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Preface

If somebody with some technical background is, for example, interested in the blockchain
technology or a high school student, as another example, wants to write a practical assign-
ment on cryptography, they will often face the following problem: already at the beginning
of their investigation they read that it has something to do with the multiplication of points
on modular elliptic curves over finite fields. They immediately ask themselves: what is an
elliptic curve?, what is a modular elliptic curve? and what is the multiplication of points on a
modular elliptic curve? This is already confusing, even more so since a modular elliptic curve
does not look like a curve at all. Other questions which arise are: what is a finite field or
even a field? A persistent student will find that a field has something to do with a group and
that a group is something with properties like associativity, commutativity and distributivity.
So, already after a few sentences they are drowning in concepts which are new and therefore

difficult to them. At this point they may give up.

In the search for a less difficult book one might face the following problem: either one finds
popular introductions with almost no mathematics or one arrives at university courses and
books written by professors. The first are simple but do not satisfy the desire of the reader
to understand things mathematically. The second are intended for university students. They
are formal and technical, as they should. However, they are too difficult for readers with less
mathematical experience in the field. A book which fills the gap should be mathematical on a
very elementary level. The present book is intended to be a simple and informal introduction
to the mathematics behind cryptography, cryptocurrency and blockchain technology. With
simple is meant that a high school level of mathematics (together with the willingness to study)
suffices to understand the contents. With informal is meant that the book is not organized as
an enumeration of theorems and proofs. Instead it rather is a random walk through numbers
en elliptic curves, some patterns are recognized and captured into relations. Proofs of these

relations are omitted, except for a few obvious cases.

Since the contents in this book is very elementary and known for ages, citations are consid-
ered redundant. Citations were also omitted to avoid a technical and intimidating impression.
However, it should be mentioned that I learned a lot from the book of Washington [1], the
book of Koblitz [2] and the book of Silverman and Tate [3]. Of course I also obtained informa-
tion from the internet. For this I wish to mention the following two references: An instructive
explanation of the math behind the bitcoins is given by Rykwalder [4]. To understand the
blockchain basics a 1blue3brown youtube video [5] was very helpful.

Together with what I already knew, I felt sufficiently equipped to write things in my own

words. At every step I tried to put myself in the shoes of a layman. I also take sideways,



probably to show the reader the beauty of mathematics. The result is a somewhat unique
presentation of the matter. The present book has just been written for educational purposes.
It is intended for high school students with talent for mathematics and for readers with (a

little more than) a high school level mathematical background.

Acknowledgement I wish to thank Ron Westdijk for his improvements and sugges-

tions to the manuscript.

Februari 2025, Hans Montanus
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Chapter 1

Introduction to group theory

1.1 The group Cs

We start considering an equilateral triangle, see the figure. The arrows in the edges cause the

triangle to have an ‘orientation’.

The triangle is unaltered if it is rotated anti-clockwise over 27/3 around the barycenter Z,
except that the figures at the corners have moved one position. Let us denote this rotation
by r1. The triangle also is unaltered if it is rotated anti-clockwise over 47/3. The figures at
the corners then have moved two positions. This rotation is denoted as ry. With a rotation
angle of 2w both the triangle and the figures at the corners are rotated onto itself. With this
full turn, which we could denote as 73, nothing has changed. The result is the same as a
rotation over 0 (no rotation at all ). This is called a unit rotation (identity) and denoted as
ro (sometimes also as e). First applying rotation r; and then rotation 7o is denoted as ror;.
The result is the unit rotation: rer; = rg. Similarly we have riry = 7o, rir1 = (7“1)2 = 7o,
rorg = (r9)? = 11, r170 = 71, ToT2 = T2, etc. One can also take longer sequences of rotations,
for example ririre. Since rirg = rg we get ri(rire) = rirg = r1. We could also have chosen
to replace r1ry by 7o, then we get (r171)re = rore = r1. The result does not depend on the

order of the replacement: ri(riry) = (rir1)re. This property is known as associativity.
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One can also rotate clockwise. It is the inverse (opposite) of rotating anti-clockwise. The
inverse of 71 is written as 7| ! Since a rotation followed by its inverse rotation is in effect no
rotation at all we have rl_lrl = rg. Since also ror; = rg we obtain 7"1_1 = ro. Of course, we
could have written the latter identity immediately just by looking at the action of r| Land o

to the triangle. Similarly there holds rs V= and Ty L= .
The set {ro,r1,72} is a GROUP because it satisfies the following demands:
1. the set contains a unit element, ro (in general e)

2. each element of the set has an inverse which is also an element of the set

3. associativity is satisfied, that is for each triple of elements a, b en ¢ of the set there holds

(ab)c = a(bc).

A set is a group if all the three demands are satisfied. A group is called ‘Abelian’ if for each
pair of elements a en b of the group there holds ab = ba. For instance, the triangle group
{ro,r1, 72} is Abelian. The bookkeeping of the action of subsequent group elements is usually

by means of a Cayley table. For the Abelian group {rg, 1,72} it is as follows:

7o ™ 2

To To 1 T2

1 1 T2 To

T2 T2 To 1

The group {rg,r1,72} can also be written as {(r1)°,r1, (r1)?}. The element r; therefore is a
generator of the group. The order of 71 is 3 (it generates 3 group elements). The element 7o
also is a generator of the group {rg,r1,72}. The cyclic group {rg, 71,72} is denoted as C3. The
number of elements in a group is the order of a group. In summary: the group Cs is Abelian,

it has order 3, and 1 generator (1 or rq) is sufficient to generate the group.

Rotations can be described with matrices. For the coordinates (x,y) of a point on a cir-

cle with radius r and its centre at the origin we have

(.’B):(T’C.OSO&> ’ (1.1)
Y rsina

where « is the angle with respect to the x axis, see the next figure.
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If the point (z,y) is rotated anti-clockwise over an angle 6, then the new coordinates are

'\ [ rcos(a+6) \ [ rcosacosf —rsinasing (12)

y )\ rsinfw+6) |\ rsinacosd+rcosasinf '
'\ [ cosf —sinf rcosa \ [ cosf —sind x (13)
v ]\ sin®  cosé rsina |\ sin@  cos# y | .

The 2 x 2 matrix
cosf) —sinf
. (1.4)
sin 6 cos 6
is for an anti-clockwise rotation over an angle 6. The determinant of the matrices is 1. The

matrices for rotations over 0, 27/3 en 47/3 are denoted as Ry, R; respectively Ry. Explicitly:

1 0 L _1./3 1 1/3
Ry = , R = 2 2 , Ry = 2 2 ) 1.5
0 (01) 1 (m ) : (—;3 - ()

From matrix multiplication it follows (R1)? = Ra, (R2)?> = Ry and R1Ry = RyRy = Ry. This

means that the group of matrices { Ry, R1, Ro} is similar to {rg,r1,7r2}:

rg < RO
r— Ry . (1.6)
r9 < Ro

With this one to one relation the groups have the same group structure: the Cayley table is
similar. The group {Ro, R1, Ra2}, which we will call Mj, therefore is isomorphic to the group
C5. The group M3 is just another representation of the group C5: the matrix representation.

The isomorphism between C'5 and Mj is expressed as C5 = Ms.
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1.2 The group C4

Here we consider a square with arrows in the edges, see the figure.

4 B 3
Y . A
7
1 > 2

The square has a fourfold rotational symmetry. The anti-clockwise rotations around the
barycenter Z over 0, /2, m en 3w/2 are denoted as rg, r1, ro respectively r3. The square
also has point symmetry. That is, reflection in point Z leads to the same square. However, if
you look what happens to the figures at the corners you will notice that the point reflection
is actually the same as the rotation 3. The group {ro,r1, 72,73} is Abelian with order 4. The
group is generated by r; which has order 4. The group is denoted as Cy. The Cayley table is

as follows:

To 1 T2 T3

To To 1 T2 3

1 r1 T2 T3 To

T2 T2 T3 7o 1

3 3 To 1 T2

As for the triangle the rotations can be described with matrices. The matrices corresponding

to a rotation over 0, 7/2, m en 37/2 are denoted Ry, R, Ry respectively Rs:

10 0 -1 ~1 0 0 1
RO:(O 1)’ Rl:(l 0)’ R2:(0 —1>’ R3:<—1 o)' (1)

The set matrices {Ry, R1, R, R3} form a group which we will call My. As the reader may
check Cy = My.
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1.3 The group Dj3

Again we consider an equilateral triangle, but this time without the arrows in the edges, see

the figure. The dashed lines are the medians.

The triangle has the same rotation symmetry as the triangle in section 1.1. Again, the rotations
will be denoted as rg,r1 en ro. Because of the absence of arrows the triangle also has mirror
symmetry. For example, reflection in median & leads to the same triangle, except that the
figures 2 and 3 at the corners are interchanged. This reflection will be denoted as sg. The
reflection in [ and m is denoted as s; respectively so. The complete symmetry group is
{ro, 71,72, 50, $1, s2} and has order 6. This so called dihedral group is denoted as Ds. The
Cayley table is as follows:

7o 1 T2 S0 S1 52

To To 1 T2 50 51 52

1 1 T2 To S1 52 50

T2 T2 7o 1 82 S0 51

S0 S0 52 S1 To T2 1

51 S1 S0 52 1 To 2

52 52 S1 S0 T2 1 To

The combined actions r1sg (read: first reflection in k followed by a rotation over 27/3) has
the same result as solely s, thus 7159 = s1, see the table. Similarly we find sgr; = s9. Since
r189 # Sor1 the group Ds is not Abelian. For the multiplication table it is not necessary to

visualise all combinations of rotations and reflections. Instead one can explore the algebra
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(rules of combined actions). For instance, from ri1sg = s; it follows rorisg = res1. Since

ror1 = rg we find ro9r189 = r9Sg = sg which results in ros; = sg. Convenient rules are:
Tir; = Titj, TiSj = Sitj, SiTj = Ti—j, 8Sj = Ti—j . (18)

Since i + j and i — j always have to be 0, 1 or 2 one has to subtract 3 from i+ j ifi+j > 3
and add 3 to i — j if i — j < 0. That is, we count modulo 3.

Since so = sor1 and 51 = sgro = s1(r1)? the group Ds is generated by 2 generators: 7
and sg. Explicitly: D3 = {(r1)%, 71, (r1)2, s0, 5071, 50(r1)?}. The order of sg is 2. The group
Cy = {ro, so} (with generator sp) is a subgroup of Ds. The group C3 = {rg, r1, 72} (with gen-
erator 1) is a subgroup of D3. The order of Dj is the product of the order of its 2 generators.

Reflections can also be expressed by matrices. The coordinates (z,y) of a point on a cir-

cle with radius r and its centre at the origin can be written as

(x) _ (rc.osoc) (1.9)
Y rsina

If the point (x,y) is reflected in a line which forms an angle 6 with the horizontal axis, then

the new coordinates are

'\ [ rcos(20 —a) \ [ rcosacos(20)+ rsinasin(20) (1.10)
y )\ rsin(20—a) )\ rcosasin(20) — rsin o cos(26) '
or

( x > _ ( ({05(29) — sin(20) ) ( TC‘OSCY ) _ ( 098(29) sin(26) ) ( x ) )
y' sin(20)  cos(26) 7rsin « sin(20) — cos(20) y

The 2 x 2 matrix
( c?s(29) sin(20) ) (1.12)
sin(260) —cos(20)

is the matrix for reflection in a line which forms an angle 6 with the horizontal axis. For the

lines k, [ and m the angle 6 is equal to 30°, 90° and 150°. The corresponding matrices, which

we denote as Sy, Sp respectively Sy, are:

V3 -1 0 1 -3V3
So:( 2 ) 51:< ) 52:<2 2 ) (1.13)
V3 =3 0 1 —3V3 =3

With matrix multiplication it can be verified that for instance (Sp)? = Ro, SoS1 = Ry and
S1S2 = Re with Ry, Ry and Ry as given in the first section. The set { Ry, R1, R2, So, S1, S2}
is a group which we will denote as Mg. The Cayley table has the same structure as the table
for D3. thus Mg = Ds.

D=
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1.4 The group Dy,

We consider a square, but this time without the arrows in the edges, see the figure. The square
has the same rotation symmetry as the square in C3. Because of the absence of arrows the

square also has mirror symmetry. The 4 lines of reflection are shown as dashed lines.

4 3

The rotations are denoted as rg, r1, 79 en rg and the reflections in the lines k, [, m and n
as So, S1, S2 respectively s3. The complete symmetry group is {ro, 1,72, 3, S0, $1, S2, 3} and

has order 8. This non-Abelian group is denoted as Dy. The Cayley table is as follows:

To | T1 | T2 | T3 | S0 |S1|S2]| 83
To|ro|”r1| 72|73 | S0 |S1|S2]S3
Ti|ri|r2 | 73| 70| S1|S2]|S3]S0
To | T2 | T3 |To | T1 |82 |83 |80 S1
3|73 |To|T1 | T2 |83 | S0 | S1|S2
So|So|S3|S2|S1|To|T3|T2|T1
S1|S1|So|S3|S2|T1|To| T3 |T2
S2 [ S2 |81 |S0|S3|7T2|7T1|7T0 |73
S3 [ S3|S2(S1 S0 |73 |72 |T1|T0

The group Dy is generated by 2 generators: r1 and sg. Explicitly:

Dy = {(r1)°% r1, (r1)?, (1), 50, sor1, s0(r1)?, so(r1)3}.

The rotation matrices are as in section 1.2. The matrices for reflection are:

0 —1 1 0
ae (M) e (31 0) s (% ) me (2 0)

As can be verified, the group { Ry, R1, R2, R3, S0, S1, 52,53} is isomorphic to Dy.

01
10

-1 0
0 1
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1.5 The group S

With the rotation r; of D3 all corners move on one step: 1 moves to 2, 2 moves to 3 and 3
moves to 1. By means of cycles this is written as (123). For the rotation 75 of D3 corner 1
moves to 3, 3 moves to 2 and 2 moves to 1. This is expressed with the 3-cycle (132). The
reflection sy of D3 does interchange corners 2 and 3 while corner 1 is unaffected: 2 moves
to 3, 3 moves to 2 and 1 ‘moves to’ 1. This is the 3-cycle (1)(23). The latter is denoted
more briefly with the 2-cycle (23), where it is understood that each missing numbers is in a
I-cycle. The unit element rq is in cycle notation (1)(2)(3) or shortly (). As can be verified,
(123)=1(231)=(312) and (23) = (32).

Each element of D3 takes 1 to a, 2 to b and 3 to ¢, where a, b and ¢ are 1, 2 or 3 such
that a # b, a # c and b # c¢. For a,b,c there are 6 possibilities: 1,2,3 and 1,3,2 and 2,1,3 and
2,3,1 and 3,1,2 and 3,2,1. Since a, b, ¢ are a permutation of 3 different numbers, we have 3! = 6
different permutations and thus 6 possibilities. The group S5 is the permutation group for 3
different numbers. So, the group S3 has order 3! = 6. To each element of S3 corresponds one

element of D3, see the next table.

a,b,c element of S3 | element of Dy
1,2,3 () 70
1,3,2 (23) S0
2.1,3 (12) s1
2.3,1 (123) -
3,1,2 (132) r9
3,2,1 (13) S9

De cycle (abedef...xyz) has the same effect as (ab)(bedef...xyz). Indeed, (bedef...xyz) moves
everything one position except that a ‘moves to’ @ and z moves to b. Afterwards the cycle
(ab) moves a to b and z to a. As a consequence the number positions are identical to the ones
after (abedef...xyz). Therefore, each n-cycle (n > 2) can be written as a product of 2-cycles:
(abcdef...xyz) = (ab)(be)(cd)(de)...(zy)(yz). Furthermore (ab)(ab) = () since two reflections
cancel each other. With these rules it follows for instance that (123) = (12)(23), or r1 = s10.
Also (123)(132) = (312)(213) = (31)(12)(21)(13) = (31)(13) = () or riry = 7.

