) = (0, 0)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
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-0.5

0.0

0.5

1.0

a

b

Figure 4.11: A Lyapunov image for the Hénon map. See the text for the coloring.

In the previous chapter we already obtained that a single fixed point is between the curves
a = ↑1

4
(1 ↑ b)2 and a =

3

4
(1 ↑ b)2. In figure 4.11 they are shown as an orange curve and a

white curve respectively.
The period 2 limit cycle is between the curves a =

3

4
(1↑ b)2 and a = b+

5

4
(1↑ b)2.

In figure 4.11 the curve a = b+
5

4
(1↑ b)2 is shown as a green curve.

The period 4 limit cycle will be between the green curve and the border between red and
yellow regions.
The end of the period 2n limit cycle bifurcations is at the border between red and yellow
regions.
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4.4 Basins of attraction for the Hénon map

If, for a certain map, one follows the orbit for a given starting point, it either diverges to in-
finity or is attracted to a stable fixed point or a limit cycle or a strange attractor. All starting
points that do not diverge to infinity form the basins of attraction. In the case of the Hénon
map, points in the real plane are either attracted to the Hénon attractor or escape to infinity.
The larger the Lyapunov exponent, the faster it escapes to infinity.

In the next figure the starting points (x0, y0) with ↑4.0 ↘ x0 ↘ 4.0, ↑4.0 ↘ y0 ↘ 4.0,
a = 1.4 and b = 0.3, are colored depending on how quickly they go to ‘infinity’. Here we
simply consider a point (xn, yn) to be at ‘infinity’ if x2n + y2n > 20 000. Take for example
(x0, y0) = (4.0, 4.0) then (x1, y1) = (↑17.4, 1.2) and x21 + y21 = 304.2.
A further step leads to (x2, y2) = (↑421.664,↑5.22) and x22 + y22 = 177 828.
So, already after 2 iterations ‘infinity’ is reached.
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In the latter figure the Hénon attractor for (x0, y0) = (0, 0) is drawn in black. All white
starting points (x0, y0) iterate towards the Hénon attractor, so they form the basin of attrac-
tion for the Hénon map. The other colors indicate the number of iterations needed before
x2n+y2n > 20 000: from orange (close to the white basin) for 7 iterations through purple (more
in the outer parts) for 2 iterations.

A similar picture for the Hénon map with a = 0.155 and b = 0.996 is shown in the next
figure. Again the Hénon attractor for (x0, y0) = (0, 0) is drawn in black. For the escape to
‘infinity’ the coloring is di!erent: from pink (close to the white basin) in 5 steps through blue
(outer parts) in 1 step.
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For a = 0.2 and b = 0.999 the result is shown in the next figure. Also here the Hénon attractor
for (x0, y0) = (0, 0) is drawn in black. As we already saw on page 65, the attractor is split in
two regions.
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For a = 0.31552 and b = 0.99004 the result is shown in the next figure. In comparison with
the previous figure, the attractor seems to ‘evaporate’: in each of the two regions there only
is a clustering to 6 small ‘clouds’ away from the center.
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For a = 1.2 and b = 0.99 the attractor is completely vanished, all points go to ‘infinity’, but
with di!erent ‘speed’.
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4.5 The z2 + c map

Here we will consider the following map:

xm+1 = x2m ↑ y2m + a

ym+1 = 2xmym + b ,
(4.1)

where a and b are constants. With z = x+ iy and c = a+ ib it takes the simple form z2 + c.
For this reason it is known as the z2 + c map.



82 CHAPTER 4. LYAPUNOV IMAGES.

For many values of a and b the orbit end in a periodic cycle. For a = 0.2, b = 0.541 and
(x0, y0) = (0, 0) the evolution of points (xm, ym) is as shown in the next figure.
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Figure 4.12: Time series of (xm, ym) for a = 0.2, b = 0.541 and (x0, y0) = (0, 0).

We recognize 21 clockwise and 34 anti-clockwise spirals, both are Fibonacci numbers. In the
long run the points tend to a single point (↑0.044658, 0.49664). For other values of a the
points (xm, ym) may end up in a periodic limit cycle or diverge to infinity. For b = 0.541 the
orbits are plotted against a in figure 4.13. Curves are periodic cycles, points on a vertical
line are part of a chaotic orbit, and the absent of points for a value of a means the orbit has
diverged to infinity.
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xm+1 = x2m ↑ y2m + a

ym+1 = 2xmym + 0.541
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Figure 4.13: Orbit diagram for the z2 + c map with b = 0.541 and (x0, y0) = (0, 0).
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Figure 4.14: Orbit diagram for the z2 + c map with b = 0 and (x0, y0) = (0, 0).
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A special situation occurs for b = 0 and y0 = 0. Then ym = 0 for all m. As a consequence
the system is reduced to xm+1 = x2m + a, which is, up to a trivial transformation, equal to
the logistic equation. The orbit diagram is shown in figure 4.14. The single fixed points start
at a = 1/4, the bifurcation to two fixed points is at a = ↑3/4, and the bifurcation to 4 fixed
points is at a = ↑5/4. The next bifurcation is at a → ↑1.3681, etc.

A Lyapunov image for the z2 + c map is shown in the next figure.
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Figure 4.15: A Lyapunov image for the z2 + c map. Pixels are colored yellow for a negative
Lyapunov exponent, red for a positive Lyapunov exponent and blue in case the iterative values
(xm, ym) run to infinity.

The yellow part in the figure is called the Mandelbrot set. The big part with a kidney shape
is a cardioid with the cusp at a = 1/4. A circle touches the cardioid in (a, b) = (↑3/4, 0),
which in turn is touched by a smaller circle in (a, b) = (↑5/4, 0), and so on. It is illuminating
to draw the b = 0 line in figure 4.15 and put it together with the orbit diagram 4.14 and the
corresponding Lyapunov image in a single picture, see the next page.
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xm+1 = x2m ↑ y2m + a

ym+1 = 2xmym + 0.541
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The vertical brown lines show the connection between bifurcation points and the touching
points. Since the ratio of the distances between successive bifurcations approach to the
Feigenbaum number 4.66920..., the ratio of the radii of successive circles also approach to
the Feigenbaum number.

For b = 0.541 we also combine three diagrams, see the previous page. From left to right
the green b = 0.541 line enters at a → ↑0.537 a circle which corresponds to period 5 limit
cycles.For a → 0.47 it leaves the circle and enters the main cardioid. The latter corresponds to
period 1 limit cycle. It leaves the cardioid for a → 0.208 to arrive in the blue area of divergence
to infinity. The green line enters a circle for a → 0.238. The circle corresponds to period 4
cycles. The green line leaves this circle for a → 0.323.

4.6 Analytical solutions for the z2 + c map

So far the investigations were numerical. To a certain extent the Mandelbrot set can be
investigated in an analytic way. By means of the complex variable z = x+ iy and the complex
constant c = a+ ib the system (4.1) takes the form

zm+1 = z2m + c . (4.2)

That is, f(z) = z2 + c. For a fixed point there holds f(z) = z and the stability requires the
absolute value of the derivative to be smaller than 1: |ϖf/ϖz| < 1. At the boundary between
stable and unstable regions we have |ϖf/ϖz| = 1 =

∣∣eiφ
∣∣, where the angle ▷, is from 0 through

2⇁.
For f(z) = z2+ c we therefore have the following two conditions for the boundary: z2+ c = z

and 2z = eiφ. Substituting z = eiφ/2 in c = z ↑ z2 we obtain

c =
1

2
eiφ ↑ 1

4
e2iφ . (4.3)

This is the equation for a cardioid. The fixed point is stable inside this region, see the blue
cardioid in figure 4.16. The equation for the cardioid can also be written as

a = 1
4 + 1

2(1↑ cos ▷) cos ▷

b = 1
2(1↑ cos ▷) sin ▷ .

(4.4)

For a period 2 cycle we have f(f(z)) = z ↓ c+c2↑z+2cz2+z4 = 0 and 4z3+4cz = eiφ. The
first equation can be written as (c↑ z+ z2)(c+1+ z+ z2) = 0. The solution (c↑ z+ z2) = 0

corresponds the period 1 cycle (single fixed point). Substitution of the second solution c =

↑1↑ z ↑ z2 into the equation 4z3 + 4cz = eiφ gives: ↑z ↑ z2 = eiφ/4. Substituting this result
back into c = ↑1↑ z ↑ z2 we obtain [4]

c = ↑1 +
1

4
eiφ . (4.5)
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The latter is the equation for a circle with radius 1/4 and center (↑1, 0). The period 2 limit
is stable inside this circle, see the cyan disk in figure 4.16. The cyan disk touches the blue
cardioid in (↑3/4, 0). The equation for the circle can also be written as

a = ↑1 + 1
4 cos ▷

b = 1
4 sin ▷ .

(4.6)

For a period 3 cycle we have f(f(f(z))) = z ↓ (c↑z+z2)(1+c+2c2+c3+z+2cz+c2z+z2+

3cz2+3c2z2+z3+2cz3+z4+3cz4+z5+z6) = 0 and c2z+c3z+cz3+3c2z3+3cz5+z7 = eiφ/8.
Discarding the period 1 solution (c↑ z + z2) = 0 and eliminating z we obtain

64c3 + 128c2 + 8c
(
8↑ eiφ

)
+
(
8↑ eiφ

)2
= 0 . (4.7)

It has three solutions. By means of the variable

w = ↑1600 + 288eiφ ↑ 27e2iφ + 3
≃
3
√
(8↑ eiφ)2(1472↑ 176eiφ + 27e2iφ) (4.8)

the solutions read
c = ↑2

3
+

(
4

3
+

1

2
eiφ

)(w
2

)→1/3
+

1

12

(w
2

)1/3
, (4.9)

c = ↑2

3
↑
(
4

3
+

1

2
eiφ

)
(
1

2
+

1

2
i
≃
3)

(w
2

)→1/3
+

1

12
(↑1

2
+

1

2
i
≃
3)

(w
2

)1/3
, (4.10)

c = ↑2

3
+

(
4

3
+

1

2
eiφ

)
(↑1

2
+

1

2
i
≃
3)

(w
2

)→1/3
↑ 1

12
(
1

2
+

1

2
i
≃
3)

(w
2

)1/3
, (4.11)

The three solutions correspond with two circles and one cardioid. The stable regions are
therefore two disks and a cardioid, see the three brown shapes in figure 4.16. One disk touches
the cardioid at the top (↑1 +

≃
3)/8 and one disk at the bottom (↑1 ↑

≃
3)/8 respectively.