A consequence of the one-to-one correspondence between de cycles of S3 and the elements

of D3 is that S3 and D3 are isomorphic: S3 = Dg.
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1.6 The group 5,

13

For n = 4 the permutation group has 4! = 24 elementen, while D4 has 8 elements. Therefore

is D4 one of the subgroups of Sy. The Cayley table for Sy will not be shown since it is a 24

X 24 table. Instead, in the next table the 24 elements of S4 are shown and, where applicable,

the corresponding element of Dy.

a,b,c,d element of Sy | element of Dy
1,2,3,4 () 0
1,2,4,3 (34)

1,3,2,4 (23)

1,3,4,2 (234)

1,4,2,3 (243)

1,4,3,2 (24) S0
2,1,3,4 (12)

2,1,4,3 (12)(34) S1
2,3,1,4 (123)

2,3,4,1 (1234) r1
2,4,1,3 (1243)

2,4,3,1 (124)

3,1,2,4 (132)

3,1,4,2 (1342)

3,2,1,4 (13) 89
3,2,4,1 (134)

3,4,1.2 (13)(24) r9
3,421 (1324)

41,23 (1432) r3
4,1,3,2 (142)

4,2,1,3 (143)

4,2.3,1 (14)

4,3,1,2 (1423)

4,3,2,1 (14)(23) S3
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1.7 Klein four-group V

We consider a rectangle without arrows, see the figure. The lines of reflection are dashed.

4 3

A

The rectangle is mapped onto itself by a rotation over 0, a rotation over m, a reflection in
the horizontal axis and a reflection in the vertical axis. They are denoted as rg, r1, S, and
sy respectively. The group {ro, 71, sz, Sy} has order 4 and is known as the Klein four-group,

denoted as V. De Cayley table is as follows:

To | Sz | Sy | T1

o | To | Sz | Sy | T

Se Sy To T1 Sy

Sy Sy 71 To Sy

T1 1 Sy Sy To

We also consider the set {1,3,5,7}. Multiplication is modulo 8 (that is, subtract multiples of
8 until the result is 0, 1, 2, 3, 4, 5, 6 or 7). The Cayley table is
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The two previous Cayley tables have the same structure. Although rotations and reflections
may seem to have nothing to do with multiplications modulo 8, the Cayley tables learns that

{ro,r1, sz, sy} and {1,3,5,7} are isomorphic.

1.8 The group Z/nZ

The cyclic group Z/nZ (also written as Z,) is the set {0, 1, ...,n — 1} where addition is modulo
n. For example, Z/37 = {0,1, 2} where addition is modulo 3. The Cayley table for Z/37Z is

The table has the same structure as for Cs, so C3 = Z/37Z. In general C,, = Z/nZ for all n.

The general linear group GL(n,F) is a group of n X n invertible (non-zero determinant)
matrices with matrix elements in F. [F can for instance be the complex numbers C or the reals
R. F can also be Z/nZ. The special linear group SL(n,F) is a group of n X n matrices with
determinant equal to 1 and with matrix elements in F. Also here F can be Z/nZ. In words,
modular counting can also be applied to matrix elements. For instance, GL(2,7Z/37Z) is a
group of 2 x 2 matrices with matrix elements in Z/37Z. Ignoring the determinant this would
lead to 3% = 81 possible matrices. A non-zero determinant, calculated modulo 3, reduces the
number of possible matrices to 48. For the group SL(2,Z/3Z) this is further reduced to 24.
As another example we consider the group GL(2,Z/27Z), which is identical to SL(2,Z/2Z).
Ignoring the determinant this would lead to 2* = 16 possible matrices. A non-zero determi-

nant, calculated modulo 2, reduces the number of possible matrices to 6. These 6 different

10 0 1 11
T o L R S
Bo=<(1)(1)>, Blz<1(1)>, Bz=<(1)1>. (1.16)

The Cayley table for these matrices have the same structure as Ss3: GL(2,Z/2Z) = Ss3. Since
83 = D3 also GL(2,Z/QZ) = D3.

matrices are:
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1.9 Number of groups of order n

In all the tables shown an element never occurs more than once in a row (or in a column). The
reason for this is as follows. Consider a group consisting of the different elements {a, b, ¢, d, ...}.
Suppose that b followed by a has the same result as ¢ followed by a. That would imply ab = ac.
Since each element of a group has an inverse, we have ab = ac — a"'ab = a " lac — b = c.

The latter contradicts the initial assumption of b and ¢ being different elements.

The question arises: how many groups of order n have a different, not isomorphic, Cayley
table? Without specifying them we denote the elements as e, f, g, etc., where e is the unit

element. For order 1 there is just 1 element: e. So, there is just 1 table possible:

e

e e

For order 2 we have: {e, f}. There is just 1 table possible, isomorphic to the table of Z/2Z:

e | f
elelf
flf]e

For order 3 there are 3 elements: {e, f,g}. To create the table f2 = e is not possible. The
only possibility, f2 = g, leads to 1 table, which is isomorphic to Z/3Z:

el flyg
elel| flg
flf]la)|e
glgle|f

For order 4 there are 4 elements: {e, f,g,h}. The table can be partly filled:

e| flg|h
elel| flgl|h

ISl I ST
S |

To complete the row for f we have three options. The first is f2 = g. The requirement that
each element occurs only once in a row or column limits the options for further filling the

table to just one possibility:
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e| flg|h
elelflg|h
fFlflg|h]e
glg|hlelf
hlh|lel| flg

With e <+ 0, f > 1, g <> 2 and h > 3 one sees the table is isomorphic to Z/47Z.

For the second option, f2 = h, one is forced to the following table:

el flglh
elelflg|h
flflh|e

glg|el|h|f
hlh|lg]| f|e

That the latter table also is isomorphic to Z/47Z can be seen by interchanging the rows and
columns for g and h followed by replacing g for A and h for g. It can also be seen from the
elements following cyclic from f: f = f', h=f2, 9= fh=f3, e= fg = f

For the third option, f2 = e, it turns out we have two possibilities for further filling:

el flgl|h el flglh
elel flglh elel flglhn
flrflelhly flflelh
glyg|h|[f]e glg|hlelf
hlh|glelf hlh|gl|fle

The left and right table are isomorphic to Z/4Z respectively V. So, there are 2 groups of
order 4: Z/4Z and V. V is the smallest non-cyclic group. Cyclic groups are always Abelian.
Non-cyclic groups are either Abelian or non-Abelian. The non-cyclic group V' is Abelian while,

for instance, the non-cyclic group Ds3 is non-Abelian.

For order 5 one finds only one table and this table is isomorphic to Z/5Z. For order 6
one finds two tables: one isomorphic to Z/6Z and one isomorphic to D3. Ds is the smallest

non-Abelian group.

If the order of a group is a prime p, there is just one table and this table is isomorphic
to Z/pZ.
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1.10 Subgroups and classes

A subgroup is a subset of the group which satisfies the group conditions. In the Cayley tables
for V and D3 the members seem to be divided in blocks: 2 x 2 blocks for V and 3 x 3 blocks
for D3. In V is {e, f} a subgroup of order 2. Also {e, g} and {e, h} are subgroups of order 2.
The unit element e is a subgroup of order 1. The order of a subgroup is a divisor of the order
of the group. A group whose order is a prime p can only have e as a subgroup. A group is

always a subgroup of itself. We will illustrate subgroups and classes for Ds.

The group D3 has one subgroup of order 1: r(, three subgroups of order 2: {rg, so}, {ro, $1},{70, S2},
one subgroup of order 3: {rg,r1,72} and one subgroup of order 6: {rg,r1,72, S0, $1,52}. For

1

D3 we can calculate the result of grig~", where g runs through all the elements of Ds. Thus

7“07“17"51, rlrlrl_l, 7"27“17"2_17 sorlsal, slrlsl_l and 321"132_1. The result is either r{ or ro. For

Lis either 7y or ro. The set {ry, 72} therefore is a conjugacy class. Similarly

each g also grog~
one finds that {sg, s1, s2} is a conjugacy class. The unit element, r, also is a conjugacy class.
A subgroup consisting of complete conjugacy classes is called a normal subgroup. For Dj is
{ro, 71,72} anormal subgroup. The subgroup {rg, so} is not a normal subgroup. The subgroup
{ro} is a normal subgroup Ds; a unit element always is a normal subgroup. Dj is a normal

subgroup of itself; a group is always a normal subgroup of itself.



Chapter 2

Modular Arithmetic

2.1 Some number theory

In number theory an important role is played by the prime numbers. The prime-counting
function 7(z) counts the number of primes smaller than or equal to . For instance, 7(11) =5

since there are 5 primes (2, 3, 5, 7 and 11) smaller than or equal to 11. A well known
x 1

approximation for 7(z) is a(x) = s A better approximation is Li(x) = / ﬁdt, which
nx 5 In

requires a numerical evaluation. A convenient approximation is

w(z) = —— (1 + 1> . (2.1)

zlnx Inz

In the figure below all four functions are shown or < 1000, «(z) in blue, Li(z) in orange,

p(x) in green and 7(x) in black.
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For x > 8- 103 the approximation Li(z) performs on average better than u(z). For large z

the performance of three approximations are tabulated:

10" a(z)/m(z) Li(z)/m () (@) /m(z)
10" 1.08574 1.28011 1.55727
102 0.86859 1.16324 1.05720
10° 0.86170 1.05098 0.98644
10% 0.88343 1.01309 0.97935
10° 0.90553 1.00383 0.98419
106 0.92209 1.00164 0.98884
107 0.93355 1.00051 0.99147
108 0.94224 1.00003 0.99339
10? 0.94901 0.99996 0.99481
1010 0.95438 0.99995 0.99583
10t 0.95874 0.99992 0.99659
10'2 0.96233 0.99993 0.99716
10%3 0.96535 0.99994 0.99759
104 0.96791 0.99994 0.99794
10%° 0.97013 0.99995 0.99821
106 0.97205 0.99992 0.99844
1017 0.97374 0.99992 0.99862
10'8 0.97524 0.99993 0.99877
10" 0.97658 0.99993 0.99890
10%0 0.97778 0.99994 0.99901
10% 0.97886 0.99994 0.99911
10%2 0.97984 0.99995 0.99919
10% 0.98074 0.99995 0.99926
10%4 0.98156 0.99995 0.99932
10% 0.98231 0.99995 0.99937
1026 0.98300 0.99996 0.99942
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A well-known unsolved problem, one of the so called Landau’s problems, is Legendre’s con-
jecture: there always exist at least one prime between two consecutive perfect squares.
Let us denote the number of primes between two consecutive squares n? and (n+1)? as x(n).

An estimate for x(n) is obtained as follows. Between the squares n? and (n + 1)? there are

2n numbers. Half of it will be even and therefore not prime. This leaves 2n [ 1 — 5 odd

1 1
numbers. Approximately a third of it will be a multiple of 3. This leaves 2n [ 1 — 2> (1 — 3)

possible primes. Repeating the argument for multiples of 5, 7, and so on, we obtain

1
B(n) =2n 1 — — ) as an estimate for x(n).
Z Pk
pe<n
From p(z) another estimate is obtained: u((n + 1)) — u(n?) ~ ... ~ _ntl We will
' " In(n+1)

n+1
In(n+1)
(black) and its estimates B(n) (orange) and &(n) (green).

denote it as {(n), thus £(n) = . In the next figure we have plotted the function x(n)
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The function B(n) slightly overestimates. The function £(n) follows accurately x(n), even for

very large n. From £(n) we obtain as an estimate for 7(n?):

n—1 n
k
2\ ~ _
wn?)~ e = (22)
k=1 k=2
With the substitution of z for n? this is
VT NG Nz z
k 1 1
m(x) ~ — w/ Y qw z/ 2dv2 :/ —dt. (2.3)
ki?lnk vz Inv vz Inv 9 Int

This completes the circle since the latter is equal to Li(x). Although still not proven, the
figure above suggests x(n) > 0 for all n > 0. The conjecture might be stated a little stronger.
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A numerical inspection suggests there always is a prime between n? and n? 4+ n and a prime

between n? +n and (n + 1)2, for n > 1. If true, it implies x(n) > 2 for all n > 0.

Another one of Landau’s problems is the Goldbach conjecture: every even number larger
than 2 can be written as the sum of two primes.

A lot of even numbers can be written as the sum of two primes in multiple ways. For instance,
20 = 3+ 17 and 20 = 7+ 13. Let us denote the number of ways an even number 2n can

be written as a sum of primes as A(n). In the next figure we have plotted the function A(n)

(Inn)?

(black). The green and orange curves are respectively

(Inn)2

200 — T
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The figure above clearly suggests A(n) > 0 for all n > 1. Still, it is not proven.

Another one of Landau’s problems is the twin prime conjecture: there exist infinitely many
primes p such that p + 2 is prime.
The number of twins smaller than or equal to x will be denoted as 7(x). An estimate for 7(x)

is obtained as follows. From &(n) it follows that the probability for a number x between n?

1
and (n + 1) to be prime approximately is LI
2nlnn 2Inn

n? and (n + 1)? are randomly positioned the probability for a twin between n? and (n + 1)?

. Assuming the primes between

approximately is m For the expected number of primes between n? and (n + 1)? we
nn
n

then approximately have 2n - 2(nn)? =3 ()2 This leads to the following estimate:

Ve k vy, o1
T(x)“kzz(lnk)z /ﬁ o)V /2 ozl (24)

=2

Q
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By means of partial integration we find

o1 1 t ] x 2

—dt = —dt— |— | =Li(z)— —+— 2.5
/2 (Int)? /2 Int [lntL i(z) e | In2 (25)

Neglecting the 2/1n2 and approximating Li(z) by wu(z) we obtain

T 1 T T
~ 1+ — ) - = = 2.6
7(z) Inz ( * lnx> Inz  (Inz)? (26)
. . . . 1.63z
In the next figure 7(x) is plotted against = (black). The green curve is the estimate o)
nx

for 7(z). For increasing x a smaller value than 1.63 is required for a good approximation

(ultimately to 1.32 for extremely large x).
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The figure above suggests 7(x) is not limited. Still, it is not proven.

2.2 Some modular arithmetic

Modular arithmetic is a sort of cyclic counting; counting modulo a number. For instance, 49
mod 11 means: subtract from 49 a multiple of 11 such that the result is a number larger than
or equal to zero and smaller than 11. For instance, 49 mod 11 = 5. We also say that 49 is

congruent to 5 modulo 11 with the notation 49 =2 5 mod 11.

Modular arithmetic can be very powerful. To verify that 67'9 — 1 is divisible by 165 we
only have to check that 6719 =2 1 mod 165. Since 165 is 3-5 - 11 we proceed as follows:
6721 mod 3 — 6710 = 1108 =1 mod 3.
6722 mod5 — 671 =2~ 1 mod 5 — 6719 = (674)2" =2 127 =2 1 mod 5.
671 mod 11 — 67108 = 1108 > 1 mod 11.

Now if a number is equal to 1 modulo 3, equal to 1 modulo 5 and equal to 1 modulo 11 it



24 CHAPTER 2. MODULAR ARITHMETIC

must be 1 modulo the product of 3, 5 and 11 since 3, 5 and 11 have no factor in common.
Hence, 6719 221 mod 165 and thus is 67'°% — 1 divisible by 165.

Another powerful result is Fermat’s ‘little theorem’: if p is a prime number then
a? 2 a mod p for any integer a.
One way to prove it is by means of induction. Firstly, a? 2 a mod p is obviously true for a = 0

|
and for a = 1. Secondly, if p is a prime and 0 < k£ < p the numerator of py_ P
k (p— k)k!

contains a factor p not cancelled out by a number in the denominator. As a consequence, the
p

identity (a +1)? = Z (i) aP~* is reduced to (a +1)? = a? +1 mod p. Then a” = a mod p
k=0
implies (a + 1) = (a+1) mod p. O

~Y

A little investigation learns that a® = a mod 30 for all a. This can be understood with

Fermat’s little theorem. For example, modulo 3 we have a® = a® - a®> 2 a-a®> = a®> 2 a

mod 3. Similarly, one finds a® = a mod 2. Together with a® = @ mod 5 this implies a® = a
mod 2 -3 -5 since 2, 3 and 5 have no common factors. For each n we will search for the
largest value m for which a” 2 ¢ mod m. It is not necessary to look for values of m larger

~

than 2™ — 2 since they will violate 2" = 2 mod m. So, m is a divisor of 2" — 2. Now if
a? =~ ¢ mod p for some prime p than also a?t*?=1) = ¢ mod p. Thus in 2" — 2 occurs
the factor 2 for n = 2,3,4,...,2 + k, ..., the factor 3 for n = 3,5,7,...,3 + 2k, ..., the factor
5 for n = 5,9,13,...,5 + 4k, ....etc. That is, a prime factor p occurs in p" — p for n = 1
mod (p — 1). In other words: a prime p is a factor of 2" — 2 if p — 1 divides n — 1. It quickly
delivers the factors 2, 3, 5, 7 and 13 for n = 13. Since 2-3-5-7-13 = 2730 we obtain
a'® = a mod 2730 for all a. In a similar way one finds for instance a3’ = a mod 1919190

or a*?! =2 ¢ mod 446 617991 732222 310. It is just a consequence of plain modular arithmetic.

For each n we denote the largest value m for which a™ = a mod m as v(n), and the largest
value m for which @' 221 mod m as n(n). For the first 25 values of n the values of v(n)
and n(n) are shown in the next table. Always is n(n) a divisor of v(n). The numbers v(n) for
successive n is known as the sequence A027760 of the OEIS [6].

n [2(3|4|51(6|7[8]9(10|11|12| 13 |14|15|16| 17 |18| 19 |20| 21 |22]| 23 |24| 25

v(n)|2(6/2(30(2|42]2(30| 2 |66| 2 |2730| 2 | 6 | 2 |510| 2 [798| 2 |330| 2 |138| 2 |2730

n(n) (1|31 5 (1| 7|15 |1 {111 | 13 |1 |3 |1 171|191 |11|1|23|1]| 13

The relation a? = a mod p is always true if p is a prime and sometimes true when p is

composite. For example, a®®' =2 ¢ mod 561 for all a, while the number 561 = 3 - 1117 is

composite. Such a number is a Carmichael number.
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Since p — 1 divides 560 for p = 2, 3, 5, 11, 17, 29, 41, 71, 113 and 281, and since 2-3 -5 -
11-17-29-41-71-113-281 = 15037922004 270 we obtain a®*! = a mod 15037922004 270.
Since the primes 3, 11 and 17 are factors of 15037 922004 270 we also have a®®! 2 ¢ mod 561.
Alternatively, n is a Carmichael number if it is a product of primes p for which p — 1 divides
n — 1. Thus 561 is a Carmichael number because 3 - 11 - 17 = 561 while 2, 10 and 16 are
divisors of 560. In this way the next Carmichael numbers are easily found: 1105 =5-13-17,
1729 = 7-13-19, etc. The smallest Carmichael number with 4 factors is 41041 = 7-11-13-41
and the smallest with 5 factors is 825265 =5-7-17-19 - 73, etc. For each number of factors

there are infinitely many Carmichael numbers.

An equivalent form of Fermat’s little theorem is:

if p is a prime number then a?~! =2 1 mod p for any integer a not divisible by p.

If a1 2 1 mod p for some a % 0 mod p it is certain that p is composite. However, if
aP~! 2 1 mod p the number p is either prime or composite. Suppose we want to use Fer-
mat’s little theorem as a test for primality of 3281. If we try it for a = 43 we get 433280 >~ 1
mod 3281. Let us try a = 150, then we get 1503?80 = 1 mod 3281, still not conclusive. If
we try a = 2 we get 23280 = 3197 % 1 mod 3281 and we finally know 3281 is composite:
3281 17 - 193. Among the values 0 through 3280 for a there are 256 values for which
a0 = 1 mod 3281. For the Carmichael number 560 there even are 320 values for a < 561

for which a®® =~ 1 mod 561. To know for sure that p is prime a?~! = 1 mod p has to be

tested for all numbers a < p. For large p this is time consuming. One can do better with
Lehmer’s theorem: if there exists an a such that a? ! 2 1 mod p and aP~D/4 21 modp
for all primes ¢ dividing p — 1, then p is prime. Now one can stop testing as soon as an a has

been found which satisfies Lehmer’s theorem.

2.3 A small excursion

n—1
As a small side step we consider the value of p(n) := Z n mod k. For example, for n = 41

k=1
we have p(41) = 297, the values n mod k are shown in the next table

k 11213]4|5|6|7(8]9|10(11|12|13|14|15|16|17|18|19|20(21|22|23|...|39|40

41 mod k|0|1({2|1|1(5|6|1|5| 1|85 |2|13{11|9 |7 |5 |3 |1(20(19|18|...]2 |1

If all the values of the bottom row run from 1 through 40 the sum would be % -40 - 41 = 820.
The value p(41) = 297 is a fraction 0.35357... of it. With the table for n = 41 at hand we

can derive an estimation for p(n) for large n. For n = 41 we see for k = 21 through 40 the
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1
values of 41 mod k run from 1 through 20. It contributes to p(41) with 3 20 - 21 = 210.

1 2
For large n this contribution to p(n) would be approximately 3 (g) . For k£ = 14 through
20 the values of 41 mod & run from 1 through 13 with step size 2. For large n it would run

from 1 through about n/3 with step size 2. If it would run from 1 through n/3 with step size
1 2
1 it would contribute to p(n) approximately with 5 (g) . Since it runs with step size 2, the

1 1 2
contribution is about the half of it: = 33 (ﬁ) . For k = 11 through 13 the values of 41
mod k run from 2 through 8 with step size 3. Its contribution to p(n) therefore approximately
11 2
is: &~ 33 (Z) . Continuing the line of reasoning we obtain
1, ((1\? 1/1\* 1/1\* 1/1\° 1 o 1
= = = —| = - = == —_ 2.7
pln) ~ 5n <<2> +2<3> +3<4> 1) " 2”;k(k:+1)2 (27)
The latter can be elaborated to
o0 oo [e.e]
1 1 1 1
- —. (2.8
(T 0 0SS SR e ) DR AR
The latter sum is the Riemann-zéta function ¢(2), and its value is 72 /6. Explicitly
oo
1 2
2) = Z =i % As a result we therefore have
k=1
-1
nh_)rglo 3 —n1_>rr;on2l;n modk~2 2—6 = 1—12 . (2.9)

In the next diagram the ratio p(n)/n? is scattered against n. The limit value 1 — 72/12 is

shown as a green line.
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2.4 FEuler’s theorem

Two numbers m and n are ‘relatively prime’ if they have no common factors or, alternatively,
if ged(m,n) = 1. An important function in number theory is Euler’s totient function . For
a number n Euler’s totient function counts the integers k (1 < k < n) which are relatively
prime to n. For example, p(15) = 8 since there are 8 integers relatively prime to 15: 1, 2,
4,7,8, 11, 13 and 14. Other examples: ¢(3) = 2 (1 and 2 are relatively prime to 3) and
©(5) =4 (1, 2, 3 and 4 are relatively prime to 5). In general ¢(p) = p — 1 if p is a prime.
We see ¢(3) - ¢(5) = p(15). In general ¢(m) - p(n) = @(mn) if m and n are relatively prime.

k—1

1
Another property is go(pk) =p"—p =pF(1—=). Any number n can be written as a

product of powers of primes (fundamental theorem of arithmetic): n = p]fl .- pkr. From the

latter is obtained Fuler’s product formula:

o) = o) o) = (1= ) (1= 2 ) (1= ) o)

D1 D2 Dr

Another property is: > ¢(d) = n, where the summation is over all the divisors d of n.
Euler’s theorem reads: a?™ = 1 mod n for any integer a relatively prime to n. If n is a

prime p it is reduced to a1 =1 mod p.

koo

Writing z as the sum of y and a multiple of ¢(n) we have a® = a¥+¢(Wk = g¥ (a‘P(”))
a¥1* = a¥ mod n. A consequence of Euler’s theorem therefore is: if x =y mod ¢(n), then
a® = a¥ mod n. If nis a prime p it is reduced to: if x 2y mod (p—1), then a® = a¥ mod p.
The latter relation has been applied already in the second section when we searched for the
largest value m for which a™ = a mod m for all a.

Here we will search for the smallest value m which for a given n satisfies ™ = 1 mod n for
all a relatively prime to n. For each n these values of m is denoted as A(n). A(n) is known
as the Carmichael function. For the first 28 values of n the Carmichael function and Euler’s
totient function are shown in the next table. See also A002322 and A000010 of the OEIS [6].

n |11213]4(5|6|7(8({9(10(11|12|13|14|15|16|17|18]19|20|21|22|23|24|25|26|27 |28

A(n)|1]1|2(2(4|2(6]|2(6]4 |10]2|12|/6 |4 |4|16|6 |18/ 4|6 [10]22|2 [20]12|18|6

e(n)[1]1(2]2|4(2|6/4|6] 4 (10| 4|12/ 6|8 |8 |16|6 (18| 8 |12]10]|22| 8 |20|12|18|12

A(n) is equal to or a fraction of p(n). If n is a power of an odd prime or twice the power of
an odd prime A\(n) = ¢(n). If nis 2 or 4 A(n) = p(n). If n is a power of 2 larger than 4

An) = 590(71) For other composite numbers n other fractions occur.

A(n)

Carmichael’s theorem reads: a =~ 1 mod n for any integer a relatively prime to n. If n is

a prime p it is reduced to a?~' =2 1 mod p.
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2.5 Rings and fields

A set is a semigroup for a given operation ( -+ or - or whatever) if it satisfies associativity. A

set is a monoid if it satisfies associativity and contains a neutral element. A set is a group if it

satisfies associativity, contains a neutral element and each element has an inverse. To numbers

we can apply addition and multiplication. For both they can be a group. For instance, the

set of real numbers R is a group for addition:
1. R contains a neutral element, 0: a +0 =0+ a = a.
2. each element a of (R,+) has an inverse, —a: a + (—a) = (—a) + a = 0.
3. associativity is satisfied: (a+b) +c=a+ (b+ ¢).
The set of real numbers R also is a group for multiplication:
1. R contains a neutral element, 1: ¢-1=1-+a = a.
2. each element a (except 0) of (R,-) has an inverse, 1/a: a-1/a=1/a-a = 1.
3. associativity is satisfied: (a-b)-c=a-(b-c).

The next two tables show the Z/5Z structure for addition respectively multiplication.

+10]112|3]|4 0(1(2]3]4
01011,2]3]|4 0jo0oj0j0j01|0
1111213 ,4]0 1101112]3]4
2121341011 21012141113
313[4(10]1]2 31013 |1]4)|2
41410111213 410141321

We see Z/5Z is a group for addition and, if we forget the 0, a group for multiplication .

situation changes for Z/6Z, see the next tables.

+10]12|3]4]5 0112|345
0OjJ]01 1|2 [3]4]|5 0j]ojoOj0Oj0O|0]O0
1111213 [4|5]0 1101112345
212131451011 2101214 10]|2]4
313145 (0]1)|2 3103013 |0]3
4141510 1(2]3 4101412 (0)|4]2
5150|112 |3|4 51015141321

The

The set Z/67Z is a group for addition. However, it is not a group for multiplication since 2, 3

and 4 have no inverse.
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When both operations are considered together one obtains, depending on properties satisfied,
rings or fields. To this end it is clarifying to enumerate properties (which should hold for every
a, for every pair a,b and for every triple a, b, ¢) in the following order:
P1: associativity for (+): a4+ (b+¢) = (a +b) + ¢
P2: neutral element for (+): a4+0=0+a = a.
P3: inverse for (+): a + (—a) = (—a) +a = 0.
P4: commutative (Abelian) for (+): a+b=0b+ a.
P5: associativity for (-): a-(b-¢) = (a-b)-c.
P6: distributivity: a-(b+c¢)=a-b+a-c; (a+b)-c=a-c+b-c
P7: neutral element for (-): a-1=1-a=a.
P8: commutative (Abelian) for (): a-b=1"0-a.
P9: no divisors of 0: if a-b=0thena=0or b= 0.
P10: inverse (except for 0) for (-): a-(1/a) = (1/a)-a = 1.
Then we have the following nomenclature:
A set is a semigroup if P1 is satisfied.
A set is a monoid if P1 and P2 are satisfied.
A set is a group if P1, P2 and P3 are satisfied.
A set is a commutative (Abelian) group if P1, P2, P3 and P4 are satisfied.
A set is a semiring, SR, if P1, P2, P4, P5 and P6 are satisfied.
A set is a ring, R, if P1, P2, P3, P4, P5 and P6 are satisfied.
A set is a unitary ring, UR, if P1, P2, P3, P4, P5, P6 and P7 are satisfied.
A set is a commutative unitary ring, CUR, if P1 through P8 are satisfied.
A set is an integral domain, 1D, if P1 through P9 are satisfied.
A set is a field, F, if P1 through P10 are satisfied.
As a consequence: F'C ID CCURCURC R C SR.

Some examples: the set of real numbers R satisfies P1 through P10 and therefore is a field.
The same holds for the set of complex numbers C. Also the set of rational numbers Q is a
field. The set of integers Z is an integral domain (the inverse of for instance 3 is % ¢ 7). In
general Z/nZ is a ring. For instance, Z/6Z is a ring. The subset {0,2,4} of Z/6Z also is a
ring (with 4 as neutral element); it is a subring of the ring Z/6Z. We are more specific when
we say that Z/6Z is a CUR. Similarly, since {0,2,4} € Z/6Z satisfies P9 we are more specific
when we say that {0,2,4} € Z/6Z is an ID. Z/5Z is a field. In general, the ring Z/pZ is a
field if p is a prime.

A ‘unit’ is an element of a ring which has a multiplicative inverse. For R every element,
except 0, has an inverse; every element of R except 0 is a unit. Z has 1 and —1 as units. The
‘unit group’ of Z therefore is {1, —1}. For Z/6Z is {1,5} the unit group. For {0,2,4} € Z/6Z
is {4} the unit group. For Z/pZ with p a prime is every element except 0 a unit.
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2.6 Polynomials

An expression of the form K[z] = a,2™ + a,_12" ! + ... + a12 + ag is a polynomial. In short
n

Z a;z’ is a polynomial (an infinite series such as a Taylor series of sin x is not a polynomial).
1=0
The largest power of x, n, is the degree of the polynomial. If the largest power is 0, the

polynomial is a constant: ag. If the coefficients a; are in a ring R, a UR, a CUR or an 1D,
then the polynomial also is a ring R, a UR, aCUR or a ID respectively. If the coefficients
a; are in a field F', then the polynomial is an ID; a polynomial in a field requires for the
multiplicative inverse a fractional power of x which is outside the definition of a polynomial.
Thus, although R is a field, R[z] is an ID.

A polynomial is reducible if it can be written as a product of factors, where a factor may

not be a unit. Some examples:

1 1 1 1
The polynomial 2+ +1 over C can be factored : 2°+ 241 = (x+§ +§Z\f3)(x+ 5~ izx/g),

while it can not be factored (is irreducible) over R.

1 1 1 1
The polynomial 22 — z — 1 over R can be factored : 22 +z+1 = (z — 3 + 5\/5)($+ 3~ 5\/5),
while it is irreducible over Q. ) ) ) .
The polynomial 2% + tz — & over Q can be factored: z? + riaart (x + 5)(1‘ — §)

The polynomial 2 — 3z + 2 over Z is reducible: 2% — 3z 4+ 2 = (z — 1)(z — 2).