The third brown shape is a small cardioid (same shape and same orientation as the big blue
cardioid) with its cusp point at (↑7/4, 0), and it intersects the b = 0 line at (v, 0), where

v = ↑2

3
↑ 5

6
3


2

1915↑ 135
≃
201

↑ 1

12

3


1915↑ 135

≃
201

2
→ ↑1.76852915 . (4.12)

The latter was found by evaluating equation (4.9) for c at ▷ = ⇁. The equation (4.9) describes
for 0 < ▷ ↘ ⇁ the upper half of the small cardioid, and for ⇁ < ▷ ↘ 2⇁ the left half of the
circle in the upper half plane. The equation (4.10) describes for 0 < ▷ ↘ ⇁ the left half of the
circle in the lower half plane, and for ⇁ < ▷ ↘ 2⇁ the lower half of the small cardioid. The
equation (4.11) describes for 0 < ▷ ↘ ⇁ the right half of the circle in the upper half plane,
and for ⇁ < ▷ ↘ 2⇁ the right half of the circle in the lower half plane. With the use of the
constant v the solution for the small cardioid can be written as

c = ↑21

16
+

1

4
v +

(
↑7

8
↑ 1

2
v

)
ei↼ +

(
7

16
+

1

4
v

)
e2i↼ . (4.13)



4.6. ANALYTICAL SOLUTIONS FOR THE z2 + c MAP 89

By means of the variable
χ = (7 + 4v)(1↑ ei↼)2 (4.14)

it can be written as
c = ↑7

4
+

1

16
χ , (4.15)

The equation for the two circles then read

c = ↑1

8
↑ 1

32
χ± 1

32

√
↑432 + 136χ↑ 3χ2 ↑ 16

√
↑χ(χ↑ 28)2 . (4.16)

The relation between ⇀ and ▷ is given by

eiφ = 1 +
1

4
χ↑ 1

8

√
↑χ(χ↑ 28)2 . (4.17)

Upon substitution of equation (4.14) for χ and then equation (4.12) for v the relation becomes
tedious.

For a period 4 cycle we have f(f(f(f(z)))) = z ↓ (c↑z+z2)(1+c+z+z2)(1+2c2+3c3+3c4+

3c5+c6+2cz+c2z+2c3z+c4z+cz2+5c2z2+6c3z2+12c4z2+6c5z2+z3+4c2z3+4c3z3+4cz4+

3c2z4+18c3z4+15c4z4+2cz5+6c2z5+z6+12c2z6+20c3z6+4cz7+3cz8+15c2z8+z9+6cz10+

z12) = 0 and c3z+2c4z+3c5z+3c6z+c7z+c2z3+4c3z3+9c4z3+15c5z3+7c6z3+3c2z5+9c3z5+

30c4z5+21c5z5+cz7+3c2z7+30c3z7+35c4z7+15c2z9+35c3z9+3cz11+21c2z11+7cz13+z15 =

eiφ/16. Discarding the period 1 solution (c↑ z+ z2) = 0, the period 2 solution (1+ c+ z+ z2)

and eliminating z we obtain

4096c6+12288c5+256c4(48+eiφ)+256c3(48+eiφ)+16c2(512↑16eiφ↑e2iφ)+(16↑eiφ)3 = 0 .

(4.18)
The equation has 6 solutions which are determined numerically. The solutions correspond
with the red shapes in figure 4.16. Two of the shapes are disks of which one touches the blue
cardioid in (1/4, 1/2) and the other one in (1/4,↑1/2). Two other shapes are small disks in
the neighborhood of (↑.158, 1.034) and (↑.158,↑1.034) respectively. The fifth shape is a disk
which touches the cyan circle in (↑5/4, 0). The sixth shape is a very small cardioid (more
than 1000 times smaller than the blue cardioid) and is situated around (↑1.941, 0).

For a period 5 cycle we obtain 15 solutions. They correspond with: 1 small cardioid with its
cusp at (a, b) → (↑1.98541, 0), 1 small cardioid with its cusp at (a, b) → (↑1.86049, 0), 1 small
cardioid with its cusp at (a, b) → (↑1.6242, 0), 2 small cardioids at (a, b) → (↑1.256,±0.380), 2
small cardioids at (a, b) → (↑0.1982,±1.1002), 2 small cardioids at (a, b) → (↑0.044,±0.987),
2 small cardioids at (a, b) → (0.359,±0.643), 4 disks which touch the blue cardioid. These 15
shapes are drawn green in figure 4.16.
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Figure 4.16: Analytical solutions for the border of the Mandelbrot set. The numbers inside
or nearby a disk indicate the period of the limit cycle.

4.7 Number of period n solutions of the z2 + c map

Let us write the n-th iterate of z as z[n]. The largest power of c in z[n] is 2n→1. The period
1 solution was partly based on the condition z[1] ↑ z = 0; the other part was ϖz[1] = 1. The
largest power of c in z[1] ↑ z is 20 = 1. Therefore there is 1 period 1 solution. The period
2 solution was partly based on the condition (z[2] ↑ z)/(z[1] ↑ z) = 0; the other part was
ϖz[2] = 1. The division by z[1] ↑ z is to exclude the period 1 solution. The largest power of
c in (z[2] ↑ z)/(z[1] ↑ z) is 21 ↑ 20 = 1. Therefore there is 1 period 2 solution. The period 3
solution was partly based on the condition (z[3] ↑ z)/(z[1] ↑ z) = 0. The division by z[1] ↑ z is
to exclude the period 1 solution. The largest power of c in (z[3] ↑ z)/(z[1] ↑ z) is 22 ↑ 20 = 3.
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Therefore there are 3 period 3 solutions. The period 4 solution was partly based on the con-
dition (z[4]↑ z)/(z[2]↑ z) = 0. The division by z[2]↑ z is to exclude the period 2 solution. The
largest power of c in (z[4]↑z)/(z[2]↑z) is 23↑21 = 6. Therefore there are 6 period 4 solutions.
The period 5 solution was partly based on the condition (z[5]↑ z)/(z[1]↑ z) = 0. The division
by z[1] ↑ z is to exclude the period 1 solution. The largest power of c in (z[5] ↑ z)/(z[1] ↑ z) is
24↑ 20 = 15. Therefore there are 15 period 5 solutions. The period 6 solution is based on the
condition (z[6]↑ z)/(z[3]↑ z)/(z[2]↑ z)⇓ (z[1]↑ z) = 0. The division by z[3]↑ z and z[2]↑ z is to
exclude the period 3 and period 2 solution. Since both z[3] ↑ z and z[2] ↑ z contain the period
1 solution, we have divided by z[1]↑ z one time too much. To repair it we multiply by z[1]↑ z.
The largest power of c in (z[6] ↑ z)/(z[3] ↑ z)/(z[2] ↑ z) ⇓ (z[1] ↑ z) is 25 ↑ 22 ↑ 21 + 20 = 27.
Therefore there are 27 period 6 solutions. Continuing this line of arguments we obtain the
following series of numbers of period n solutions 1, 1, 3, 6, 15, 27, 63, 120, 252, .... The series is
known as A000740 in OEIS [5].

For a period n solution we write n as its products of powers of distinct primes, the prime

decomposition: n =
k

j=1

p
mj

j . For instance, the prime decomposition of 30 is 21 · 31 · 51 and

contains no squares and has three distinct primes. The prime composition of 84 is 22 · 31 · 71

and contains a square: 22. The prime decomposition of 882 is 21 · 32 · 73 and contains three
squares: 32, 72 and (3 · 7)2. The Möbius function µ(n) is defined as

µ(n) =






1 if n = 1;

0 if n contains one or more squares;
(↑1)k if n is a square free product of k distinct primes.

(4.19)

For instance, µ(4) = 0, µ(5) = ↑1, µ(6) = 1, µ(12) = 0 and µ(30) = ↑1.

By means of the Möbius function the number s(n) of period n solutions is given by

s(n) =
∑

d|n

µ(n/d) 2d→1 . (4.20)

where d |n are the numbers d which are a divisor of n. A recurrence relation for s(n) is

s(n) = 2n→1 ↑
∑

d|n,d>1

s(n/d) , (4.21)

with s(1) = 1 as initial value.

A property of s is
∑

d|n

s(d) = 2n→1.
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4.8 Mandelbrot set and Fibonacci

If we follow the circumference of the main cardioid in figure 4.16, the largest object we meet
is the cyan disk with number 2. Since the Mandelbrot set is symmetric with respect to the
x-axis, we consider only the upper half plane from here. If we follow in the upper half of figure
4.16 the circumference of the main cardioid from the cyan disk with number 2 towards the
cusp of the blue cardioid, then the largest object is an orange disk with number 3. From the
orange disk with number 3 to the cusp the largest object is a red disk with number 4. The
largest disk between the disk with number 4 and the cusp is a green disk with number 5. If
we had plotted more disks, the next largest disk between 5 and the cusp would be a disk with
number 6. Continuation of the procedure leads to the sequence: 1, 2, 3, 4, 5, 6, 7, 8, ...

The largest disk in figure 4.16 between the cyan disk with number 2 and the orange disk
with number 3 is a green disk with number 5. If we had plotted more disks, the largest disk
between the orange disk with number 3 and the green disk with number 5 would be a disk
with number 8. The largest disk between number 5 and number 8 is a disk with number 13.
The largest disk between 8 and 13 is a disk with number 21. Continuation of the procedure
results in the Fibonacci sequence: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ....

The situation is illustrated in the figure below.
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Chapter 5

Fractals

5.1 Koch snowflake

We start with five points A(0, 0), B(2, 0), C(3,
≃
3), D(4, 0) and E(6, 0), and the four line

segments AB, BC, CD and DE. The curve ABCDE is shown in the upper left panel of
the next figure. Each of the four line segments has length 2. The distance between A and
E is 6. The curve ABCDE is used as the building block of a structure with self-similarity.
First every segment is replaced by a 3 times smaller version of ABCDE. The result is 16
line segments, see the upper right panel. Since every segments is 3 times smaller the length
of the new segmented curve is 32/3. Next every segment is replaced by a 9 times smaller
version of ABCDE. The result is 64 line segments, see lower left panel. The length of the
new segmented curve is 128/9. Next every segment is replaced by a 27 times smaller version
of ABCDE. The result is 256 line segments, see lower right panel. The length of the new
segmented curve is 512/27.
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If the procedure is continued through infinity, the resulting figure has the following property:
if one zooms in on a line segment, then it looks as the original figure. In other words, the
resulting figure is self similar at all scales. Such a figure is called a fractal. In this case it is
known as the Koch fractal.