The polynomial 3z + 1 over Z is irreducible, 3(z + %) is not allowed since 3 ¢ Z. The poly-
nomial 3z + 1 also is irreducible over Q, 3(x + %) is not allowed since 3 is a unit of Q.

If a polynomial is irreducible over Z it is irreducible over Q. The reverse may not be true:
The polynomial 3z + 3 over Z is reducible: 3x+3 = 3(z+ 1), while it is irreducible over Q; 3 is
a unit (invertible) in Q, while not a unit in Z. The greatest common divisor of the coefficients
of the latter polynomial is 3. Therefore 3 can be separated without causing a fraction in the
other factor. Hence, if a polynomial is irreducible over Q and the greatest common divisor of
the coefficients is equal to 1, then it is irreducible over Z. A polynomial for which the greatest

common divisor of the coefficients is equal to 1 is called a primitive polynomial.

Some modular arithmetic examples: The polynomial 22 + = + 1 over Z/2Z is irreducible.
Indeed, for z = 0 we have 02 +0+1=1%0 mod 2 and for z = 1 we have 12 +1+1 =120
mod 2; there are no roots. For the polynomial 22 + x + 1 over Z/37Z we find for z = 1
that 124+ 1+ 1 = 0 mod 3. Hence, the polynomial 22 + x + 1 over Z/37Z is reducible:
(x—-1)22=22-22+1=222+2+1 mod3. The next value for n for which 22 + = + 1
is reducible over Z/nZ isn = 7: (x —2)(z —4) = 22 —6r+8 2 22 + x4+ 1 mod 7.
The list goes on for n = 13,19,21,31,.... The polynomial 2> + x + 1 over Z/91Z can
be factored in two ways: (z — 9)(z — 81) = 22 — 90z + 729 = 22 + 2 + 1 mod 91 and
(x —16)(z — 74) = 22 — 90z + 1184 = 22 +  + 1 mod 91. Notice that 91 is not a prime
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number. There are more examples for which the polynomial 2 + x + 1 over Z/nZ can be
factored in multiple ways if n is not a prime. If for a prime p the polynomial 22 + = + 1 over

Z/pZ is reducible, it can be factored in only one way.

As another example we consider the polynomial 22 + 1 over Z/nZ. It is reducible for n = 2:
(x—1)2 =22 -2+ 1 = 22 + 1 mod 2. Other values for n for which the polynomial
22 + 1 over Z/nZ is reducible are 5,10,13,17,25,.... For the composite number n = 65 we
have the first value for which the polynomial 22 + 1 over Z/nZ can be factored in two ways:
(x—8)(x—57) = 22 —652x+456 = 22+1 mod 65 and (v —18)(x—47) = 2% —65x+846 = 22 +1
mod 65. Again, for a prime p the polynomial 22 + 1 over Z/pZ can be factored, if it is re-
ducible, in only one way. The reducibility of the polynomial 22 + 1 over Z/pZ for a prime p,
thus 22 4+ 1 = 0 mod p for some z, implies that z? + 1 is equal to p or a multiple of p for
some x. This brings us to the fourth Landau problem: are there infinitely many primes of
the form k% + 1 with k € N. Let us denote the number of such primes smaller than n? + 1 as

~v(n). An estimate for v(n) is obtained as follows. In the first section we saw the probability

. This leads to the

for a number between n? and (n + 1)? to be prime approximately is

nn
following estimate:
1 0.5n 1
——dt = fL — ~— 1+ — 2.11
V(n) ~ 21nk; 2lnt dt = 5Li(n) ~ 2,u(n) Inn < * lnn) ( )
. . 0.71n 1
In the next figure we have plotted the function v(n) (black). The green curve is 1 1 1
nn nn
800 - .
600 - .
= I
400+ .
200 - .
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000

The estimate suggests y(n) will not stop growing. Still, it is an open problem.

)
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2.7 The Riemann zeta function

As another small excursion we consider the Taylor expansion of sinxz/x:

sin x 22 a8 8 10

I A A 2.12
“ sTE T T T 1 (2.12)

Since sin z has zero’s for x = nw, n € Z, (sinz)/x also has zero’s for z = nm except for n = 0.

Knowing all its roots the function (sinz)/z can be written as follows

sin T T x x T T
=1--)14+-H)1-=—)1+—)1—-—=—)1+—)--- 2.1
-+ D0 - D)+ )1 )1+ ) (2.13)
or ; 2 2 2
sinx T T x
=1l-)1--—)1=-=—)-- 2.14
For our purpose we write the latter equation as
sinx =
=1y -y —gs) = [0 - w), (2.15)
k=1
2
where yp, = or )2 Removing the brackets and grouping similar products, we obtain
T
sin x
= 1—(y1+y2+-..) + (v1y2 + 1ys + ... + y2ys + ...) — (Yy1y2ys3 + ...), (2.16)

which can be systematically denoted as

=So—S1+ 8 —S5+..=> (=1)"S,, (2.17)

n=0

sinx

(S SIEe OlNe 9]

00 00 00
where So =1, 51 = Zyi, Sy = ZZyiyj, Sy = Zzzyiyjyka etc.
=1

i=1 j>i i=1 j>i k>j
The factors S, can be systematically expressed as follows:
1 n
Sp, = — Z(—l)kJrlSn,ka , (2'18)

n
k=1

oo
where T,, = Zy,? Solving for .S,, we obtain

k=1
SO = 17

S1 =11,

Sy = (T7 — Tb) /2!,

Sy = (T} — 3T\ T + 2T3) /3!,

Sy = (T{ — 6T Ty + 3T5 + 8T T3 — 614) /4!,

and so on.
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1
Since yy, = x2/(km)? we have T), = —on Z k:2 , and since Z 1on is equal to the Riemann

k=1
2n

zeta function ((2n), we can write T, = %C(Qn). As a result we have

26

:L‘2
:1—;«2) 5 (@) - ) = g8 (€)= 3¢(2)¢(4) +20(6)) +

4, —i5 (€1(2) = 6¢%(2)C(4) + 3¢(4) + 8((2)¢(6) — 6((8)) —
Comparison with the series gives

sin x

1 1
31 —¢(2)
1

5= 5 (C2) — ()

% 3| = (¢*(2) — 3¢(2)¢(4) + 2¢(6))

% _ 4%8 (CH(2) — 6C2(2)C(4) + 3C2(4) + 8C(2)C(6) — 6C(8)).

and so on. Successively solving for {(2), ((4), ¢(6) and ((8), we obtain

>
¢(2) = 7;4
(@) = 7;06
¢(6) = 912
o) = 9250’
and so on.

We can also consider finite sums of positive powers of integers such as
n
1 1
Z k= fn2 + 3"
2 ].

Z k n + n +-n
6

Zk:3 R n 41
4
1
3

1
Zk4 n+2n+ 3

—-n ——=n

30
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In general,

n m
1 1 .
PP — <m + >Bj pm =g (2.19)
k=1 §=0 J

with Bj the j-th the Bernoulli number. The first Bernoulli numbers are shown in the next
table.

_ 3617 0 43867

1 1 1 5 691
01 =35 |0|a2|0| 30|06 | 0 0 510 798

2730

N[ —
=
[=NEN
()

The Bernoulli numbers are related to the Riemann zeta functions. One of the relations is

(_1)n+132n(27r)2n

((2n) = 3(2n), , n > 0. (2.20)
2.8 Divisor sum
The sum of the divisors of an integer n is denoted as o(n):
o(n)=> d, (2.21)

din

where d|n means d is a divisor of n.

For instance 12 has 1, 2, 3, 4, 6 and 12 as divisors, so 0(12) =1 +2+3+4+6+ 12 = 28.
Similarly, 0(7) =147 = 8. If m and n have no common divisors then o(mn) = o(m)o(n).
Thus 0(84) = 0(12)0(7) = 28 - 8 = 224. If p is prime then

o) =1+p+p*+..+p" =" -1)/(p-1). (2.22)

Ifn= prl is the prime factorization of n, then

)

ki+1
o(n) = o) = Hp"pi__ll- (2.23)
i i

Perfect numbers are numbers for which o(n) = 2n. According to the Euclid-Euler theorem a
number n = 2P~1 (2P — 1) is perfect if p is a prime and 2P —1 is prime. Primes of the type 2P —1
are known as Mersenne primes. It then follows that o(n) = o(2P71)o (2P —1) = (2P —1)2P = 2n.
The smallest perfect number is 2!(22 — 1) = 6, the second is 22(23 — 1) = 28, the third is
24(25 — 1) = 496, the fourth is 26(27 — 1) = 8128, the fifth is 2!2(2!% — 1) = 33550336. The
number 219(2!1 — 1) = 2096 128 is not perfect since 2! — 1 = 2047 = 23 - 89 is not prime.
A number n is multiperfect if o(n) is a multiple (larger than 2) of n. Examples, for which

o(n) = 3n are 120, 672, 523776, .... o(n) = 4n for 30240, 32760, ....
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If we add o(1) through o(41) the result is 1384. In section 3 we saw the sum of 41 mod 1
through 41 mod 41 is equal to 297. It is no coincidence that 1384 + 297 = 1681 = 412. In
general, there holds the following identity

n n
Z n mod k + Z o(k) =n?. (2.24)
k=1 k=1
As before, we denote the sum of the remainders as p. The identity then reads

p(n) + Z o(k) =n?, (2.25)
k=1

where p(n) = Zn mod k and where o(k) is the sum of the divisors of k.
k=1

A proof of the relation is as follows. Since n = 1 4 ((n —1) mod k) if k is not a divisor
ofnandn=0=14 ((n —1) mod k) — k if k is a divisor of n it follows that

n

d (n modk) = > (1+((n—1) modk)) - k

k=1 k=1 k|n
n n—1
= > 14+(n=1) modn)+> ((n—1) modk)—o(n)
k=1 k=1

n—1
= 2n—1+ Z((n —1) mod k) — a(n).
k=1

Hence
p(n)—p(n—1)=2n—1—0(n). (2.26)

A repetitive application of the latter leads to

3
3
3

pn) = o)+ 3 (p(k) —p(k —1) =0+23 k=3 1= (k)
k=2

n n

= (NP4+n-2)—(n-1)+o(l)=) ok)=n*-)» o). O (2.27)

For convenience a self explanatory scheme for n = 9 is given below.
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k— 1123|4516 7|8]|9 | sum of divisors
divisors of 1 | 1 o(l)=1
divisorsof 2 | 1 | 2 o(2)=3
divisors of 3 | 1 3 o(3) =4
divisors of 4 | 1 | 2 4 o(4)="7
divisors of 5 | 1 5 o(5) =6
divisorsof 6 | 1 | 2 | 3 6 o(6) =12
divisors of 7 | 1 7 o(7) =38
divisors of 8 | 1 | 2 4 8 o(8) =15
divisors of 9 | 1 3 9 c(9) =13

9modk |0 |10 1|4|3]2]1]0]| po) =12

sum 9191919191919 1]1919 81

From the relation lim @ =1- W—Q and the relation p(n) + . o(k) = n?® we obtain
n—oo n 12 pet

) 1 & 2
nh_)r{)lo 3 ;a(k‘) =35 (2.28)



Chapter 3

Elliptic curves

3.1 Rational points on a circle

As a start we consider rational points on a circle.

B B(0,1)

A-1,00 o0 A-1,00 0

In the left side of the figure a line is drawn through A(—1,0) and C(u,v) where A and C are

u+1
implies that the coordinates of B are rational if the coordinates u and v of C' are rational. In

the right side of the figure a line is drawn through A(—1,0) and B(0,¢). The line intersects

1—t% 2t
the circle at C' | ——,——
v <1 +t27 142
y coordinate t of B is rational. As a consequence, every rational point C on the circle is

v
both on a unit circle. As can be calculated the line intersects the y axis in B (0, > . This

>. This implies that the coordinates of C' are rational if the

m
parameterized by a rational parameter t. If we write the rational number ¢ as t = T such

k2 —m? 2mk
m and v = m Therefore
we can find all right triangles with integer sides a, b and ¢ (Pythagorean triples, satisfying

a’? +b? = ¢?) by taking a = k> — m?, b = 2km and ¢ = k% + m? and substituting integer

that ged(m, k) = 1, then the coordinates of C' read u =

values for k and m. The important conclusion is that there are rational points on the circle

37
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22 4y% = 1. This is not the case for the curves 2" 43" = 1 for n = 3,4, .... (Fermat’s theorem,
proven by Wiles). There are no rational points on, for instance, the circle 22 4+ y? = 3. So,
the occurrence of rational points on a circle 22 4+ y? = a depends on a. The possibilities are
extended if we apply modular counting. For instance, z2 +4% = 3 mod 7 is satisfied for = 1
mod 7 and y = 4 mod 7. There are more x,y pairs satisfying 22 + y? = 3 mod 7, see the

next figure.

3.2 Right triangles with integer area

As a small excursion we consider right triangles with rational sides for which the area is an in-
teger. This is always the case for Pythagorean triples. For instance, the Pythagorean (3,4, 5)
triangle has area 6. The Pythagorean (9,40, 41) triangle has area 180. Since 180 = 5-62 we can
obtain a smaller integer area by dividing the sides by 6. Then the right triangle (1%7 6%, 6%)

has area 5. Another example with area 5 is (3:‘732, 3%, 4;’2‘%22), see next figure.
4 354769
747348 543
62 492
6 11
2
2 363
63 3519
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For right triangles with rational sides the smallest integer area is 5. Examples of right triangles

with area 6 are shown below.

5 5 1176980

3 171 1319901 5 302
70 7 1551
" 5
1 398
4 172 5%s1

The integer area n for right triangles with rational sides are known as ‘integer congruent num-
bers’. The sequence of integer congruent numbers starts with 5,6,7,13, 14, 15, 20, 21, 22, 23,
24,28, 29,30,31, 34, ... It is sequence A003273 of the OEIS [6]. If we denote the rational sides

of a right triangle as a, b and ¢, with ¢ the hypothenuse, we have the Pythagorean relation
2n?
and y = £+
c—a c—a
— n?z, which is an equation for an elliptic

a®? 4+ b? = ¢? and for the area n the relation n = %ab. Setting = = it

3

follows that 2 and y satisfy the equation y? = z
curve. If a, b, ¢ and thus n are rational, then x and y are rational and (z,y) is a rational point

on the elliptic curve.

Two n = 5 examples: for (a,b,c) = (13,62,63) we obtain (67,93) and (61,-93) as a
rational point on the elliptic curve y? = 23 — 252. By changing roles of a and b we obtain for
(a,b,c) = (6%, 1%,6%) the rational point (45,300) and (45, —300). Moreover, taking opposite
sign for ¢ leads to additional rational points: (—4,—6), (—4,6), (—2,—342) and (—32,332).

99
In a similar way we find from the (3%,3%,4%‘%22) right triangle the following ratio-
nal points on the curve y? = 3 — 252: (11%,36%), (1119774,—36%), (12%,40%),
(12553, —4053780) (-2 28 6221, (228 622171, (252, —6:25008) and

(—Zﬁ, 61516776(1169). These are not the only rational points on the curve y? = 2> — 252. Other

rational points are, for instance, the zero’s (—5,0), 0,0) and (5,0).

Two n = 6 examples: from the (3,4,5) triangle we obtain (12,36), (12,-36), (18,72),
(18, -72), (—3,-9), (—3,9), (—2, —8) and (-2, 8) as rational points on the curve y?> = 3 —36.
From the (171, 5,174) triangle we obtain (6%,42), (6%, —42), (294,5040), (294, —5040),

’ 100
(=532, —4735), (=532, 415=), (=5, —22%) and (—5,22%) as rational points on the curve
y? = 23 — 362.

3.3 Elliptic curves

Third degree equations in two variables are in general given by
3 2 2 3 2 2 _
a1y’ + oy T + c3yr” + cax” + c5y” + ceyx + crx” + cgy + cox + c190 = 0,

where the coefficients ¢; are elements of a field. If the equation is not singular, its curve is

called an elliptic curve. For our purpose we restrict to the situation where the ¢; are elements
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of Q, Z or Z/pZ. For these fields the elliptic curve can, by means of change of variables and

coordinate transformations, be rewritten in the Weierstrass form: y? = 23 + ax + b.

For b = 0 and a = —25 respectively a = —36 we obtain the elliptic curves from the pre-

vious section. They are shown, together with some of their rational points, in the next figure.

S R S I 22 y? = 2% — 36z i

20 40 | i

20 g

- (D ol |
—920 | B

—20 —40 | L
60 | i

—40 | | | R I N
5 0 5 0 15 10 =5 0 5 10 15 20

Figure 3.1: Left: the curve y? = 23 — 25z and some rational points found from the (1%, 6%, 6%)

343 3363 4?2‘71;612) right triangle (orange). Right: the curve

right triangle (green) and the (

492> 21519°
y? = 23 — 362 and some rational points found from the (3,4, 5) right triangle (green) and the
(171, i5,173%) right triangle (orange).

3 2

For the curve y? = 23 — n2x the zeros are: y =0 = (22 —n?) =0 =2 =0, 2 = —n, = =n.
For —n <z < 0 and = > n the curve has a real value for y; outside these ranges the value of

1y is complex.

The shape of the elliptic curve depends on the coefficients ¢ and b. This is illustrated in
the next nine figures. For y? = 23 — 3z — 18 there is a single real zero at (3,0) (upper left).

3 — 31 — 2 there are three

If the value of b is increased the zero moves to the left. For y? = z
real zero’s: one at (2,0) and a twofold one at (—1,0) (upper middle). For y? = 2® — 3z there
are three real zero’s: (—+/3,0), (0,0) and (v/3,0) (upper right).

For y? = o3 — 3z + 2 there are three real zero’s: one at (—2,0) and a twofold one at (1,0)
(middle left). For y* = 2 — 3z + 8% there is a single real zero at (—21,0) (central figure).
For 32 = 23 there is a threefold zero at (0,0) (middle right). For y? = 23 + 8 there is a single
zero at (—2,0) (lower left). For y? = 23 4 3z — 4 there is a single zero at (1,0) (lower middle)

and for y? = 23 + 3x + 4 there is a single zero at (—1,0) (lower right).
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The curve for 2 = 23 +ax +b is singular if a twofold or threefold zero is present. A singularity
occurs if 4a® + 27b% = 0. A twofold singularity is the case for a = —3, b = —2 (upper middle)
and a = —3, b = 2 (middle left). A threefold singularity is the case for a = 0, b = 0 (middle
right). The points of singularity are denoted as S.

4 3 — 3z|— 18 4 3 — 3z|— 2 -4 3 — 3z B
2 | -2 -2 -
S

0 0 0

—2 2 | 2 | -

4 -4 -4 -
T T T T T T T T T T T T
—4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4
| | | | | | |

4 28— 3z+2 4 a3 — 3a tt 8% 4 3 i

2 /\ -2 F -2 a

S

0 b 0 0 S

—2 2 | & 2 | -

—4 -4 x -4 -
T T T T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

| | | | | | |
4 3+ 8 4 3+ 3x—4 4 3+ 3z 4 B

3.4 Arithmetic on elliptic curves

A point P and a point @ on an elliptic curve can be composed (‘added’) to a point P 4 @ as
follows: draw a vertical line through the intersection point of the line through P and ) with
the elliptic curve, the intersection point of the vertical line with the elliptic curve is P+ Q. It

is illustrated in the left diagram of the next figure. Now let () approach P. In the limit that
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(Q — P the line through P and ) becomes the tangent line at P. This is illustrated in the
right diagram of the next figure.

8 | VAR 8 VAl
Q

4 P - 4 L -

> 0 > 0 R
—4 | B —4 L

2P
787 T T T \P+Q\\7 787 T T T T '\\7
—4 =2 0 2 4 —4 2 0 2 4
xT T

For the line through P(zp,yp) and Q(zg,yq) we have the equation y = A(x — 2 p) + vy, where

yQ—~yp

Fam—— Substituting it in the equation y? = 3 + ax + b for the curve, we

the slope is A =

obtain a third order equation for z:
2 — N222 + (a + 2\%zp — 2 \yp)z + b — N2ah + 2\zpyp —yp = 0. (3.1)
From the comparison with
(z —ap)(x — x0)(x — xprg) = 2° — (xp +2g + Tpig)r® + ..o +..=0  (3.2)

we see that x, + xg + xp4@ has to be equal to A2. For the addition of P and ) we obtain:

Tp4Q :)\2—1'}3—1‘@ , yr+Q = Mzp —xpyQ) —yp , with A= ;{Z:zi. (3.3)
For the tangent line through P(xp,yp) we also have the equation y = A(z — xp) + y, while
now the slope is the derivative in P: A = ?w;i/:a. For the tangent line the point @) is equal
to the point P. For the doubling of P we therefore obtain:

Top = N —22p yop = Mxzp — x2p) —yp ,, with)\:?w;;:a. (3.4)

If P and @ have rational coordinates then P + () has rational coordinates and if P has ratio-
nal coordinates then 2P has rational coordinates. So, starting with a rational point one can

obtain a chain of other rational points.

For a point R on the curve where y = 0, a root, the tangent line is a vertical. As a con-
sequence 2R is a point at infinity, denoted as O, thus 2R = . Since the elliptic curve is
reflected in the y = 0 axis, to every point P(x,y) corresponds a mirror point —P(z, —y). In
particular for a root R there holds R = — R, which is the same as saying that 2R = O.
Finally, since P + Q = Q + P the group of points on an elliptic curve is abelian.
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3.5 Torsion

For a root R of an elliptic curve we saw 2R = O. The group {R,O} is a cyclic group of
order 2. Cyclic groups on elliptic curves are called torsion groups. Elliptic curves always have
two points of inflection. The two points of inflection form, together with O, a torsion group
of order 3. Differentiating twice the equation y? = 3 + ax + b gives yy” = 3z — y'y/. The
inflection condition, 3’ = 0, leads to 3z = (y/)?. Substitution of y' = (322 + a)/2y gives
122y? = (322 +a)?. The substitution of y? = 23 + az + b leads to 32* + 6az? + 12bx — a® = 0.

The four solutions of this equation are

1 5 5 6+/6b
x_6\/6<\/—2a—\/ﬁi \/—4a+\/@i\/ﬁ), (3.5)

where D = —4a® — 27b2. Since the solution already looks complicated we restrict ourselves

to the case where b = 0. Then the equation is reduced to 3z* + 6ax? — a® = 0, which can be

solved by hand:
2
T =+/—a+ ga\/ﬁ, (3.6)

To visualize the result we take a = 25 and a = —25. For a = 25 the equation of the curve
is 42 = 23 + 25z and has one real root Ry = (0,0). The equation for the point of inflection,
3z + 15022 — 625 = 0, has four solutions. The only solution for which both the = and y
coordinate are real (in the sense of not complex) is for z = 5,/—1 + %\/g If we denote the

/ 2 5 /
starting point as P then P = (5 -1+ g\/g, 5\/ 30 -3+ 2\/§> Numerically this is

P ~ (1.9666, 7.5346).

For a = —25 the equation of the curve is y? = 23 — 25z and has three real roots R_ = (—5,0),
Ry = (0,0) and R, = (5,0). The equation for the point of inflection, 3z* — 15022 — 625 = 0,

has four solutions. The only solution for which both the x and y coordinate are real is

2
P= (5,/ 1+ g\/i gx/% 3+2V3 ) Numerically this is P ~ (7.3394, 14.5558).

In the foregoing analysis we ‘assumed’ a point of inflection is part of a group of order 3.
If one wants to be sure there is no other group of order 3, one can apply the arithmetic of the

previous section in a straightforward manner. For a = 25 it goes as follows.

. . . 32% + 25
Start with a point P and double it to 2P: zop = “oun ) 2zp. If P has order 3, then
yp
2P = — P and since x_p = xp we obtain the condition x9p = xp. Hence
322 + 25\ 322 + 25\
<$P+> —22p—xp=0 or <xP+) —32p =0
2yP 2yp

The y coordinate of P is eliminated by substitution of the equation for the elliptic curve:

y% = x% + 25zp. The elimination of yp leads to the equation 3x§3 + 1501‘% — 625 =0 as
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found above. It is a matter of inspection to identify the solution with an inflection point. For
y? = 23+ 25x and y? = 23 — 252 the curves and the inflection points are shown in respectively

the left and right diagram of the next figure.

40 | | | | | 40 | | | | |
30 | y? =23 + 25z L 30 | y? =23 — 25z B
20 | B 20 | P B
10 | v R 10 | R
_].0 | 2P [ _10 | [
—20 | B —20 | 2P B
=30 | order 3 B =30 | order 3 B

_40 T T T T T T T T T _40 T T T T T T T T T
—-6-4-20 2 4 6 8 10 12 —-6-4-20 2 4 6 8 10 12

x x

Hereafter we restrict to the situation with a = 25 and a = —25. A cyclic group of order 4 is

found as follows: take a line through a root point R and tangent to the curve in a point P.

This means that the slope of the tangent line has to equal the slope of the line through R and

322 +25

% — Y The latter can be elaborated to 323 4 25z = 292
Y T

Substituting y? = 23+ 25z we obtain x3 — 25z = 0, which factors in z(z —5)(x+5) = 0. From

the three solutions only z = 5 is a valid x coordinate for P. The corresponding y coordinate is
5v/10. For a = —25 a similar analysis leads to the condition 23 — 1522 + 252 4 125 = 0. There
are two solutions. The first, which is on the ‘egg’ of the curve, is (5(1 — v/2),5v/5(2 — V2)).
The second, which is on the rounded cusp, is (5(1 +/2), =5v5(2 + \@)) Again, the solution

could also have been obtained by equating x3p with xp and y3p with —yp and determine the

P. For a = 25 this means

geometrical structure afterwards. The results are shown in the next figure.

40 | | | | | 40 | | | | | \(
30 | y? =23 + 25z B 30 | y? =3 — 25z 1
20 | P B 20 | -
10 - 10 B
= 0 2P > 0 =
—10 B —10 | -
—20 | 3P 5 —20 | B
=301 order 4 i =301 order 4 ‘ i
_40 T T T T T T T T T _40 T T T T T T T T - \k
—-6-4-20 2 4 6 8 10 12 —-6-4-20 2 4 6 8 10 12
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Notice that we could have started as well with 3P. We could not have started with Ry since
2Ry = O. That is, {R4+, 0} is a subgroup of {P,2P,3P,0}, in the same way as Cs is a
subgroup of Cjy.

For a = 25 fivefold torsion leads to the equation 2430026 — 162502* — 81250022 + 390625 = 0

with the solution

Tp = 5\/—3 +2v5 —2v5 —2v5 and yp = 5\/10\/\/—133 +62v/5 + 61/1025 — 458+/5.
Numerically it is P ~ (8.55164, 28.9685).
For a = —25 the equation is 28 — 3002% — 162502 + 81250022 + 390625 = 0 with the solution

rp = 5\/3 +2V5+2v5+2V5 and yp = 5\/10\/\/133 + 62v/5 4 61/1025 + 458V/5.

Numerically it is P ~ (18.4577,76.334). Since 5 is a prime, one can start any of the four

points.

Sixfold torsion: for a = 25 we obtain the equation z* — 15022 — 1875 = 0 with the solution

zp = 5v3 423 and yp = 5101/ /45 + 26y/3. Numerically this is P ~ (12.7123,48.705).

The points 2P and 4P are points of inflection. For a = —25 we obtain three equations. For the
first equation, 24 —2023 — 15022 —5002+625 = 0, the solutionis zp = 5 (1 +vV3+V3+ 2\/5)

and yp = 5V 10\/18 +10v/3 4 /627 + 362v/3. Numerically this is P =~ (26.3726, 132.978).
The group is shown in green in the right diagram of the next figure. For the second equation,

z* + 15022 — 1875 = 0, the solution is zp = —5v/ —3 + 2v/3 and yp = 5v/101/ v/ —45 + 261/3.
Numerically this is P ~ (—3.40625, 6.75538). The group is shown in brown. For the third equa-
tion, 2% + 2043 — 15022 + 5002 + 625 = 0, the solution is 2p = —5 (1 +V3-3+ 2\/3) and

yp = 5\/10\/—18 —10v/3 + /627 + 362v/3. Numerically this is P ~ (—0.947955,4.77986).

The group is shown in red, see next figure. In all three cases the points 2P and 4P are points
of inflection. Notice that the group {3P, O} and the group {2P,4P, O} are subgroups of each

sixfold torsion group (in the same way as Cy and Cj5 are subgroups of Cj).
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ANy

10 2P -
—10 4 s B

5P ||
order 6 \

I e e e B B
—-6—-4-20 2 4 6 8 10 12
X X

Sevenfold torsion: we obtain the equation 7X12 4308 X —2954X 10 1 19852X° — 35321 X8
82264 X7 — 111916 X6 F 42168 X5 4+ 15673 X* 4+ 14756 X3 4+ 1302X2 + 196 X2 — 1 = 0, where
X = (%x)2 The upper and lower part of the plus-minus symbols is for a = 25 and a = —25
respectively. For a = 25 the starting point is P ~ (17.5386, 76.3763). For a = —25 the starting
point is P ~ (35.7759,211.886). The results are shown in the next figure.

40 | | | | | | 40 | | | | |
30 | y? =23 + 25z K, 30 | y? =3 — 25z
20 op - 20
10 - 10
3P
—10 - —10
—20 | °r - =20
=30 | order 7 6]\)7 =30 | order 7
_40 T T T T T T T T T _40 T T T T T T T
—-6-4-20 2 4 6 8 10 12 —-6-4-20 2 4 6 8
x x

Eightfold torsion: for a = 25 the equation is 2% — 2023 — 5022 — 5002 + 625 = 0.

Asolution is zp = 5 (1+ V2 + V2 +22) and yp = 5V/10\/13 + 9v/3 + 21/82 + 58v2. Nu-
merically this is (23.0579,113.294). The result is drawn in the left diagram of the next figure.
For a = —25 the equation is 28 — 4027 — 30026 — 10002° + 237502* + 2500023 — 18750022 +
625000 4+ 390625 = 0. There are two solutions. The first starts with P = (46.6517,316.805)
and is shown in green. The second starts with P = (—0.535886,3.63913) and is shown in
brown. All solutions have {4P, O} as an order 2 subgroup and {2P,4P,6P,O} as an order
4 subgroup (as Co and Cjy are subgroups of Cg). If you follow the tangent lines you will see

interesting geometrical properties which are not a priori obvious.
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40 | | | | |
30 | y? =23 + 25z
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Ninefold torsion: we obtain the equation —3814697265625 + 407409667968750X
+1666717529296875X 2410463378906250000.X 3+14066674804687500.X *4+9546767578125000.X >
+ 3351823242187500.X ¢ 4+ 1089921093750000X 7 + 388437363281250X 8 + 86779382812500.X°
+7773391406250.X 19F277076250000.X 1 —132156562500.X 12 F12528675000.X 13—170842500.X 14
T 15174000X 1 — 284625 X 16 £1710X 7 +3X"® = 0, where X = (%x)Z The upper and lower
part of the plus-minus symbols is for a = 25 and a = —25 respectively. For a = 25 the starting
point is P ~ (29.2843,160.765). For a = —25 the starting point is P ~ (58.9924, 451.47). The
solutions have {3P,6P, 0} as an order 3 subgroup (as Cj is a subgroup of Cy). The results

are shown in the next figure.