If the procedure which leads to the Koch fractal is applied to the sides of an equilateral
triangle in the outside direction, we obtain the so called Koch snowflake, see left panel of next
figure. In the inside direction it is an anti-snowflake, see right panel of next figure.

5.2 Designing fractals

Here we consider another building block. We start with six points A(0, 0), B(2, 0), C(2, 2),
D(4, 2), E(4, 0) and F (6, 0), and the five line segments AB, BC, CD, DE and EF . The
curve ABCDEF is shown in the upper left panel of the next figure. Each of the five line
segments has length 2. The distance between A and F is 6. Every segment is replaced by
a 3 times smaller version of ABCDEF . The result is 25 line segments, see the upper right
panel. Since every segments is 3 times smaller the length of the new segmented curve is 50/3.
Next every segment is replaced by a 9 times smaller version of ABCDEF . The result is 125
line segments, see lower left panel. The length of the new segmented curve is 250/9. Next
every segment is replaced by a 27 times smaller version of ABCDEF . The result is 625 line
segments, see lower right panel. The length of the new segmented curve is 1250/27.



5.2. DESIGNING FRACTALS 95

0 1 2 3 4 5 6

0

1

2

3

A B

C D

E F

0 1 2 3 4 5 6

0

1

2

3

0 1 2 3 4 5 6

0

1

2

3

0 1 2 3 4 5 6

0

1

2

3

If the procedure is repeated many times and applied to the sides of a square in the outside
direction, we obtain a pattern as shown in the left panel of next figure. Application to the
inside direction leads to the pattern shown in the right panel of next figure.
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Next we consider another building block. We start with eight line segments connecting the
nine points (0, 0), (1, 0), (1, 1), (2, 1), (2, 0), (2,↑1), (3,↑1), (3, 0) and (4, 0) as shown in the
left panel of the next figure. Each of the line segments has length 1. The curve has length 8.
Every segment is replaced by a 4 times smaller version of the initial building block. The result
is 64 line segments, see the middle panel. Since every segment is 4 times smaller the length
of the new segmented curve is 16. Repeating the procedure we obtain 512 line segments, see
the right panel. The length of the new segmented curve is 32. Repeating the procedure leads
to the so called Minkowski fractal. As for the previous fractals it can be applied to the sides
of a triangle, a square or any polygon to obtain mathematical art figures.
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5.3 Two dimensional fractals

We can also start with a two dimensional object and add smaller versions of the object. For
instance, when we start with a square and add two smaller squares as shown below.

Taking more steps results in the Pythagoras tree, see the first figure on next page. Every
branch is a smaller copy of the original tree. The self similarity is at all scales; the Pythagoras
tree is a fractal. We can also make an asymmetric tree, see the second figure on next page.

Another example of a two dimensional fractal is obtained by starting with an isosceles tri-
angle and place a smaller copy at the top of the original triangle with its base adjacent and
perpendicular to one of the equal sides.
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Figure 5.1: Pythagoras tree.

Figure 5.2: Pythagoras tree.
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The two equal base angles are ω. After each step the triangle is a factor 1 smaller than the
previous triangle. As a consequence each new triangle is rotated over an angle ω in clockwise
direction. The next figure gives the first two steps.

ω ω

1

1

12

After many steps a spiral is obtained, see the next figure.

After n steps the left side of the triangle is parallel to the right side of the initial triangle if

ω =
⇁

n↑ 2
. (5.1)

The first value of n for which ω < ⇁/2 is n = 5. Then ω = ⇁/3; the triangle is equilateral.
For this situation the spiral is shown in the first figure on the next page. By increasing 1 we
can obtain a situation where the spiral fills the inside area, see the second figure on next page.

For n = 5 the spiral fills the area when 1 satisfies the equation 12 + 13 = 1. One of the
three solutions is real:

1 =
1

3



↑1 +
3


25↑ 3

≃
69

2
+

3


25 + 3

≃
69

2



 → 0.754878 . (5.2)
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For n = 6 we have ω = ⇁/4. An area-filling spiral then is obtained when 1 satisfies the
equation 12 +

≃
2 13 + 14 = 1. One of the four solutions is real and positive: 1 → 0.652523.

The situation is shown in the next figure.

For n = 7 we have ω = ⇁/5. For an area-filling spiral 1 has to satisfy the condition

12+
1

2

(
1 +

≃
5
)
13+

1

2

(
1 +

≃
5
)
14+15 = 1. One of the five solutions is real: 1 → 0.600610.

For n = 8 we have ω = ⇁/6. The area-filling condition is 12 +
≃
3 13 + 214 +

≃
3 15 + 16 = 1.

One of the six solutions is real and positive: 1 → 0.570841.
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In general the area-filling condition is

n→3∑

k=1

sin

(
k ⇁

n↑ 2

)
1k+1 = sin

(
⇁

n↑ 2

)
. (5.3)

For n = 9, 10, 11, 13, 15, 16, ... and most other values for n the latter equation does not lead
to a polynomial in 1 with algebraic coe"cients. A polynomial in 1 with algebraic coe"cients
only occur if the sine of ⇁/(n↑ 2) is algebraic, which is the case if
n↑ 2 ⇒ {2m · 3, 2m · 4, 2m · 5, 2m · 15}, where m = 0, 1, 2, ....
The area-filling values for 1 are plotted against n in the next figure.
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1

The total area S of a spiral of isosceles triangles is given by

S =
sinω cosω

1↑ 12
. (5.4)

For area-filling spirals this is

S =
1

2↑ 212
sin

(
2⇁

n↑ 2

)
, (5.5)

where 1 is the solution of equation (5.3). The areas for area-filling spirals are plotted against
n in the next figure.
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A two dimensional fractal with branches can be obtained by repeatedly placing two smaller
copies at the top of the previous triangles with their base adjacent and perpendicular to the
equal sides. The next figure gives an impression.
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For ω = ⇁/3 and 1 = 0.6 the tree is as follows.

For ω = ⇁/4 and 1 = 0.6 the tree is as in the next figure.
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5.4 Fractal dimension

A stick with length l fits 1/l times in a unit length. A square with side length l fits 1/l2 in a
unit square. A cube with edge length l fits 1/l3 times in a unit cube. In general, N = 1/lD,
where N is the number of times a smaller copy fits in the object with unit sizes and where
D is the dimension of the object. From the relation between N and l we can determine the
dimension:

D = ↑ lnN(l)

ln l
. (5.6)

For non-fractal objects as sticks, squares and cubes it does not matter how small we take the
sizes. That is,

D = lim
l↔0

↑ lnN(l)

ln l
(5.7)

leads to the same value for D. The situation changes for fractals. To this end we once more
consider the construction of the Koch fractal:
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If a stick has length 2, it would fit 4 times along the curve between A and E. If the length of
the stick is 2/3 it would fit 16 times along the curve between A and E. Each time the length
of the stick is decreased with a factor 3 the number of line segments that can be measured
increases with a factor 4. If l is the length of the stick and N(l) the number of line segments
that can be measured, then the fractal dimension D is defined as

D = lim
l↔0

↑ lnN(l)

ln l
. (5.8)

If we start with a stick with length 6, that is l0 = 6, then N0 = 1. Next we take a stick with
length 2, that is l1 = 2, then N1 = 4. In the next step we take a stick with length l2 = 2/3,
then N2 = 42. For the n-th step we then have ln = 6/3n and Nn = 4n. We thus find
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↑ lnNn

ln ln
=

ln 4n

ln 6/3n
=

n ln 4

ln 6↑ n ln 3
. (5.9)

In the limit n ↓ ↗, which is equivalent to the limit l ↓ 0, the part ln 6 is negligible with
respect to n ln 3. For the fractal dimension of the Koch fractal we therefore obtain

DKoch =
ln 4

ln 3
. (5.10)

As another example we consider the Minkowski fractal. After each step of the construction of
the Minkowski fractal the length of the line segments is 4 times smaller while the number of
segments is 8 times larger. Hence

DMinkowski =
ln 8

ln 4
=

3 ln 2

2 ln 2
=

3

2
. (5.11)

For arithmetic fractals such as the Koch fractal and the Minkowski fractal an alternative
definition is

D =
ln(Nn+1/Nn)

ln(ln/ln+1)
. (5.12)

The concept of a fractal dimension for one dimensional fractals can be generalized to two- and
three dimensional fractals by replacing the length l by the square root of the area,

≃
A and

the cubic root of the volume, 3
≃
V , respectively. For instance, for two dimensional fractals the

equation for the fractal dimension is

D = lim
A↔0

↑2
lnN(A)

lnA
(5.13)

or
D = 2

ln(Nn+1/Nn)

ln(An/An+1)
. (5.14)

For the Pythagoras tree every square generates two squares, each with half the area of the
generating square. Hence

DPythagoras tree = 2
ln 2

ln 2
= 2 . (5.15)

An example of a three dimension fractal is the Menger sponge. The fractal dimension of the
Menger sponge is

DMenger sponge = 3
ln 20

ln 27
=

ln 20

ln 3
. (5.16)

5.5 Julia fractals

Here we will consider once more the z2 + c map:

xm+1 = x2m ↑ y2m + a

ym+1 = 2xmym + b .
(5.17)
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This time we focus on the orbit of points starting with (x0, y0). As an example we consider
the situation for a = 0.279, b = 0. In the next figure the first few iterates are shown for
(x0, y0) = (0.5, 0.3) (green) and (x0, y0) = (↑0.54259166167...,↑0.81811547324...) (blue).
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a = 0.279

b = 0

x

y

For (x0, y0) = (0.5, 0.3) the orbit spiralizes outwards; it diverges towards infinity.
For (x0, y0) = (↑0.54259166167...,↑0.81811547324...) the orbit ends after three iterations in
point (0.5, 0.17029386365926...) and stays there; (0.5, 0.17029386365926...) is a fixed point. If
one starts at a slightly di!erent position the orbit diverges, after many iterates, to infinity.
That is, (0.5, 0.17029386365926...) is an unstable fixed point. The set of all points which do not
diverge to infinity is called the Julia set J(a, b). The point (↑0.54259166167...,↑0.81811547324...)

belongs to the Julia set J(0.279, 0) since it does not diverge to infinity. The same holds for
the other blue points in the figure above. The point (↑0.54259166167...,↑0.81811547324...)

is, as all the other blue points, a predecessor of (0.5, 0.17029386365926...). All predecessors of
unstable periodic cycles belong to the Julia set. The fixed point (0.5,↑0.17029386365926...)

is not a predecessor of (0.5, 0.17029386365926...). So, (0.5,↑0.17029386365926...) and its pre-
decessors form a di!erent set than (0.5, 0.17029386365926...) and its predecessors. The first
is the mirror set of the latter with the y-axis as the mirror. Both sets belong to the Julia
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set J(0.279, 0). The complete Julia set J(0.279, 0) is a set of disconnected points. The Julia
set J(0.279, 0) is shown in the left panel of the next figure. The Fatou set is the set of all
points (x0, y0) which are not part of the Julia set . The iterates of the elements (x0, y0) of the
Fatou set diverge to infinity. We can color the pixel around (x0, y0) depending on the speed
of divergence to infinity, see the right panel of the next figure. Yellow is for a slow divergence,
green for an intermediate speed and red for a quick divergence to infinity. The Fatou set joined
with the Julia set fill the x, y-plane. A complete picture is obtained by plotting the Julia set
on top of the Fatou set, see the figure at the bottom of the page. It illustrates the Julia set is
to a certain extent the border between di!erent colored parts of the Fatou set.
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For other values of a and b we obtain other Julia and Fatou sets. In the figure below the sets
J(↑0.5, 0) (left panel) and F (↑0.5, 0) (right panel) are shown.
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The Julia set J(↑0.5, 0) is a set of connected points. The points outside the region enclosed by
the Julia set J(↑0.5, 0) diverge to infinity and are therefore colored light. The points inside
the region enclosed by the Julia set J(↑0.5, 0) converge to the Julia set J(↑0.5, 0). They
never come outside this region. In a way it can be regarded as if they tend to infinity in an
extremely slow way. Therefore the region enclosed by the Julia set J(↑0.5, 0) is colored black
in the Fatou set.

Julia sets are fractals. For a = ↑0.75 and b = 0 the Julia set J(↑0.75, 0), which is a connected
set, is known as the San Marco fractal, see the figure below.
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As another example with b = 0 we show the Julia set and Fatou set for a = ↑1.25. The Julia
fractal J(↑1.25, 0) is connected.
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Next we will consider Julia sets and fatou sets for b ↔= 0. Below are shown the Julia set and
Fatou set for a = 0 and b = 1.25 . The Julia fractal J(0, 1.25) is disconnected.
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For b ↔= 0 the Julia set and Fatou set are point symmetric around the origin. The sets for ↑b

are the mirror images of the sets fore b, with the x-axis or the y-axis as the mirror axis.

Next are shown the Julia set and Fatou set for:
a = 0 and b = 0.75, the Julia fractal J(0, 0.75) is disconnected.
a = 0 and b = 0.6, the Julia fractal J(0, 0.6) is connected.
a = 0 and b = 0, the Julia fractal J(0, 0) is connected and is a circle with unit radius.
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Finally we consider Julia and Fatou sets for the situation where both a ↔= 0 and b ↔= 0.
Next are shown the Julia set and Fatou set for:
a = 0.125 and b = ↑0.75, the Julia fractal J(0.125,↑0.75) is disconnected.
a = 0.125 and b = ↑0.625, the Julia fractal J(0.125,↑0.625) is connected.
a = ↑0.125 and b = ↑1, the Julia fractal J(↑0.125, 1) is disconnected.
a = ↑0.125 and b = ↑0.85, the Julia fractal J(↑0.125,↑0.85) is connected.
a = ↑0.125 and b = ↑0.75, the Julia fractal J(↑0.125,↑0.75) is connected.
a = ↑0.125 and b = ↑0.65, the Julia fractal J(↑0.125,↑0.65) is connected.
a = ↑0.8 and b = ↑0.15, the Julia fractal J(↑0.8,↑0.15) is connected.
a = ↑0.79 and b = ↑0.15, the Julia fractal J(↑0.79,↑0.15) is disconnected.
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a = ↑0.125

b = ↑0.65

↑1.5 ↑1 ↑0.5 0 0.5 1 1.5
↑1.5

↑1

↑0.5

0

0.5

1

1.5

x

y

a = ↑0.125

b = ↑0.65

↑1.5 ↑1 ↑0.5 0 0.5 1 1.5
↑1.5

↑1

↑0.5

0

0.5

1

1.5

x

y

a = ↑0.8

b = ↑0.15

↑1.5 ↑1 ↑0.5 0 0.5 1 1.5
↑1.5

↑1

↑0.5

0

0.5

1

1.5

x

y

a = ↑0.8

b = ↑0.15

↑1.5 ↑1 ↑0.5 0 0.5 1 1.5
↑1.5

↑1

↑0.5

0

0.5

1

1.5

x

y

a = ↑0.79

b = ↑0.15

↑1.5 ↑1 ↑0.5 0 0.5 1 1.5
↑1.5

↑1

↑0.5

0

0.5

1

1.5

x

y

a = ↑0.79

b = ↑0.15

↑1.5 ↑1 ↑0.5 0 0.5 1 1.5
↑1.5

↑1

↑0.5

0

0.5

1

1.5

x

y



5.6. MANDELBROT FRACTAL 113

If we blow up 100 times the right part of the latter Fatou set for a = ↑0.79, b = ↑0.15 we
still see the same kind of shapes. No matter how much we blow up small sections, the fractal
structure is present at every level.

Figure 5.3: The 1.465 ↘ x ↘ 1.525 and 0.06 ↘ y ↘ 0.09 section of the Fatou set for a = ↑0.79

and b = ↑0.15.

5.6 Mandelbrot fractal

From the figures of the previous section we see that Julia sets are point symmetric around
(0, 0). As a consequence, for connected Julia sets the point (0, 0) is inside the region enclosed
by the Julia set. If we take (0, 0) as a starting point (x0, y0), then (x1, y1) = (a, b). Therefore
the point (a, b) also is inside the region enclosed by the connected Julia set. As a consequence,
there is an easy way to determine whether a Julia sets is connected or disconnected. Take the
parameter values for a and b as the starting point, thus (x0, y0) = (a, b). If the orbit (xm, ym)

tends to infinity the Julia set J(a, b) is disconnected else the Julia set J(a, b) is connected.

For each pair (a, b) we place a black dot if J(a, b) is found to be connected. The result is
shown in the next figure. We recognize the Mandelbrot set as we met it in the previous
chapter. This is no surprise since in the previous chapter the Mandelbrot set was the set of
pairs (a, b) for which (x0, y0) → (0, 0) leads to a non diverging series (xm, ym), while here the
Mandelbrot set is the set of pairs (a, b) for which (x0, y0) → (a, b) leads to to a non diverging
series (xm, ym), and for the divergence test there is no di!erence between starting at a point
very close to (0, 0) and starting at (a, b).
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The Mandelbrot set is a fractal, the Mandelbrot fractal. Its fractal dimension is 2.



Chapter 6

Misiurewicz points

6.1 Polynomials for x0 = 1/2

In the figure below the orbit diagram for the logistic equation xm+1 = axm(1↑ xm) is shown.
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In the chaotic regions we clearly recognize dark curves. Point A is a point of intersection
of such dark curves. It also is the most right point of the ‘large void region’, see the red
point in the figure above. Since the curve of the function x(1↑ x) is almost horizontal in the
neighborhood of x = 0.5, points near x = 0.5 are mapped close a/4 and thus close to each
other. As a consequence, subsequent mappings will also be close to each other. Therefore the
dark regions originate from orbits which pass near the critical point x = 0.5.

115
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Because of the special role of the critical point we take x0 = 1/2 as a starting point and
calculate some further xk. It leads to polynomials in a:

x1 =
a

4
, x2 =

a2

4
↑ a3

16
, x3 =

a3

4
↑ a4

16
↑ a5

16
+

a6

32
↑ a7

256
, and so on.

In the next 8 figures the polynomials x1 through x8 are plotted against a.
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In the next figure the foregoing 8 polynomials are plotted in a single diagram. The function
x0 =

1

2
is plotted in blue.

↑2 ↑1 0 1 2 3 4
↑0.5

0

0.5

1

A

B

a

x
k

Figure 6.1: Polynomials xk(a) for x0 = 1/2.

Two points of intersection are indicated by red dots and the symbols A and B.
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6.2 Points of intersection

For the points A and B: x3 = x4 = x5 = .... = xk = ..., while x0 ↔= x3, x1 ↔= x3, x2 ↔= x3,
x1 ↔= x0, x2 ↔= x0 and x2 ↔= x1. The fixed point condition x4 = x3 is satisfied if either

ax3(1↑ x3) = x3 ↓ 1↑ x3 =
1

a
↓ x3 =

a↑ 1

a
. (6.1)

or x3 = 0. The solution x3 = x4 = ... =
a↑ 1

a
corresponds to point A. In chapter 2 we

already found that the fixed point solution xk =
a↑ 1

a
is only stable if 1 ↘ a ↘ 3. The

solution x3 = x4 = ... = 0 corresponds to point B. In chapter 2 we already found that the
fixed point solution xk = 0 is only stable if ↑1 ↘ a ↘ 1. The points A and B are unstable
fixed points. The periodicity sets in at x3.