40 —

30 | y? =23 + 25z

20 |

10 |

> 0
—10 N
_20 |
_30 |
—40 —

T~

The geometry of the green solutions becomes evident by now. Just to illustrate a more in-
teresting geometry a torsion group of order 12 for y? = 23 — 25z is shown in the next figure.
In this illustration as well as in the illustrations shown above there is no torsion point with
both the x and the y coordinate rational. For rational points we should consider other elliptic

curves.
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10 ‘ ‘

30

20

order 12

3.6 Torsion lines

If we take the situation for sixfold torsion at hand we have six points: P,2P,3P,4P,5P, 0.
For 32 = 234252 the line from P to 4P was tangent in P. Since P is twofold for its tangent we
can denote the line as (1, 1,4). That is, it hits twice P and once 4P. The line which intersects
3P, 2P and P is (3,2,1). The line tangent to the root hits twice the root 3P and once O:
(3,3,0). The vertical line through the inflection points is (2,4,0). The line intersecting 5P,
4P and 3P is (5,4,3). The tangent line in the point of inflection is threefold in 2P: (2,2,2).
The line tangent to 5P is (5, 5,2). The line tangent to 5P can also be regarded as starting in
5P, going to 2P and returning in 5P: (5,2,5). Alternatively, the order of the numbers do not
matter. If we add the three numbers identifying a line we either obtain 0, 6 or 12. That is, for
line (a,b,c), ¢ = (12 —a —b) mod 6. For n-fold torsion a line is (a,b, (2n —a —b) mod n).
This can be seen as follows. If we add the points aP and bP we obtain the point (a+b)P. So,
the line through a P and bP goes through —(a+b)P = (—a—0b)P. Since the points are mod n
we get for the line: (a,b,(—a —b) mod n), which is identical to (a,b, (2n —a —b) mod n).
We can now generate all the lines: run a from 0 to n — 1 and b from 0 to n — 1 and calculate
c=2n—a—>b mod n. This leads to n? lines. However, the line (a, b, c) is the same line as
(a,c,b). If a, b and c all three differ from each other we have 6 combinations for the same line.
If two out of a, b and ¢ are equal we have 3 combinations for the same line. This reduces the
number of lines. Before we successively consider the situation for increasing order, we first
will distinguish lines by their nature. The line (a,b,c) with a # 0, b # 0 and ¢ # 0 all three

different from each other is a line intersecting the elliptic curve in three different points. We
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will denote it as type S. The line (0,b,¢) with b # 0 and ¢ # 0 different from each other is
a vertical line intersecting the elliptic curve in b, ¢ and O. We will denote it as type V. The
line (a,b,b) with a # 0 and b different from a is a line tangent in b and intersecting the elliptic
curve in a. We will denote it as type 7. The line (0, b,b) with b # 0 is a vertical line tangent
in a root b. We will denote it as type R. The line (a,a,a) with a # 0 is a line tangent in a
point of inflection a. We will denote it as type I. The line (0,0,0) is a line through O. We
will denote it as type O. For order n the number of lines will be denoted as L(n). The number
of lines of type O, I, R,T,V,S will be denoted as Lo(n), L;(n), Lr(n), Ly(n), Ly (n), Ls(n).
Their sum will be denoted as L(n).

The results are tabulated.

type| n =1 | Lyype(1) |[type| n =2 | Liype(2) || type n=3 Liype(3)
O |(0,0,0) 1 O 1(0,0,0) 1 (0] (0,0,0) 1
1 0 I 0 I |(1,1,1) (2,2,2) 2
R 0 R |(0,1,1) 1 R 0
T 0 T 0 T 0
V 0 v 0 V (0,1,2) 1
S 0 S 0 S 0
sum 1 sum 2 sum 4
type n=4 Liype(4) || type n=>5 Liype(5)
(0] (0,0,0) 1 (@] (0,0,0) 1
I 0 I 0
R (0,2,2) 1 R 0
T |(1,1,2) (2,3,3) 2 T |(1,1,3) (3,3,4) (1,2,2) (2,4,4) 4
|4 (0,1,3) 1 |4 ,1,4) (0,2, 2
S 0 S 0
sum ) sum 7

For instance, from the table for n = 4 we read of that 2 is root, that a line tangent in 1
intersects de curve in the root 2, that a line tangent in 3 intersects de curve in the root 2,
that there is a vertical line through 1 and 3 and that there is a vertical line tangent to 2. This
determines the geometry. In case of 3 roots one still has to find out for which root this is
possible. One also has to find out if there is more than one possibility. Nevertheless, the tables
can be of help for the understanding of the geometry of all the lines involved, in particular for

increasing n.
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type|n =6 Ltype(6) type|n =7 Ltype(7)
0] (0,0,0) 1 0] (0,0,0) 1
1 (2,2,2) (4,4,4) |2 1 0
R (0,3,3) 1 R 0
T (1,1,4) (2,5,5) |2 T (1,1,5) (2,2,3) (4,4,6) (1,3,3) (2,6,6) (4,5,5)|6
% (0,1,5) (0,2,4) |2 \%4 (0,1,6) (0,2,5) (0,3,4) 3
S (1,2,3) (3,4,5) |2 S (1,2,4) (3,5,6) 2
sum 10 sum 12
type |n = Ltype(S)
0] (0,0,0) 1
1 0
R (0,4,4) 1
T (1,1,6) (2,2,4) (5,5,6) (2,3,3) (2,7,7) (4,6,6) |6
%4 (0,1,7) (0,2,6) (0,3,5) 3
S (1,2,5) (1,3,4) (3,6,7) (4,5,7) 4
sum 15
type|n =9 Liype(9)
0] (0,0,0) 1
1 (3,3,3) (6,6,6) 2
R 0
T (1,1,7) (2,2,5) (5,5,8) (1,4,4) (2,8,8) (4,7,7)|6
\%4 (0,1,8) (0,2,7) (0,3,6) (0,4,5) 4
S (1,2,6) (1,3,5) (2,3,4) (3,7,8) (4,6,8) (5,6,7)|6
sum 19
type|n =10 Ltype(lo)
0] (0,0,0) 1
I 0
R (0,5,5) 1
T (1,1,8) (2,2,6) (3,3,4) (6,6,8) (2,4,4) (2,9,9) (4,8,8) (6,7,7) |8
V (0,1,9) (0,2,8) (0,3,7) (0,4,6) 4
S (1,2,7) (1,3,6) (1,4,5) (2,3,5) (3,8,9) (4,7,9) (5,6,9) (5,7,8) |8
sum 22
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type|n =11 Liype(11)
O (0,0,0) 1

I 0

R 0

T [(1,1,9) (2,2,7) (3,3,5) (6,6,10) (7.7.8) (1,5,5) (2,10,10) (3,4,4) (4,9,9) (6.,8,8) |10

vV [(0,1,10) (0,2,9) (0,3,8) (0,4,7) (0,5,6) 5

S (1,2,8) (1,3,7) (1,4,6) (2,3,6) (2,4,5) (3,9,10) (4,8,10) (5,7,10) (5,8,9) (6,7,9) |10

sum 26
type|n = 12 Liype(12)

0,0

~

14.4) (8,8,8)

0,6,6)

QUL CoO | —| DN

0,1,11) (0,2,10) (0,3,9) (0,4,8) (0,5,7)

1,2,9) (1,3,8) (1,4,7) (1,5,6) (2,3,7) (2,4,6) (3,4,5) (3,10,11) (4,9,11) (5,8,11)| 14

o,
I
B |(
T |(1,1,10) (2,2,8) (3,3,6) (7,7,10) (2,5,5) (2,11,11) (4,10,10) (6,9,9)
VI
s |«
(5,9,10) (6,7,11) (6,8,10) (7.8,9)

sum 31

The number of lines of type O, I, R and T together will be denoted as Lrgrro. If we look
at the sum of the number of lines of type O, I, R and T, then Lyr;o(n) = n. The number
of lines of type V and S together will be denoted as Lyg. If we compare Ly g(n) with L(n)
then Lygs(n) = L(n — 3). Since Lys(n) = L(n) — Lrrro(n) = L(n) —n we obtain L(n) =
L(n—3)+n. Starting with n = 4 we have L(4) = L(1)+4 =144, L(7) = L(4)+7 = 1+4+7,
L(10) = L(7)+ 10 =1+44 7+ 10 and so on. Hence, L(n) = énQ +In+ % ifn>=1 mod 3.
Starting with n = 5 we have L(5) = L(2) +5 = 2+ 5, L(8) = L(5) +8 = 2+ 5+ §,
L(11) = L(8) + 11 = 2+ 5+ 8+ 11 and so on. Hence, L(n) = gn* + in+ L if n = 2
mod 3. Starting with n = 6 we have L(6) = L(3) +6 =446, L(9) = L(6) +9=4+6+ 9,
L(12) = L(9) + 12 =446 + 9+ 12 and so on. Hence, L(n) = ¢n*+ in+1if n =0 mod 3.

3.7 Generating rational points

As an example of an elliptic curve with rational points we consider the curve given by
y? = 2% — 52 + 12. The single root R(—3,0) is an integer torsion point of order 2. Next
to the root R(—3,0) the curve has P(—1,4), —P(—1,—4), S(8,—-22) and S(8,22) as integer
points, where S = R + P. Starting with P we can calculate 2P with the ‘doubling’ formula.

Thereafter we can calculate 3P = 2P 4+ P. We can calculate 4P either by regarding it as
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4P = 2P + 2P and apply the doubling formula or by regarding it as 4P = P + 3P and apply

the addition formula, etc. Either way, we obtain 2P = (32 —26%17), for 3P = (%0417, 110167268465;3),

16>
4P = (—;gggggg, — 141514812350185411367), etc. Notice that the denominator of the x coordinate is the

square of a number while the denominator of the y coordinate is the cube of that number.

The rational point P and some of its multiples are shown in the next figure.

30 | y? =23 — 5r + 12 -
20 |

10 |

—10
—20

—30

From S(8, —22) we obtain for 25 the coordinates (33, —207) for 35 (— 864 3015166y £, 49

16~ 64 90257 857375
7363967 11182515137 ) _ . .
(— 5710336 — 541308416 )» etc. Since S = R+ P the points generated by S are not independent

of the points generated by P. It also follows that 25 = 2R+ 2P = O + 2P = 2P and thus
45 = 4P, 65 = 6P, etc. The points S, P and their multiples are shown in the figure. For

clarity, the mirror points —P, —2P,....—kP, —S5, —25,..., —kS,.. are not shown.

The points on an elliptic curve form an abelian group, E(R). The subgroup of rational points
is denoted as E(Q). The rank of an elliptic curve is the number of generators, ‘starting points’,
needed to generate all the rational points. For instance, for the elliptic curve y? = 2% — 5z 412
the rational points are generated (whether or not with the help of the torsion point R(—3,0))
by P(—1,4). Since there are no other rational points (just take it for granted because rank
determination is complicated), the rank is 1. According to a theorem of Mordell the number

of generators of rational points always is finite.

As another example we consider the curve y? = 3 — 152 4+ 22. Next to the root (2,0)
the curve has (—1,6), (—1,—6), (3,2) and (3, —2) as integer points. If we denote (—1,6) as
P, then 2P = (3,-2), 3P = (2,0), 4P = —2P = (3,2), 5P = —P = (~1,—6) and 6P = O.

The situation is shown in the next figure.



3.7. GENERATING RATIONAL POINTS 93

y? =23 — 150 + 22
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The order of P is 6: P is cyclic with cycle length 6. There is no rational point which generates

an infinite number of rational points, so the rank is 0.

In general, if nP = O then n is the order of point P. For a point P with order n there
holds (n + 1)P = P. That is, the point P is cyclic with cycle length n. A cyclic point P is
called a torsion point. An elliptic curve is denoted as E. The group of all points on the curve
as F(R). The group of torsion points Erogrs is a subgroup of E(R).

The group of rational torsion points is called E(Q)pogrs. For the order n of a rational torsion
point there holds n < 12 and n # 11; a theorem of Mazur. Only the neutral point O has
order 1. Roots, points on the y = 0 axis, have order 2. There are 3 root points (of which 2
may be complex). Together with the neutral point we have 4 points of order 2. The points of
inflection have order 3. The inflection equation, 3’ = 0, is a fourth degree equation in x with 4
(of which 3 complex) solutions for x. For every solution x,y there also is a solution z, —y. So,
we have 8 solutions. Together with the neutral point we have 9 points of order 3. In a similar
way we have n? points (possibly complex) of order n. In general, torsion points are not ratio-
nal. However, if the coefficients of the elliptic equation are integer, the torsion points also are
integer. The group of torsion points ErgRrs is infinite. However, the group of rational torsion
points E(Q)rors is finite. The group E(Q) of rational points is generated by a finite number
of generators. Every element @ of E(Q) can be written as Q = m1 Py + moPy+...+m, P, + T,
where Pi,..., P, are the generators, where myq,...,m, € Z, where r is the rank and where
T € E(Q)tors. The group E(Q) is isomorphic to Z" & E(Q)ToRs-
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3.8 Rational points on y? = 2% — 252

The elliptic curve E : y? = 23 — 252 has (—5,0), (0,0), (5,0), (—4,6), (—4,—6), (45,300)
and (45, —300) as integer points. The roots (—5,0), (0,0) and (5,0) are three points each
with order 2. Earlier we found that (—4,6) corresponds to the (1%,6%,6%) right triangle
with area 5. Denoting (—4,6) as P we obtain 2P = (1120, —361;—%8). Earlier we found it
corresponds to the (3%, 3%,4?2%23) right triangle. For the present purpose we write it

as a = %, b= 2920 4nd ¢ = 33416 N[yltiplication by 747348 leads to the Pythagorean

1519 4921519
triple: (15192,10-4922,3344161). By means of 3P = 2P+ P we obtain 3P = (— gégggig, 3 15112997726628957953).

nb 2n2 . 2 —n? 2nx
From the correspondence x = and y = £ we obtain a = ,b=—and
c—a c—a Y Yy
2%+ n? . . . . . . .
c = . For the coordinates of 3P it leads to a right triangle with rational sides a =
Y
25353117 ' py — 35254340 o)\ o — O54G8G2L9104361  \1y)tiplication by 89380740677778=3525434-25353117

3525434 25353117 89380740677778
leads to the Pythagorean triple: (253531172,10-35254342,654686219104361). For 4P we find the co-

12832131841 1791076534232245919 . . : .
5 5951116139416 33393411665 -665536)- 1t corresponds to a right triangle with ratio-

535583225279 _ 49985040700560 _ 249850594047271558364480641 -~
1508504070056° 0 = “s3sasamanzro and ¢ = Seriiiosiiosotolcidseos - Multipli

cation by 2677114931410801046145624 =4998504070056-535583225279 leads to the Pythagorean triple:

ordinates (

nal sides a =

(5355832252792,10-49985040700562,249850594047271558364480641).

coordinates (x,y) of nP Pythagorean triangle A,, B,,C,, | generating (k,,m)
zp=-22, yp=2-3 A =32 B =25 Ci =41 |k =5, m =22
_ 4 Ay =7%.31%2, By =2°.32.5.41% | ky = 412
Iop = 94 .32 2= y D2 =479 -0~ 2=
72.31-41 -
$p:—a72 Ay = 3%. 5872 . 47992 ks =5-37%. 612
3 372 . 612 3 3
a-3%-587-4799
= By =23.5.11%2.372.612 . 712 =22.112.712
ysp 373 . 613 3 ms3
where v :=2-11-71 C3 =41 -15967956563521
B2 2 2 2
= Ay = 113279° - 4728001 ks = 3344161
TP =06 g2 74312 412 | 4
YaP = 55 33 76 . 313 . 413 By=2"-3-5-7"-317-417- 8 mMy=26.33.5.74.312.412
where § := 3344161 C'4 = 545834881 - 457740248460360961
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In the previous table coordinates for nP and the integer sides of the corresponding Pythagorean
triangle and its generating numbers (k,m) (a = k? — m?,b = 2km, c = k% + m? remember)
are shown in factorized form. We see the generating (ko;, mo;) for (2j)P follows from the
(Aj, B;,Cy) for jP via kyj = CJZ and mg; = 2A;B;. In conclusion, we can construct an

infinite number of Pythagorean triangles for which AB/2 is 5 times a square.