To find the predecessor x2 of point A we substitute x3 =
a↑ 1

a
in x3 = ax2(1↑ x2):

ax2(1↑x2) =
a↑ 1

a
↓ ax22↑ax2+

a↑ 1

a
= 0 ↓ 2ax2 = 1±

√
a2 ↑ 4(a↑ 1) . (6.2)

The latter is reduced to
2ax2 = 1± (a↑ 2) . (6.3)

For the + sign the solution is x2 =
a↑ 1

a
, which is ruled out by the condition x2 ↔= x3. For

the ↑ sign the solution is x2 =
1

a
. To find its predecessor x1 we substitute the latter into

x2 = ax1(1↑ x1):

1

a
= ax1(1↑ x1) ↓ x21 ↑ x1 +

1

a2
= 0 ↓ x1 =

a±
≃
a2 ↑ 4

2a
. (6.4)

The substitution of the latter into x1 = ax0(1↑ x0) finally leads to the desired value for a:

a±
≃
a2 ↑ 4

2a2
= x0(1↑ x0) . (6.5)

For out point of interest, x0 =
1

2
, this is

a±
≃
a2 ↑ 4

2a2
=

1

4
↓ a4 ↑ 4a3 + 16 = 0 ↓ (a↑ 2)(a3 ↑ 2a2 ↑ 4a↑ 8) = 0 . (6.6)

The solution a = 2 implies x3 = 1/2 which is ruled out by the condition x0 ↔= x3. Two of the
three roots of a3 ↑ 2a2 ↑ 4a↑ 8 are complex. An analytic expression for the real root is

a =
2

3

(
1 +

3

√
19↑ 3

≃
33 +

3

√
19 + 3

≃
33

)
. Its numerical value, 3.67857351, is the a value of

point A in figure 6.1. The x value of point A is approximately (3.67857351↑1)/3.67857351 →
0.728155.



6.2. POINTS OF INTERSECTION 119

To find the predecessor x2 of point B we substitute x3 = 0 in x3 = ax2(1↑ x2):

ax2(1↑ x2) = 0 . (6.7)

One of its solutions, x2 = 0, is ruled out by the condition x2 ↔= x3. The other solution is
x2 = 1. For its predecessor x1 there necessarily holds 1 = ax1(1↑ x1), which in turn leads to
1 = a2x0(1 ↑ x0) (1↑ ax0(1↑ x0)). For x0 = 1/2 this is reduced to a3 ↑ 4a2 + 16 = 0. Two
of the three roots of a3 ↑ 4a2 + 16 are complex.

The real root, a =
2

3

(
2↑ 3

√
19 + 3

≃
33↑ 3

√
19↑ 3

≃
33

)
→ ↑1.67857, is the a value of point

B in figure 6.1. The x value of point B is 0.

In order to illustrate that our green polynomials are the dark curves of the orbit diagram,
we have plotted the polynomials x1 through x8 on top of part of the orbit diagram, see next
figure.

A

xm+1 = axm(1↑ xm)
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Figure 6.2: Polynomials xk(a) for x0 = 1/2 on top of the orbit diagram for the logistic
equation.

As mentioned before, the Fibonacci numbers are generated by uk+1 = uk + uk→1 with u0 = 0

and u1 = 1. In the limit where k ↓ ↗ the ratio r between two successive Fibonacci numbers
satisfies the equation r2 ↑ r ↑ 1 = 0. Its positive root, 2 = (1 +

≃
5)/2, is known as the
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golden ratio. A generalization of the Fibonacci recurrence relation is uk+1 = uk +uk→1+uk→2

with u0 = 0, u1 = 0 and u2 = 1. The sequence of numbers are known as tribonacci numbers.
The first few tribonacci numbers are 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, ... In the limit
where k ↓ ↗ the ratio r between two successive tribonacci numbers satisfies the equation

r3 ↑ r2 ↑ r ↑ 1 = 0. Its real root, t =
1

3

(
1 +

3

√
19↑ 3

≃
33 +

3

√
19 + 3

≃
33

)
→ 1.83929, hap-

pens to be half the a value for point A. Indeed t3↑t2↑t↑1 = 0 is equal to a3↑2a2↑4a↑8 = 0

for t = a/2.

6.3 Misiurewicz points

The parameter value(s) for which a periodic limit cycle has a critical point as a predecessor, is
called a Misiurewicz point. For a map f(x) a point where df/dx = 0 is a critical point. For the

logistic function we have
d ax(1↑ x)

dx
= a(1↑2x) = 0 if x = 1/2. Therefore, the point x0 = 1/2

is the only critical point. Taking a =
2

3

(
1 +

3

√
19↑ 3

≃
33 +

3

√
19 + 3

≃
33

)
→ 3.67857 and

starting at x0 = 0.5 we obtain x1 → 0.919643, x2 → 0.271845, x3 → 0.728155, x4 → 0.728155,
x5 → 0.728155, etc. That is, starting at the critical point x0 = 1/2 we arrive after 3 steps at
the single fixed point A. Let us denote Misiurewicz points for the logistic map as ak,n where
k and n are positive integers. The integer k is the number of steps it takes from the critical
point to arrive at a periodic cycle and the integer n is the period of the cycle. For instance,

the parameter value a =
2

3

(
1 +

3

√
19↑ 3

≃
33 +

3

√
19 + 3

≃
33

)
→ 3.678573510428322265 is a

Misiurewicz point. Since it takes 3 steps from x0 = 1/2 to arrive at a cycle with period 1, it
is denoted as a3,1: a3,1 → 3.678573510428322265.

In the first figure on the next page we have indicated two points which are part of a pe-
riod 2 cycle and which have x0 = 1/2 as a predecessor. The a value for these two red points is
approximately 3.592572184106978649. It takes 5 steps from x0 = 1/2 to arrive at the period
2 cycle. We therefore write a5,2 → 3.592572184106978649.

In the second figure on the next page we have indicated four points which are part of a
period 4 cycle and which have x0 = 1/2 as a predecessor. The a value for these four red points
is approximately 3.5748049387592. It takes 9 steps from x0 = 1/2 to arrive at the period 4
cycle. We therefore write a9,4 → 3.5748049387592. Continuation of the procedure leads to
a17,8 → 3.57098594034161, a33,16 → 3.570168472496375, a65,32 → 3.56999338855913, and so
on.
In the limit m ↓ ↗ the sequence a2m+1+1,2m converges to 3.56994567187, which is the same
value for a where the period doubling series 2m ends at the 2↗ limit cycle [8].
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xm+1 = axm(1↑ xm)
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Figure 6.3: Polynomials xk(a) for x0 = 1/2 on top of the orbit diagram for the logistic
equation. The two red points are part of an (unstable) period 2 cycle.
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Figure 6.4: The orbit diagram for the logistic equation. The four red points are part of an
(unstable) period 4 cycle.
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For the ratio of the distances between the first few Misiurewicz points we obtain:
a3,1 ↑ a5,2
a5,2 ↑ a9,4

→ 4.840442 ,
a5,2 ↑ a9,4
a9,4 ↑ a17,8

→ 4.652331 ,
a9,4 ↑ a17,8
a17,8 ↑ a33,16

→ 4.671741 ,
a17,8 ↑ a33,16
a33,16 ↑ a65,32

→ 4.669005, and so on.

In the limit m ↓ ↗ the ratio
a2m+1+1,2m ↑ a2m+2+1,2m+1

a2m+2+1,2m+1 ↑ a2m+3+1,2m+2
converges to the Feigenbaum

constant 4.669201609... [8].

6.4 Misiurewicz points for the z2 + c map

For the complex function f(z) = z2 + c we have
d f

d z
= 2z = 0 if z = 0. Therefore, the point

z0 = 0 is the only critical point. A complex parameter c is a Misiurewicz point Mk,n if it takes
k steps from the starting point z0 = 0 to arrive at a cycle with period n. Let us start with
z0 = 0 and look at the first few zm:
z1 = c , z2 = c+ c2 , z3 = c+ c2 + 2c3 + c4 ,
z4 = c+ c2 + 2c3 + 5c4 + 6c5 + 6c6 + 4c7 + c8 , and so on.

Let us see if a Misurewicz point M1,1 exists. The requirements are z2 = z1 and z1 ↔= z0.
The first requirement gives c2 + c = c. Its solution, c = 0, is ruled out by the second require-
ment. A point M1,1 therefore does not exist.

Next we try M2,1. Then the requirements are z3 = z2, z2 ↔= z1, z2 ↔= z0and z1 ↔= z0. The
condition z3 = z2 leads to c3(c + 2) = 0. The first solution, c = 0, is ruled out by z1 ↔= z0.
The second solution, c = ↑2, is a Misiurewicz point: M2,1 = ↑2. It leads to the sequence
{0,↑2, 2, 2, 2, ...} for the zm.
For M1,2 the requirements are z3 = z1, z2 ↔= z1, z2 ↔= z0and z1 ↔= z0. The condition z3 = z1

leads to c2(c+1)2 = 0. The first solution, c = 0, is ruled out by z1 ↔= z0. The second solution,
c = ↑1, is ruled out by z2 ↔= z0. In fact, M1,n does not exist for all (positive integer) n. If
it would exist the condition zn+1 = z1 together with the equalities zn+1 = z2n + c and z1 = c

would imply zn = 0, which is ruled out by zn ↔= z0.

Points M3,1 are roots of c3 + 2c2 + 2c+ 2. For the real root this is

M3,1 =
1

3

(
↑2↑ 3

√
17 + 3

≃
33 +

3

√
↑17 + 3

≃
33

)
→ ↑1.543689.

It leads to the sequence {0,↑1.54369, 0.839287,↑0.839287,↑0.839287, ...}.
For the complex roots we get

M3,1 =
1

3

(
↑2 +

1 + i
≃
3

2

3

√
17 + 3

≃
33↑ 1↑ i

≃
3

2

3

√
↑17 + 3

≃
33

)
→ ↑0.228155 + 1.11514i

with sequence {0,↑0.228155+1.11514i,↑1.41964+0.606291i, 1.41964↑ 0.606291i, 1.41964↑
0.606291i, ...} and
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M3,1 =
1

3

(
↑2 +

1↑ i
≃
3

2

3

√
17 + 3

≃
33↑ 1 + i

≃
3

2

3

√
↑17 + 3

≃
33

)
→ ↑0.228155↑ 1.11514i

with sequence {0,↑0.228155↑ 1.11514i,↑1.41964↑ 0.606291i, 1.41964+0.606291i, 1.41964+

0.606291i, ...}.
Points M2,2 are roots of c2 + 1. The two imaginary roots are M2,2 = ↑i and M2,2 = i. They
lead to the sequences {0,↑i,↑1↑i, i,↑1↑i, i,↑1↑i, i, ...} and {0, i,↑1+i,↑i,↑1+i,↑i,↑1+

i,↑i, ...} respectively.

Points M4,1 are roots of c7 + 4c6 + 6c5 + 6c4 + 6c3 + 4c2 + 2c+ 2. The real root is
M4,1 → ↑1.89291 with sequence {0,↑1.89291, 1.6902, 0.963869,↑0.963869,↑0.963869, ...}.
For the complex roots: M4,1 → ↑1.29636 ± 0.441852i, M4,1 → ↑0.101096 ± 0.956287i and
M4,1 → 0.343907± 0.70062i.
Points M3,2 are roots of c3 + c2 ↑ c+ 1. The real root is minus the tribonacci constant:

M3,2 =
1

3

(
↑1↑ 3

√
19 + 3

≃
33↑ 3

√
19↑ 3

≃
33

)
→ ↑1.83929.

It leads to the sequence {0.,↑1.83929, 1.54369, 0.543689,↑1.54369, 0.543689,↑1.54369, ...}.
For the complex roots we get

M3,2 =
1

3

(
↑1 +

1 + i
≃
3

2

3

√
19 + 3

≃
33 +

1↑ i
≃
3

2

3

√
19↑ 3

≃
33

)
→ 0.419643 + 0.606291i

with sequence {0., 0.419643+0.606291i, 0.228155+1.11514i,↑0.771845+1.11514i,↑0.228155↑
1.11514i,↑0.771845 + 1.11514i,↑0.228155↑ 1.11514i, ...} and

M3,2 =
1

3

(
↑1 +

1↑ i
≃
3

2

3

√
19 + 3

≃
33 +

1 + i
≃
3

2

3

√
19↑ 3

≃
33

)
→ 0.419643↑ 0.606291i

with sequence {0., 0.419643↑0.606291i, 0.228155↑1.11514i,↑0.771845↑1.11514i,↑0.228155+

1.11514i,↑0.771845↑ 1.11514i,↑0.228155 + 1.11514i, ...}.
Points M2,3 are roots of c6 + 2c5 + 2c4 + 2c3 + c2 + 1. The 6 complex roots are M4,1 →
↑1.23923± 0.412602i, M4,1 → ↑0.155788± 1.11222i and M4,1 → 0.395014± 0.555625i.

In summary, we found 1 Misiurewicz point M2,1, 3 points M3,1 and 2 points M2,2, 7 points
M4,1, 3 points M3,2 and 6 points M2,3. That is a total of 22 Misiurewicz points for which the
sum of the indices is smaller than 6. In the figure on the next page we have plotted the 22
Misiurewicz points we obtained so far.

The number Nk,n of Misiurewicz points Mk,n is given by

Nk,n = sn
(
2k→1 ↑ tk,n

)
, (6.8)

where tk,1 = 1 and

tk,n>1 =





1 if kmodn = 1

0 if kmodn ↔= 1
(6.9)
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and where sn is the same function as we found in chapter 4 for the number of period n solutions
of the Mandelbrot set:

sn =
∑

d|n

µ(n/d) · 2d→1 , (6.10)

with µ the Mobius function. The equation (6.8) gives a relation between the number Nk,n of
Misiurewicz points Mk,n and the number of period n solutions of the Mandelbrot set.
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Figure 6.5: Misiurewicz points M2,1, M3,1, M2,2, M4,1, M3,2 and M2,3 for the map z2 + c.

We give some explicit calculations for the calculation of Nk,n:

N2,3 = s3
(
22→1 ↑ t2,3

)
= 3

(
21 ↑ 0

)
= 6 , (6.11)

N3,2 = s2
(
23→1 ↑ t3,2

)
= 1

(
22 ↑ 1

)
= 3 , (6.12)

N4,1 = s1
(
24→1 ↑ t4,1

)
= 1

(
23 ↑ 1

)
= 7 , (6.13)

N4,2 = s2
(
24→1 ↑ t4,2

)
= 1

(
23 ↑ 0

)
= 8 , (6.14)

N4,3 = s3
(
24→1 ↑ t4,3

)
= 3

(
23 ↑ 1

)
= 21 . (6.15)
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The number Nk,n of Misiurewicz points Mk,n are tabulated in next table.

k + n

k
1 2 3 4 5 6 7 8 9 10 11 12 13 14 S

2 0 0

3 0 1 1

4 0 2 3 5

5 0 6 3 7 16

6 0 12 12 8 15 47

7 0 30 24 21 15 31 121

8 0 54 60 48 48 32 63 305

9 0 126 108 120 90 96 63 127 730

10 0 240 252 216 240 192 189 128 255 1712

11 0 504 480 504 432 465 384 384 255 511 3919

12 0 990 1008 960 1008 864 960 768 768 512 1023 8861

13 0 2046 1980 2016 1920 2016 1701 1920 1530 1533 1023 2047 19732

14 0 4020 4092 3960 4032 3840 4032 3456 3840 3072 3072 2048 4095 43559

15 0 8190 8040 8184 7920 8064 7680 8001 6912 7680 6144 6144 4095 8191 95245

In the final row is the sum of numbers of Misiurewicz points for which k+n is a constant, say

m. That is, S =
m→1∑

k=2

Nk,m→k.

Their cumulative sums are shown in the next table.

t 3 4 5 6 7 8 9 10 11 12 13 14 15

t∑

m=3

m→1∑

k=2

Nk,m→k 1
.

6 22 69 190 495 1225 2937 6856 15717 35449 79008 174253
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In the final figure the 15717 Misiurewicz points have been plotted for which the sum of the
indices is 12 or smaller. The Mandelbrot set is also shown in order to illustrate that the
Misiurewicz points form an ‘envelope’ of the Mandelbrot set.
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Figure 6.6: The 15717 Misiurewicz points Mk,n (green) for which k+n ↘ 12 and the Mandel-
brot set (black). Close to the Mandelbrot set the divergence to infinity is slow (orange) and
further away from the Mandelbrot set the divergence is faster (blue).



Appendix A

A series solution

In this appendix we derive a recursion formula of the type vn+1 = avn + bvn→1 with v0 and v1

as initial values. For n ⇐ 2 we successively obtain
v2 = av1 + bv0,
v3 = av2 + bv1 = (a2 + b)v1 + abv0,
v4 = av3 + bv2 = (a3 + 2ab)v1 + (a2 + b)bv0, etc.
For n ⇐ 2 this is

vn = v1

↘n/2→1/2≃∑

k=0

(
n↑ 1↑ k

k

)
an→1→2kbk + bv0

↘n/2→1≃∑

k=0

(
n↑ 2↑ k

k

)
an→2→2kbk . (A.1)

The latter will be proven below by induction. We have to distinguish between n is even and
n is odd. For even n we write n = 2m. Then the equation (A.1) reads

v2m = v1

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk + bv0

m→1∑

k=0

(
2m↑ 2↑ k

k

)
a2m→2→2kbk . (A.2)

For odd n we write n = 2m+ 1. Then equation (A.1) reads

v2m+1 = v1

m∑

k=0

(
2m↑ k

k

)
a2m→2kbk + bv0

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk . (A.3)

Assuming the equations to be true for n = 2m and n = 2m+ 1 we will show it to be true for
n = 2m+ 2. That is we will derive

v2m+2 = v1

m∑

k=0

(
2m+ 1↑ k

k

)
a2m+1→2kbk + bv0

m∑

k=0

(
2m↑ k

k

)
a2m→2kbk . (A.4)

Assuming the equations to be true for n = 2m+ 1 and n = 2m+ 2 we will show it to be true
for n = 2m+ 3. That is we will derive

v2m+3 = v1

m+1∑

k=0

(
2m+ 2↑ k

k

)
a2m+2→2kbk + bv0

m∑

k=0

(
2m+ 1↑ k

k

)
a2m+1→2kbk . (A.5)

127
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For n = 2 the equation (A.2) indeed gives

v2 = v1

0∑

k=0

(
1↑ k

k

)
a1→2kbk + bv0

0∑

k=0

(
↑k

k

)
a→2kbk = av1 + bv0 . (A.6)

For n = 3 the equation (A.3) indeed gives

v3 = v1

1∑

k=0

(
2↑ k

k

)
a2→2kbk + bv0

0∑

k=0

(
1↑ k

k

)
a1→2kbk = (a2 + b)v1 + abv0 . (A.7)

For the induction we substitute the equations (A.2) and (A.3) into the recurrence relation
vn+1 = avn + bvn→1. For n = 2m+ 1 this is

v2m+2 = av2m+1 + bv2m

= av1

m∑

k=0

(
2m↑ k

k

)
a2m→2kbk + abv0

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk+

+ bv1

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk + b2v0

m→1∑

k=0

(
2m↑ 2↑ k

k

)
a2m→2→2kbk

= v1


m∑

k=0

(
2m↑ k

k

)
a2m+1→2kbk +

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk+1


+

+ bv0


m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→2kbk +

m→1∑

k=0

(
2m↑ 2↑ k

k

)
a2m→2→2kbk+1



= v1


a2m+1 +

m∑

k=1

(
2m↑ k

k

)
a2m+1→2kbk +

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk+1


+

+ bv0


a2m +

m→1∑

k=1

(
2m↑ 1↑ k

k

)
a2m→2kbk + bm +

m→2∑

k=0

(
2m↑ 2↑ k

k

)
a2m→2→2kbk+1



= v1



a2m+1 +
m∑

k=1

(
2m↑ k

k

)
a2m+1→2kbk +

m∑

j=1

(
2m↑ j

j ↑ 1

)
a2m+1→2jbj



+

+ bv0



a2m +
m→1∑

k=1

(
2m↑ 1↑ k

k

)
a2m→2kbk + bm +

m→1∑

j=1

(
2m↑ 1↑ j

j ↑ 1

)
a2m→2jbj





= v1


a2m+1 +

m∑

k=1

((
2m↑ k

k

)
+

(
2m↑ k

k ↑ 1

))
a2m+1→2kbk


+

+ bv0


a2m + bm +

m→1∑

k=1

((
2m↑ 1↑ k

k

)
+

(
2m↑ 1↑ k

k ↑ 1

))
a2m→2kbk



(A.8)
By means of Pascal’s rule, (

r

k

)
+

(
r

k ↑ 1

)
=

(
r + 1

k

)
, (A.9)
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it is further reduced to

v2m+2 = v1


a2m+1 +

m∑

k=1

(
2m+ 1↑ k

k

)
a2m+1→2kbk


+

+ bv0


a2m + bm +

m→1∑

k=1

(
2m↑ k

k

)
a2m→2kbk



= v1

m∑

k=0

(
2m+ 1↑ k

k

)
a2m+1→2kbk + bv0

m∑

k=0

(
2m↑ k

k

)
a2m→2kbk .