Denoting the roots (—5,0), (0,0) and (5,0) respectively as R_, Ry and Ry and denoting
(45,—-300) as S we find R_ + P = S. Also here 2P = 25, so only odd multiples of S are new

points. The first two of them are shown in the next table.

coordinates (z,y) of nS Pyth. triangle A, B, Cy, generating k,, my,

zg =325 ys=22-3-52 | B =3% A =225 Ci=41 | ky =5, m; =22

2
-5
T3g = % B3 = 3% 587% - 47992 ks =5-37%. 612
+22.52.11-37-71
yas = — o Ag=20-5-112.372.612- 712 | my = 22 112 712
where a := 3% - 587 Cs5 = 41 - 15967956563521

We see that changing from (25 + 1) P to (25 + 1)S is a matter of changing roles of Ag;i; and

Bsji1. Not a surprise because this was the way we constructed S from P earlier.

Next we consider V. = Ry + P. We find for V the coordinates (6%,9%), from which we

can find new points 3V, 5V, etc. The first two are shown in the next table.

coordinates (z,y) of nV Pyth. triangle A,, By, Cp generating k,, my,
52 352
V= W= A =32 B =285 Ci=41 | k =5, m =22
xv:a72 As = 3%. 5872 - 47992 ks =5-37%-612
VT 92 12712 3
a-3%-5-587-4799
= By =2%.5.112.37%2.612 . 712 =922.112.712
213\/ 23 . 113 ] 713 3 5 37 6 7 ms3 7

where o :=5-37- 61 C3 =41 -15967956563521
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Finally we consider W = R, + P. We find for W the coordinates (—8, —3%), from which we
can find new points 3W, 5W, etc. The first two are shown in the next table. The coordinates
and the Pythagorean triangle sides of, for instance, 3P are governed by the prime numbers
2,3,5,11,37,61,71,587,4799 . For the coordinates of 35, 3V and 3W some of these prime num-

bers are moved from denominator to numerator and vice versa in comparison with 3P.

coordinates (x,y) of nW Pyth. triangle A,, By, Cp generating k,, my
52 3.52
TW = —om YW = g A =32 B =235 C =41 | k1 =5, my =22
Ty = __« Bs = 3% . 5872 . 47992 ks =5-37%- 612
34. 5872
a-22.5-11-37-61-71
= A3 =23.5-112-372.61% - 71 =922.112.712
Ysw 36 . 5873 3 ma
where a := 5 - 4799 C5 = 41 - 15967956563521

From the addition of two points P, S, V and W we obtain new points:

5-312 2-3-52.31-41
e =5 >,P+W:S+V:<

24.32.52 92.3.52.72.31
P — — [ — _
+V=S+W ( PR e

‘independent’ point since W =S5 4+ V — P. The roots R_, Ry, R4 are torsion points, each of

5.7% 23.3.52.72.41
pes v )

3127 313

and so on. Notice that W is not an

order 2. Together with the rational point P all the other rational points are generated. So,
the rank is 1.

One might wonder if there is a point, say H, such that its double is P(—4,6). Using the
doubling formula in reversed order we obtain fourth degree equations for the coordinates of
H. The four solutions are complex: (241, —1+ 7i), (2 —14,—1—7i), (—10 + 53,25 + 257) and
(—10 — 5i,25 — 25i). Often H is denoted as %P for obvious reasons: 2 - %P = P. Application
of the doubling formula in reversed order to 2P = (11%, —36%) leads to the following four
solutions: (—4,6), (45, —300), (6%,9%) and (—8, —3%). That is, P, S, V and W as expected
since 25 = 2V = 2W = 2P.

In the next figure a number of multiples of P, S, V and W are shown (the mirror points
are left).
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The positions of rational points nP in the figure above are such that nP is close to (n + 8)P.
A similar observation can be made for the points nS, nV and nW. The reason for this is
that the generator (—4,6) of the rational points on the curve E : y? = 23 — 25z is close to
the non-rational torsion point (—4.03198,5.93736) (see the brown 3P in the eightfold torsion

figure two sections earlier).

3.9 Modular counting on elliptic curves

As we did for a circle equation in the first section, we will apply modular counting on elliptic
curves. As an example we will consider the curve E : y? = 23 +axz+b modulo a prime number.
Alternatively, we consider y? = 23 + ax + b over the field Z/pZ with p prime. The group of
integer points on an elliptic curve E over Z/pZ is usually denoted as E(FF,). The prime should
not be 2 or 3 for reasons we will not go into. In addition we can only take prime numbers for
which the curve does not become singular. A singularity occurs if the discriminant D becomes
0. The discriminant of an n—th degree equation is defined as the product of the squares of

2n—2

~"—2 where a,, is the leading coefficient, the coefficient

the distances between the roots times a
of ™. Thus

D =a?"? H(:c, — ;)2 (3.7)

i>j
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For the quadratic equation y = ax? + bz + ¢ the leading coefficient is a. Since the two roots

—b— Vb%2 —4dac B —b+ Vb% —4dac

T, = and z;

2a 2a
Vb2 — 4dac

. Hence, D = a*(z9 — 1) = b* — 4ac.

a
For the cubic equation y = 3 + ax + b the leading coefficient is 1. If we denote the three

are

, the distance between them is x9 — 21 =

roots as z1, oo and x3 then D = 1*(zy — x1)?(z3 — 21)%(23 — x2)%. The calculation of the

roots of the cubic equation is standard in complex function theory. We just give the result:

a+T 14+iv3a 1—iV3T q 1—iv3a 144V/3T .
==+, 22 = = — — and zp = = — —, where
L=7 T3t 2 T 2 3 2 2 T 2 3"

. From these expressions one obtains the following expression

T \5/ —27b + 3v/3V/4a3 + 27b2
B 2
for the discriminant: D = —(4a® + 27%).

If we consider an elliptic equation modulo a prime p, then the curve is singular if the
discriminant is 0 mod p. For example for y?> = 2® — 5z + 12 the discriminant is D =
—(4-—53427-123) = —3388. Modulo 7 we have D = —3388 mod 7 = 0. Since 3388 = 22.7.112
the discriminant will also be 0 for p = 11: D mod 11 = 0. Therefore p = 7 and p = 11 are
not allowed for modulo counting on the curve y? = 23 —5x+12. With this in mind we consider

modular counting on some elliptic curves.

3.10 Modular counting on y? = 2* — 5z + 12

In this section we will consider the curve y? = 23 — 52 + 12 modulo a prime number p.

For instance, for p = 13 the integer points on ‘the curve’ are (10,0), (11,1), (4,2), (6,4),
(8,4), (12,4), (0,5), (2,6), (2,7), (0,8), (6,9), (8,9), (12,9), (4,11) and (11,12). Together
with O the group of 16 points is E(F;3). If we denote (4,2) as P the doubling formula gives
2P = (6,9). The calculation is as follows. First the slope of the tangent line in P:

3z +a  3-42-5 43 4
N = 2P = = T >~_ >~ d13. 3.8
2p 2.2 44 o (38)
Having obtained the slope we proceed: xzop = A2 —2zp =12 — 2.4 = -7 =6 mod 13 and

yop = NMap —xzop) —yp =1(4—6) —2=—-4=9 mod 13. Indeed 2P = (6,9).

Since the tangent line through P = (4,2) has slope 1 it arrives in integer point: (6,4).
The latter point is mirrored with respect to y = 6%, similar to the y = 0 mirror for continuous
curves. The final point is 2P = (6,9). The doubling of P is illustrated in the next figure.
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Next we apply the addition formula to obtain 3P:

yop —yp 9-—2 7 1
A= = = =927 .7TXN7.7T=240x2] d13. 3.9
tap —p 643 T=T7-7249>~10 mod 13 (3.9)

Notice that 7 is the inverse of 2 since 7-2 = 14 = 1 mod 13. This makes clear that unique
inverses require the modulo counting with a prime number. Having obtained the slope of the
line connecting P and 2P we proceed: x3p = N —zp—xop=102—4—6=902=12 mod 13
and yop = ANzp —2z3p) —yp = 10(4 — 12) — 2 = —82 =2 9 mod 13. Hence 3P = (12,9).
Continuing the addition we obtain 4P = (0,8), 5P = (8,4), 6P = (11,1), 7P = (2,7),
8P = (10,0), 9P = (2,6), 10P = (11,12), 11P = (8,9), 12P = (0,5), 13P = (12,4),
14P = (6,4), 15P = (4,11) and 16P = O. So, P is of order 16. Since 1,3,5,7,9,11,13 and
15 are relative prime to 16 (recall p(16) = 8 with ¢ Euler’s totient function), the 8 points
P,3P,5P,7P,9P,11P,13P,15P have order 16. The point 2P has order 8, and since 1, 3,5
and 7 are relative prime to 8, the 4 points 2P, 6P, 10P,14P have order 8. The point 4P has
order 4, and since 1 and 3 are relative prime to 4, the 2 points 4P, 12P have order 4. The
point 8P has order 2. The point 16P has order 1, 16P = O is the single element with order
1. The full group P,2P,...,16P is isomorphic to the cyclic group Cig6. Subgroups are Cg, Cy,
C5 and (.

The line through P and 2P goes through (7%,13) where it is wrapped to (7%,0). From
there it goes to (10%, 13) where it is wrapped to (10%, 0) after which it arrives at the integer
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point (12,4). The latter point is mirrored with respect to y = 63 to (12,9). So, 3P = (12,9).
The addition of P + 2P = 3P is illustrated in the next figure.

13 L
12
11

3Pe |

13P/ B

oGP

8P

0 T T T T T T T T &1

01 2 3 4 5 6 7 8 9 10 11 12 13
A

8 4P
7 7P
6 *9pP
o ®12P

Since 15P = — P we see that going from P to —P is a matter of reflection of the y coordinate
with respect to the y = 6% line. For an elliptic curve over the field Z/pZ the points are
mirrored in y = p/2.

For the next prime, p = 17, we find 13 integer points. Together with the neutral element
O the points forms a group of order 14: P,2P,...,14P = O. The subgroup 2P,4P, ..., O has
order 7, and the element 7P has order 2. The largest order of the elements is 14. The full
group P,2P,...,14P is isomorphic to the cyclic group C14. Subgroups are C7, Cy and C}.

For p = 19 we obtain the following 17 points: (16,0), (8,3), (7,4), (13,4), (18,4), (15,5),
(5,6), (14,8), (3,9), (3,10), (14,11), (5,13), (15,14), (7,15), (13,15), (18,15) and (8, 16).
Together with O we have 18 elements; the order of the group is 18. Denoting (7,4) as P
we obtain 2P = (3,10), 3P = (16,0), 4P = (3,9), 5P = (7,15), 6P = O. Denoting (8, 3)
as @@, we obtain 2QQ = (8,16) and 3Q) = O. The other points now are P + Q = (5,13),
2P + Q = (13,4), 3P + Q = (18,15), 4P + Q = (14,8), 5P + Q = (15,5), P+ 2Q = (15,14),
2P + 2Q = (14,11), 3P + 2Q = (18,4), 4P + 2Q = (13,15), 5P + 2Q = (5,6). The group
structure is Cs x C3. The largest order of the elements of the group is 6.
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The number of integer points E(F,) including O is the order of E(F,). The order of each
element of E(F,) is a divisor of the order of E(F,). For a different elliptic curve such as
E : y? = 23 — 252 we obtain 20 for the order of F(F13), E(F17) and E(F19). They are not far
away from the corresponding values for the elliptic curve E : 32 = 23 — 52 + 12. They also
are not far away from the prime p. That this is even more so for larger primes is illustrated in
the next figure where the order of E(F,) for the elliptic curves E : y? = 2® — 5z + 12 (green
dots) and E : y? = 23 — 252 (red dots) is plotted against p for p < 1000.
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3.11 Modular counting on y* = 2* — 25z

In this section we will consider the curve y? = 23 — 252 modulo a prime number.

For p = 7 there are 8 points (group structure Cy x C3). For p = 11 there are 12 points. They
are generated by two elements, one of order 6 and one of order 2 (Cs x C3) . For p =13, 17
and 19 there are 20 points. In all three cases the group structure is Cg x Cy. For p = 13,
17 and 19 the corresponding points (except O) are shown as respectively red, green and blue

dots in the next figure.
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A common point for red and blue is (10,3). Common points for all three colours are the
roots (0,0) and (5,0). For the third root, (—5,0), we find different values for different p:
(—5,0) = (8,0) mod 13), (—=5,0) = (12,0) mod 17) and (—5,0) = (14,0) mod 19). The
number of points with y = 0 is either 0 (if there is no integer root), 1 (in case of one integer
root) or 3 (in case of three integer roots). For a group E(F,) the sum of the y coordinates of
points with the same = coordinate is p, because of the reflection with respect to the horizontal
line y = p/2. If there are three points with the same y coordinate, the sum of the x coordinates

is p or 2p.

For p = 13 (red points) there are eight = values with 2 points. We will denote it as Xy = 8.
For p = 13 there are two = values with no points. We will denote it as Xy = 2. In general we
will denote the number of x values with k points as X and the number of y values with &
points as Y. For p = 13,17 and 19 the X and Y} values are tabulated

p | X1 | Xo | V1 | Yo | V3 | #E(F),)
13 3 8 8 4 1 20
17 3 8 4 0 5 20
19 3 8 8 0 3 20

Taking O into account there holds X7 +2Xo +1 =Y] +2Y5 4+ 3Y3 +1 = #E(F,). The X,
and Yy are not shown in the table since Xo =p— X; — Xoand Yo=p—Y] — Yy — Ys.
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For E : y? = 23 — 25z the largest order of the elements of E(F13), E(Fi7) and E(Fg) is
10, while the order of these three groups is 20. In all three cases the largest order of the

elements is half the order of the group. In the next figure the largest order of the elements of
the group E(IF,) is plotted against p, p < 1000, for the elliptic curves E : y? = a® — bx + 12
(green dots) and E : y? = 23 —25z (red dots). We see that for the curve E : y? = 23 —5x+12

the largest order of the elements of the group E(F),) is in most cases as large as the order of

the group E(F,), while for the curve E : y? = 23 — 25z the largest order of the elements of
the group E(F,) is at most half the order of the group E(F)).
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3.12 A ratio in E(F,)

Let us define p as the following ratio:

w(p;

E)

B order of E(F))
~ largest order of the elements of E(F,)

(3.10)

The set of different p values depends on the elliptic curve and on p. For p < 1000 (and p not

a divisor of the discriminant) the ratio u takes on the values:
1,2,3,4,5,6 for E: y? = 2% — 5z + 12,
1,2,3,4,5,6,7,8,9,12,16 for E : y? = 23 — 152 + 22,
1,2,3,4,6 for E: y? = 2% — 32 + 18,
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1,2,4,5,6,7,10,12,14,23,24 for E : y? = 23 — 3z,
1,2,4,6,8,10,12,14,16, 18,20, 24,28 for E : 3?> = 23 + 8,
1,2,4,6 for E: y?> = 23 + 32 — 4,

1,2,3,4,6 for £ : y? = 2% + 3z + 4,
2,4,6,8,10,12,14,16,18,20,22,24 for E : y> = 2> — x,
2,4,6,8,10,12,14,16,18,20,22,24 for E : y> = x> — 16,
2,4,6,8,10,12,14, 20,26 for E : y? = 23 — 25z,
2,4,6,8,10,12,14,22,24 for E : y? = 23 — 36x.

3

The set of s for E : y? = 2% —x and the set of s for E : y? = 2% — 162 are identical. In gen-

eral the sets for E : y? = a3 — t*z are the same for any t. Moreover, for E : y? = 2% — t%x the
order of E(FF,) as well as the largest order of the elements of E(F,) only depend on p and not

on t. In fact, for E : y? = 23 — t*z the group structures of E(F,) only depend on p. This can

3

be understood as follows. If we start with y> = 2% — 2 and perform the linear transformation

x
y = t%’ = 3 we obtain y? = #/3 —t*z’. Since the group structure is not changed by a linear
transformation, the group for E : y? = /3 — t*2/ is identical to the one for E : y? = 23 — .