(A.10)

Indeed the latter is equal to the equation (A.4).
For n = 2m+ 2 we get

v2m+3 = av2m+2 + bv2m+1

= av1

m∑

k=0

(
2m+ 1↑ k

k

)
a2m+1→2kbk + abv0

m∑

k=0

(
2m↑ k

k

)
a2m→2kbk+

+ bv1

m∑

k=0

(
2m↑ k

k

)
a2m→2kbk + b2v0

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk

= v1


m∑

k=0

(
2m+ 1↑ k

k

)
a2m+2→2kbk +

m∑

k=0

(
2m↑ k

k

)
a2m→2kbk+1


+

+ bv0


m∑

k=0

(
2m↑ k

k

)
a2m+1→2kbk +

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk+1



= v1


a2m+2 +

m∑

k=1

(
2m+ 1↑ k

k

)
a2m+2→2kbk + bm+1 +

m→1∑

k=0

(
2m↑ k

k

)
a2m→2kbk+1


+

+ bv0


a2m+1 +

m∑

k=1

(
2m↑ k

k

)
a2m+1→2kbk +mabm +

m→2∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk+1



= v1



a2m+2 +
m∑

k=1

(
2m+ 1↑ k

k

)
a2m+2→2kbk + bm+1 +

m∑

j=1

(
2m+ 1↑ j

j ↑ 1

)
a2m+2→2jbj



+

+ bv0



a2m+1 + abm +
m→1∑

k=1

(
2m↑ k

k

)
a2m+1→2kbk +mabm +

m→1∑

j=1

(
2m↑ j

j ↑ 1

)
a2m+1→2jbj





= v1


a2m+2 + bm+1 +

m∑

k=1

((
2m+ 1↑ k

k

)
+

(
2m+ 1↑ k

k ↑ 1

))
a2m+2→2kbk


+

+ bv0


a2m+1 + (m+ 1)abm +

m→1∑

k=1

((
2m↑ k

k

)
+

(
2m↑ k

k ↑ 1

))
a2m+1→2kbk



(A.11)



130 APPENDIX A. A SERIES SOLUTION

By means of Pascal’s rule it is further reduced to

v2m+3 = v1


a2m+2 + bm+1 +

m∑

k=1

(
2m+ 2↑ k

k

)
a2m+2→2kbk


+

+ bv0


a2m+1 + (m+ 1)abm +

m→1∑

k=1

(
2m+ 1↑ k

k

)
a2m+1→2kbk



= v1

m+1∑

k=0

(
2m+ 2↑ k

k

)
a2m+2→2kbk + bv0

m∑

k=0

(
2m+ 1↑ k

k

)
a2m+1→2kbk .

(A.12)

Indeed the latter is equal to the equation (A.5). This completes the proof.



Appendix B

A binomial identity

In this appendix it will be shown by induction that for a2 + 4b ↔= 0 the equation (1.34),

vn = v1

↘n/2→1/2≃∑

k=0

(
n↑ 1↑ k

k

)
an→1→2kbk + bv0

↘n/2→1≃∑

k=0

(
n↑ 2↑ k

k

)
an→2→2kbk , (B.1)

is identical to the equation (1.37),

vn =
v0g+ ↑ v1
g+ ↑ g→

gn→ ↑ v0g→ ↑ v1
g+ ↑ g→

gn+ , (B.2)

where g is a root of the equation g2 ↑ ag ↑ b = 0.

First we take n = 0. Then the equation (B.2) gives

v0 =
v0g+ ↑ v1
g+ ↑ g→

↑ v0g→ ↑ v1
g+ ↑ g→

=
v0g+ ↑ v0g→
g+ ↑ g→

= v0 . (B.3)

For n = 1 the equation (B.2) gives

v1 =
v0g+ ↑ v1
g+ ↑ g→

g→ ↑ v0g→ ↑ v1
g+ ↑ g→

g+ =
v0g+g→ ↑ v0g→g+

g+ ↑ g→
↑ v1g→ ↑ v1g+

g+ ↑ g→
= v1 . (B.4)

For n = 2 the equation (B.2) gives

v2 =
v0g+ ↑ v1
g+ ↑ g→

g2→ ↑ v0g→ ↑ v1
g+ ↑ g→

g2+ =
v0g+g2→ ↑ v0g→g2+

g+ ↑ g→
↑

v1g2→ ↑ v1g2+
g+ ↑ g→

= ↑v0g→g+ + v1(g+ + g→) = bv0 + av1 .

(B.5)

For n = 3 the equation (B.2) gives

v3 =
v0g+ ↑ v1
g+ ↑ g→

g3→ ↑ v0g→ ↑ v1
g+ ↑ g→

g3+ =
v0g+g3→ ↑ v0g→g3+

g+ ↑ g→
↑

v1g3→ ↑ v1g3+
g+ ↑ g→

= ↑v0g→g+
g2+ ↑ g2→
g+ ↑ g→

+ v1
g3+ ↑ g3→
g+ ↑ g→

= ↑v0g→g+(g+ + g→) + v1(g
2
+ + g+g→ + g2→) = abv0 + (a2 + b)v1 .

(B.6)
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Now we will show that equation (B.2) equals equation (B.1) for any n ⇐ 2.

If n is an even number, n = 2m, the equation (B.1) reads

v2m = v1

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk + bv0

m→1∑

k=0

(
2m↑ 2↑ k

k

)
a2m→2→2kbk , (B.7)

while the equation (B.2) becomes

v2m =
v0g+ ↑ v1
g+ ↑ g→

g2m→ ↑ v0g→ ↑ v1
g+ ↑ g→

g2m+ = bv0
g2m→1
+ ↑ g2m→1

→
g+ ↑ g→

+ v1
g2m+ ↑ g2m→
g+ ↑ g→

. (B.8)

The latter is equal to equation (B.7) if both

g2m→1
+ ↑ g2m→1

→
g+ ↑ g→

=
m→1∑

k=0

(
2m↑ 2↑ k

k

)
a2m→2→2kbk (B.9)

and
g2m+ ↑ g2m→
g+ ↑ g→

=
m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk (B.10)

are true identities.

If n is an odd number, n = 2m+ 1, the equation (B.1) reads

v2m+1 = v1

m∑

k=0

(
2m↑ k

k

)
a2m→2kbk + bv0

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk , (B.11)

while the equation (B.2) becomes

v2m+1 =
v0g+ ↑ v1
g+ ↑ g→

g2m+1
→ ↑ v0g→ ↑ v1

g+ ↑ g→
g2m+1
+ = bv0

g2m+ ↑ g2m→
g+ ↑ g→

+ v1
g2m+1
+ ↑ g2m+1

→
g+ ↑ g→

. (B.12)

The latter is equal to equation (B.11) if both

g2m+ ↑ g2m→
g+ ↑ g→

=
m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk (B.13)

and
g2m+1
+ ↑ g2m+1

→
g+ ↑ g→

=
m∑

k=0

(
2m↑ k

k

)
a2m→2kbk (B.14)

are true identities. Identity (B.13) is equal to identity (B.10) and identity (B.14) is identity
(B.9) with m replaced by m+ 1.

For the induction step we multiply g2m+ ↑ g2m→ by g+ + g→. The result is
(
g2m+ ↑ g2m→

)
(g+ + g→) = g2m+1

+ ↑ g2m+1
→ + g→g+

(
g2m→1
+ ↑ g2m→1

→
)
. (B.15)
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Hence,
g2m+1
+ ↑ g2m+1

→
g+ ↑ g→

= a
g2m+ ↑ g2m→
g+ ↑ g→

+ b
g2m→1
+ ↑ g2m→1

→
g+ ↑ g→

. (B.16)

Assuming the two identities (B.9) and (B.10) are true, we obtain

g2m+1
+ ↑ g2m+1

→
g+ ↑ g→

= a
m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk + b

m→1∑

k=0

(
2m↑ 2↑ k

k

)
a2m→2→2kbk .

(B.17)
This can be elaborated to

g2m+1
+ ↑ g2m+1

→
g+ ↑ g→

=
m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→2kbk +

m→1∑

k=0

(
2m↑ 2↑ k

k

)
a2m→2→2kbk+1

= a2m + bm +
m→1∑

k=1

(
2m↑ 1↑ k

k

)
a2m→2kbk +

m→2∑

k=0

(
2m↑ 2↑ k

k

)
a2m→2→2kbk+1

= a2m + bm +
m→1∑

k=1

(
2m↑ 1↑ k

k

)
a2m→2kbk +

m→1∑

j=1

(
2m↑ 1↑ j

j ↑ 1

)
a2m→2jbj

= a2m + bm +
m→1∑

k=1

(
2m↑ 1↑ k

k

)
a2m→2kbk +

m→1∑

k=1

(
2m↑ 1↑ k

k ↑ 1

)
a2m→2kbk .

(B.18)

By means of Pascal’s rule, (
r

k

)
+

(
r

k ↑ 1

)
=

(
r + 1

k

)
, (B.19)

it is further reduced to

g2m+1
+ ↑ g2m+1

→
g+ ↑ g→

= a2m + bm +
m→1∑

k=1

(
2m↑ k

k

)
a2m→2kbk =

m∑

k=0

(
2m↑ k

k

)
a2m→2kbk . (B.20)

That is, assuming the identities to be true for the powers 2m ↑ 1 and 2m of g+ and g→ we
find the first identity to be true for the power 2m+ 1.

Next we multiply g2m+1
+ ↑ g2m+1

→ by g+ + g→ and elaborate the result to

g2m+2
+ ↑ g2m+2

→
g+ ↑ g→

= a
g2m+1
+ ↑ g2m+1

→
g+ ↑ g→

+ b
g2m+ ↑ g2m→
g+ ↑ g→

. (B.21)
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Assuming the identities (B.13) and (B.14) are true, we obtain

g2m+2
+ ↑ g2m+2

→
g+ ↑ g→

= a
m∑

k=0

(
2m↑ k

k

)
a2m→2kbk + b

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk

=
m∑

k=0

(
2m↑ k

k

)
a2m+1→2kbk +

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk+1

= a2m+1 +mabm +
m∑

k=1

(
2m↑ k

k

)
a2m+1→2kbk +

m→2∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk+1

= a2m+1 +mabm +
m∑

k=1

(
2m↑ k

k

)
a2m+1→2kbk +

m→1∑

j=1

(
2m↑ j

j ↑ 1

)
a2m+1→2jbj

= a2m+1 +mabm + abm +
m→1∑

k=1

(
2m↑ k

k

)
a2m+1→2kbk +

m→1∑

k=1

(
2m↑ k

k ↑ 1

)
a2m+1→2kbk .

(B.22)

By means of Pascal’s rule it further reduces to

g2m+1
+ ↑ g2m+1

→
g+ ↑ g→

= a2m+1 + (m+ 1)abm +
m→1∑

k=1

(
2m+ 1↑ k

k

)
a2m+1→2kbk

=
m∑

k=0

(
2m+ 1↑ k

k

)
a2m+1→2kbk .

(B.23)

That is, assuming the identities to be true for the powers 2m and 2m + 1 of g+ and g→ we
find the identity to be true for 2m+ 2. This completes the proof.



Appendix C

Another binomial identity

In this appendix it will be shown by induction that for a2 + 4b = 0 the equation (1.34),

vn = v1

↘n/2→1/2≃∑

k=0

(
n↑ 1↑ k

k

)
an→1→2kbk + bv0

↘n/2→1≃∑

k=0

(
n↑ 2↑ k

k

)
an→2→2kbk , (C.1)

is identical to the equation (1.38),

vn = nv1g
n→1 ↑ (n↑ 1)v0g

n , (C.2)

where g is a root of the equation g2 ↑ ag ↑ b = 0.

First we take n = 0. Then the equation (C.2) gives

v0 = 0↑↑v0g
0 = v0 . (C.3)

For n = 1 the equation (C.2) gives

v1 = v1g
0 ↑ 0 = v1 . (C.4)

For n = 2 the equation (C.2) gives

v2 = 2v1g ↑ v0g
2 = av1 ↑

a2

4
v0 = bv0 + av1 . (C.5)

Now we show by means of induction that equation (C.2) equals equation (C.1) for any n ⇐ 2.
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If n is an even number, n = 2m, the equation (C.1) reads

v2m = v1

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk + bv0

m→1∑

k=0

(
2m↑ 2↑ k

k

)
a2m→2→2kbk

= av1

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→2→2kbk + bv0

m→1∑

k=0

(
2m↑ 2↑ k

k

)
a2m→2→2kbk

= av1

m→1∑

k=0

(
2m↑ 1↑ k

k

)
(a2)m→1→kbk + bv0

m→1∑

k=0

(
2m↑ 2↑ k

k

)
(a2)m→1→kbk

= av1

m→1∑

k=0

(
2m↑ 1↑ k

k

)
(↑4b)m→1→kbk + bv0

m→1∑

k=0

(
2m↑ 2↑ k

k

)
(↑4b)m→1→kbk

= av1

m→1∑

k=0

(
2m↑ 1↑ k

k

)
(↑4)m→1→kbm→1 + bv0

m→1∑

k=0

(
2m↑ 2↑ k

k

)
(↑4)m→1→kbm→1

= abm→1v1

m→1∑

k=0

(
2m↑ 1↑ k

k

)
(↑4)m→1→k + bmv0

m→1∑

k=0

(
2m↑ 2↑ k

k

)
(↑4)m→1→k ,

(C.6)

while the equation (C.2) becomes

v2m = 2mv1gg
2m→2 ↑ (2m↑ 1)v0g

2m = mav1(g
2)m→1 ↑ (2m↑ 1)v0(g

2)m

= mabm→1v1(↑1)m→1 ↑ (2m↑ 1)bmv0(↑1)m .
(C.7)

The latter is equal to equation (C.6) if both

(2m↑ 1)(↑1)m→1 =
m→1∑

k=0

(
2m↑ 2↑ k

k

)
(↑4)m→1→k (C.8)

and

m(↑1)m→1 =
m→1∑

k=0

(
2m↑ 1↑ k

k

)
(↑4)m→1→k (C.9)

are true identities.
If n is an odd number, n = 2m+ 1, the equation (1.34) reads

v2m+1 = v1

m∑

k=0

(
2m↑ k

k

)
a2m→2kbk + bv0

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→1→2kbk

= v1

m∑

k=0

(
2m↑ k

k

)
a2m→2kbk + abv0

m→1∑

k=0

(
2m↑ 1↑ k

k

)
a2m→2→2kbk

= v1

m∑

k=0

(
2m↑ k

k

)
(a2)m→kbk + abv0

m→1∑

k=0

(
2m↑ 1↑ k

k

)
(a2)m→1→kbk

= v1

m∑

k=0

(
2m↑ k

k

)
(↑4b)m→kbk + abv0

m→1∑

k=0

(
2m↑ 1↑ k

k

)
(↑4b)m→1→kbk

= bmv1

m∑

k=0

(
2m↑ k

k

)
(↑4)m→k + abmv0

m→1∑

k=0

(
2m↑ 1↑ k

k

)
(↑4)m→1→k ,

(C.10)
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while the equation (C.2) becomes

v2m+1 = (2m+ 1)v1g
2m ↑ 2mv0g

2m+1 = (2m+ 1)v1(g
2)m ↑ 2mv0g(g

2)m

= (2m+ 1)bmv1(↑1)m +mabmv0(↑1)m→1 .
(C.11)

The latter is equal to equation (C.10) if both

m(↑1)m→1 =
m→1∑

k=0

(
2m↑ 1↑ k

k

)
(↑4)m→1→k (C.12)

and

(2m+ 1)(↑1)m =
m∑

k=0

(
2m↑ k

k

)
(↑4)m→k (C.13)

are true identities. Identity (C.12) is equal to identity (C.9) and identity (C.13) is identity
(C.8) with m replaced by m+ 1.

For the induction step we consider the expression

m∑

k=0

(
2m↑ k

k

)
(↑4)m→k = 1 +

m→1∑

k=0

(
2m↑ k

k

)
(↑4)m→k . (C.14)

Assuming the identities (C.8) and (C.9) are true, we obtain

m∑

k=0

(
2m↑ k

k

)
(↑4)m→k

= 1↑ 4m(↑1)m→1 +
m→1∑

k=0

(
2m↑ k

k

)
(↑4)m→k + 4

m→1∑

k=0

(
2m↑ 1↑ k

k

)
(↑4)m→1→k

= 1↑ 4m(↑1)m→1 +
m→1∑

k=1

(
2m↑ k

k

)
(↑4)m→k ↑

m→1∑

k=1

(
2m↑ 1↑ k

k

)
(↑4)m→k

= 1↑ 4m(↑1)m→1 +
m→1∑

k=1

(
2m↑ k

k

)
↑
(
2m↑ 1↑ k

k

)
(↑4)m→k .

(C.15)

By means of Pascal’s rule, it is further reduced to

m∑

k=0

(
2m↑ k

k

)
(↑4)m→k = 1↑ 4m(↑1)m→1 +

m→1∑

k=1

(
2m↑ 1↑ k

k ↑ 1

)
(↑4)m→k

= 1↑ 4m(↑1)m→1 +
m→2∑

j=0

(
2m↑ 2↑ j

j

)
(↑4)m→1→j

= ↑4m(↑1)m→1 +
m→1∑

j=0

(
2m↑ 2↑ j

j

)
(↑4)m→1→j

= ↑4m(↑1)m→1 + (2m↑ 1)(↑1)m→1 = (↑2m↑ 1)(↑1)m→1 = (2m+ 1)(↑1)m .

(C.16)
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That is, if identity (C.8) is true for m then it is also true for m+ 1.
Next we consider the expression

m∑

k=0

(
2m+ 1↑ k

k

)
(↑4)m→k . (C.17)

Assuming the identities (C.12) and (C.13) are true, we obtain

m∑

k=0

(
2m+ 1↑ k

k

)
(↑4)m→k

= (2m+ 1)(↑1)m +
m∑

k=0

(
2m+ 1↑ k

k

)
(↑4)m→k ↑

m∑

k=0

(
2m↑ k

k

)
(↑4)m→k

= (2m+ 1)(↑1)m +
m∑

k=0

(
2m+ 1↑ k

k

)
↑
(
2m↑ k

k

)
(↑4)m→k

= (2m+ 1)(↑1)m +
m∑

k=1

(
2m+ 1↑ k

k

)
↑
(
2m↑ k

k

)
(↑4)m→k .

(C.18)

By means of Pascal’s rule, it is further reduced to

m∑

k=0

(
2m+ 1↑ k

k

)
(↑4)m→k = (2m+ 1)(↑1)m +

m∑

k=1

(
2m↑ k

k ↑ 1

)
(↑4)m→k

= (2m+ 1)(↑1)m +
m→1∑

j=0

(
2m↑ 1↑ j

j

)
(↑4)m→1→j

= (2m+ 1)(↑1)m +m(↑1)m→1 = (2m+ 1)(↑1)m ↑m(↑1)m = (m+ 1)(↑1)m .

(C.19)

That is, if identity (C.12) is true for m then it is also true for m+1. This completes the proof.



Appendix D

A Hénon eigenvalue inequality

The goal is to show for 4a > ↑(1↑ b)2 that ↽4 > 1, where

↽4 = ↑aL→ +
√
a2L2

→ + b , (D.1)

and

L→ =
b↑ 1↑

√
(1↑ b)2 + 4a

2a
. (D.2)

By means of w :=
√

(1↑ b)2 + 4a the latter equation can be written as

2aL→ = b↑ 1↑ w . (D.3)

For ↽4 we then obtain

2↽4 = ↑2aL→ +
√
4a2L2

→ + 4b

= 1↑ b+ w +
√
(1↑ b+ w)2 + 4b

= 1↑ b+ w +
√
(1↑ b)2 + 2(1↑ b)w + w2 + 4b

= 1↑ b+ w +
√
(1 + b)2 + 2(1↑ b)w + w2

= 1↑ b+ w +
√
(1 + b)2 ↑ 2bw + 2w + w2

= 1↑ b+ w +
√
(1 + b)2 ↑ 2(1 + b)w + 4w + w2

= 1↑ b+ w +
√
(1 + b↑ w)2 + 4w .

(D.4)

For 4a > ↑(1↑ b)2 we have w > 0. As a consequence

2↽4 > 1↑ b+ w +
√

(1 + b↑ w)2

2↽4 > 1↑ b+ w + 1 + b↑ w

2↽4 > 2

↽4 > 1 .

(D.5)

This completes the proof.
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