In general, the group for E : y? = 23 +at*z+bt0 is identical to the one for E : y? = z3+ax+b.

For E : y?> = 23 — z the order of the group E(F,) against p is shown by the red dots
and the largest order of the elements of E(F,) against p is shown by the green dots in the

next figure.
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Chapter 4

Modular elliptic curves

4.1 Modular counting on y?> =23+ 7

For elliptic curves with integer coefficients the integer torsion points can be systematically
found by means of Nagel-Lutz theorem: if an elliptic curve with integer coefficients contains a
torsion point the y coordinate of the point is either 0 or its square is a divisor of the discrim-
inant: y2|D. The reverse does not have to be true: an integer (z,y) for which y?|D it is not
necessarily a torsion point. There also are integer points which are part of an infinite series
of rational points generated by a generator. For each y satisfying y2|D one has to test if it

belongs to a finite cyclic group or an infinite group.

For example, for y? = 2% — 252 we have for y = 0 the integer roots © = —5, = 0 and x = 5;
(=5,0), (0,0) and (5,0) are torsion points of order 2. The discriminant is D = —(4 - —253) =
62500. The possible values for 32 such that y?|D are y? = 1,52 5% 56 22.52 22.5% 22.56,
Since each of these values for y do not correspond to an integer value for x there are no further
torsion points (except for the trivial O). Integer points (—4,6) and (45,300) are part of an
infinite series of rational points.

As another example, for y? = 2% — 52 + 12 we have for y = 0 the integer root x = —3; (—3,0)
is a torsion point of order 2. The discriminant is D = —(4 - —53 4+ 27 - 122) = —3388. The
only possible values for y? such that y?|D are y? = 1,22,112,22 - 112. Only y? = 222 does
correspond to an integer value for z, namely x = 8. However, the doubling of (8,22) does lead
to a non-integer rational point. Therefore is (8,22) not a torsion point.

As a third example, for y? = 23 — 152 + 22 we have for y = 0 the integer root = = 2; (2,0)
is a torsion point of order 2. The discriminant is D = —(4 - —153 4 27 - 22%) = 432 = 24 . 33
The possible values for y? such that y?|D are y? = 1,22,2% 32,32 .22 32 .24 This leads to
the following integer points: (3,2), (3,—2), (—=1,6), (=1, —6). Starting with P = (—1,6) we
obtain 2P = (3,—2), 3P = (2,0), 4P = —2P = (3,2), 5P = —P = (—1,—6) and 6P = O.

Since the points are part of a finite cyclic group of integer points they are torsion points.

65
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Now we consider the elliptic curve E : y? = 23 +7, which is used in the bitcoin blockchain. As
for all curves of the type y? = 23 4 b it has the property that ¢/ = 0 and y” = 0 for = 0. For
x = 0 we have y(0) = /7 which is not rational. The single root is for 2 = /=7 which is not
rational. The discriminant is D = —1323 = —33 - 72. The y?|D are y?> = 1,3,7,21. None of
these y values leads to an integer point. This means there are no torsion points (except for the
trivial O). In fact, there are no rational points at all; the rank is 0. The curve E : y? = 23 +7

is shown in the next figure.
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Integer points come into existence if we apply modulo counting on E : y?> = z3 4+ 7. For
the prime we can not take p = 7 because it would make the curve singular. For p = 5 we
obtain E(F5) = {(4,1),(3,3),(2,0),(3,2), (4,4), 0} with order 6. Denoting (4,1) as P the
successive elements are P,2P,3P,4P,5P,6P. The group is Cg. There are two points of order
6, two of order 3, one of order 2 and one of order 1. The largest order of the elements is 6.
Therefore, u(5) = 1. For p = 11 the group is Cj2. So, the largest order of the elements is
12 and p(11) = 1. For p = 13 the group is C7 and p(13) = 1. For p = 17 the group is Cig
and u(17) = 1. For p = 19 the group is Cg x Cy and p(19) = 2. For p = 23 the group is
Cyq and 11(23) = 1. For p = 29 the group is C3p and 1(29) = 1. For p = 31 the group is Cy
and p(31) = 1. For p = 37 the group is C39 and p(37) = 1. For p = 41 the group is Cyo and
1(41) = 1. The second time where p > 1 is for p = 73. Then the group is Cs x Cg and pu = 8.
We see the values of p for which p # 1 are sparse. In the next figure the order of the group
E(F,) (red dots) and the largest order of the elements of the group E(FF,) (green dots) are
plotted against p for p < 1000.
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The order of E(F,) is in approximately half the cases equal to p + 1. For these cases the
largest order of the elements of E(F,) equals the order of E(F),), see the green dots on top
of the red dots. For the other cases the largest order of the elements of E(IF,) sometimes
does not equal the order of E(F,); u # 1. For p < 1000 the ratio p takes on the values
1,2,3,4,6,7,8,9,10,22,25 or 27. For p = 5,11 and 13 the points of the group E(F,) are
shown as respectively red, green and blue dots in the next figure.

12 | y> 223 +7 mod 5,11,13
11 |
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The red and green points have (4,4) in common and the green and blue points have (7, 8)
in common. For p = 5 there are 3 different = and 5 different y coordinates, 1 point for each
y value. For p = 11 there are 6 different x and 11 different y coordinates, 1 point for each
y value. For p = 13 there are 3 different x and 2 different y coordinates, 3 points for each

occupied y value.

For p = 17,19 and 23 the points are shown as respectively red, green and blue dots in the

next figure.
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Also for p = 17,19 and 23 we see x values with 0, 1 or 2 points and y values with 0, 1 or 3
points. From inspection it is found for any p < 1000 that for every 0 < x < p — 1 there are
0, 1 or 2 points and for every 0 < y < p — 1 there are 0, 1 or 3 points. For E : y?> = 2% + 7
somehow y values with 2 points do not occur for p < 1000. As in the previous chapter we
denote the number of x values with k£ points as Xj, and the number of y values with & points
as Yy. The order of the group now is: #E(F,) =Y, +3Y5+1 or #E(F,) = X; +2Xo+1. The
addition with 1 is to account for the neutral element . In the next table we have tabulated
for each prime p (first column) the value of X (second column), X5 (third column), Y7 (fourth
column), Y3 (fifth column), the order of the group E(F,) (sixth column) and p(p) (seventh
column). The table is for p < 200 and E; y? = 23 + 7.
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In the table different categories can be distinguished. For instance, each time when X; =1
then Y3 = 0. The cases with X; = 1 and Y3 = 0 belong to a categorie. For E : 3?2 = 23 + 7

over F, we have the following five categories:
1. X1=1land Y3=0
2. Xy =3and Y] =2
3. Xy=3and Y1 =0
4. Xy =0and Y7 =2

5. X1:0andY1:0.

4.2 Categories for y?> = 2> +b mod p

For every b (integer of course) the elliptic curves £ : 32 = 23 + b mod p can be divided
in the same 5 categories as E : y? = 22 + 7 mod p. It should be noted that in general
for £ : y?> =2 23 + ax + b mod p with a # 0 also categories do occur with Y3 # 0. In the
table below the category, the order #E(FF,) and the ratio u(p) are given for b =1,2,...,8 and
p=>5,7,11,13,17,19, 23,29, 31, 37.

b 1 2 3 4 5 6 7 8
p

161 | 161 | 1,61 | 16,1

2,122 | 493 | 5131 | 43,1 | 571 | 342
11 1,12,1 | 1,121 | 1,12,1 | 1,12,1 | 1,12,1 | 1,121 | 1,12,1 | 1,12,1
13 2,122 | 5191 | 493 | 4211 | 3,164 | 571 | 571 | 3,164
17 1,18,1 | 1,181 | 1,181 | 1,181 | 1,18,1 | 1,18,1 | 1,18,1 | 1,18,1
19 2,122 | 5131 | 5131 | 421,1 | 4273 | 421,1 | 2,12,2 | 3,282
23 1,241 | 1241 | 1,241 | 1,241 | 1,241 | 1241 | 1,241 | 1,24,1
29 1,30,1 | 1,30,1 | 1,30,1 | 1,30,1 | 1,30,1 | 1,30,1 | 1,30,1 | 1,30,1
31 2,36,6 | 2,36,6 | 543,1 | 2,36,6 | 4,39,1 | 543,1 | 421,1 | 2,36,6
37 2484 | 5491 | 4391 | 4,39.1 | 537,1 | 3,282 | 4,39,1 | 3,282

For instance, for p = 19 and b = 8 we read of the numbers 3,28,2. This means that the points
of E: y? = 23+ 8 mod 19 are in category 3, that #Es(F19) = 28 and that ug(19) = 2. For
b= 0 mod p the curve is singular and for b > p the numbers can be read of at the column
for b mod p. This is the reason why for p = 5 and p = 7 the cells are left empty for b > 5
respectively b > 7.
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We see that for primes of the type p = 5 mod 6 the category is 1, #E(F,) = p+ 1 and

p = 1. To save space we will confine to primes of the type p = 1 mod 6, see the next table.

b 1 2 3 4 5 6 7 8
p
7 2,122 493 | 5131 | 43,1 5,7.1 3,4,2
13 2,122 | 5191 | 493 | 421,01 | 3,164 5,7.1 571 | 3,164
19 2,122 | 5131 | 5,131 | 421,1 | 4273 | 4211 | 2,122 | 3,282
31 2,366 | 2,366 | 5431 | 2,36,6 | 4391 | 5431 | 421,1 | 2,366
37 2484 | 5491 | 4,391 | 4,391 | 5371 | 3,282 | 4,391 | 3,282
43 2,36,6 | 3,522 | 549,7 | 2,36,6 | 5497 | 4,39,1 | 531,1 | 3,522
61 2484 | 5611 | 2484 | 4,755 | 4633 | 561,01 | 561,1 | 3,762
67 2,842 | 5,731 | 3522 | 4571 | 3522 | 4,633 | 5791 | 3,522
73 2,842 | 4819 | 2842 | 4571 | 5911 | 4819 | 3,648 | 2,842
79 2,842 | 4,633 | 5971 | 4931 | 4931 | 5671 | 567,01 | 2,842
97 2,842 | 41173 | 4,117,3 | 4,931 | 5791 | 4,931 | 5791 | 2842
103 | 2,842 | 4,117,3 | 3,124,2 | 4,111,1 | 5971 | 591,1 | 4,111,1 | 2,842
109 | 2,108,6 | 3,112.4 | 4,129,1 | 2,108,6 | 4,129,1 | 591,1 | 4,129,1 | 3,112.4
127 | 2,108,6 | 2,108,6 | 5,127,1 | 2,108,6 | 3,148,2 | 5,127,1 | 5,127.1 | 2,108,6
139 | 2,156,2 | 5,163,1 | 5,133,1 | 4,147.1 | 4,147,1 | 2,156,2 | 4,147.1 | 3,124,2
151 | 2,156,2 | 4,171,3 | 3,148,2 | 4,129.1 | 4,171,3 | 5,133,1 | 5,133,1 | 2,156,2
157 | 2,144,12 | 3,172,2 | 4,183,1 | 2,144,12 | 5,133,1 | 5,133,1 | 3,172,2 | 3,172,2
163 | 2,156,2 | 5,139,1 | 5,181,1 | 4,147.1 | 3,172,2 | 2,156,2 | 5,139,1 | 3,172,2
181 | 2,156,2 | 5,175,5 | 4,201,1 | 4,201,1 | 2,156,2 | 3,2084 | 3,208,4 | 3,208,4
193 | 2,1928 | 4,171,3 | 2,192,8 | 4,219,1 | 5.217,1 | 4,171,3 | 4,219,1 | 2,192,8
199 | 22282 | 4,189,3 | 5,211,1 | 4,183,1 | 2,228.2 | 5217,1 | 4,189,3 | 2,228,2
211 | 2,228,2 | 5,199,1 | 5,199,1 | 4,183,1 | 2,228,2 | 4,183,1 | 5,199,1 | 3,196,14
223 | 2,252,6 | 2,252,6 | 5,247,1 | 2,252,6 | 5,229,1 | 5,247,1 | 2,252,6 | 2,252,6
220 | 2,252,6 | 3,2084 | 4,237.1 | 2,252,6 | 4,201,1 | 5,223,1 | 5,259,1 | 3,208,4
241 | 2,228,2 | 4,225,15 | 4,.273,1 | 4,273,1 | 2,228,2 | 2,228.2 | 5,259,1 | 2,228,2
271 | 2,300,10 | 4,243,9 | 32442 | 42731 | 42731 | 5,301,1 | 4,243,9 | 2,300,10
277 | 2,252,6 | 3,304,4 | 4,309,1 | 2,252,6 | 5,283,1 | 52471 | 4,273,1 | 3,304,4
283 | 2,252,6 | 3,316,2 | 5,277.1 | 2,252,6 | 5,259,1 | 4,291.1 | 4,309,1 | 3,316,2
307 | 2,324,18 | 3,292,2 | 3,292.2 | 2,324,18 | 5,343,1 | 2,324,18 | 4,327,1 | 3,292,2
313 | 2,336,4 | 4,2793 | 4,327,1 | 4,327,1 | 3,292,2 | 2,336,4 | 3,292,2 | 2,336,4
331 | 2,300,10 | 5,331,1 | 5,331,1 | 4,363,11 | 4,363,11 | 4,363,11 | 3,364,2 | 3,364,2
337 | 2,372.2 | 4,333,3 | 4,309,1 | 4,309,1 | 3,304,4 | 23722 | 2,372,2 | 2,372,2
349 | 23364 | 5,313,1 | 4,327.1 | 4,327,1 | 4,327,1 | 3,3642 | 5,313,1 | 3,364,2
349 | 23364 | 5,313,1 | 4,327,1 | 4,327,1 | 4,327,1 | 3,3642 | 5,313,1 | 3,364,2
367 | 2,372,2 | 4,333,3 | 3,364.2 | 4,399,1 | 3,364,2 | 5403,1 | 2,372,2 | 2,372,2
373 | 23364 | 5,361,1 | 4,387.3 | 4,399,1 | 5,361,1 | 5,349.1 | 2,336,4 | 3,412,2
379 | 2,372,2 | 54091 | 5,343,7 | 44171 | 2,372,2 | 2,3722 | 5,343,7 | 3,388,2
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Of course the table is just a small part of what is intended to show. To the right the rows
should be thought to run through b = p—1. An order may occur more than once. For example
#E(F,) = 273 for (p,b) equal to (241, 3), (241,4), (271,4), (271,5) and (277,7). However,
it is always accompanied by the same category and the same p. This suggests that #E(F))

uniquely determines the category and pu.

By inspection of the tables we make the following observation: p is a divisor of p — 1. Since
p is a divisor of #E(F),), it also is a divisor of ged(p — 1, #E(F,)). This limits the values
i can possibly take on. If we apply it to, for instance, p = 223, then #E(F,) = 252 for
E: y? =23+ 7. Since ged(222,252) = 6 the value of u is 1,2,3 or 6. For this case yu = 6.

4.3 Characteristics of categories

Category 1: X7 =1 and Y3 =0.

Characteristics category 1: p = 5 mod 6), #E(F,) =p+1, p =1, X2 = 2 mod 3) and
Y1 25 mod 6. The set of all y values is {0,1,2,...,p — 1} and oo (for point Q). Since p =1
the points on E(IF,) are cyclic of order p + 1. Elliptic curves for which #E(F,) = p + 1 are
called supersingular (although it has nothing to do with a singularity). So, category 1 is the

supersingular category.

In general, the order of a modular elliptic curve can be written as #E(F,) = p+ 1 — d.
According to a theorem of Hasse |d| < 2,/p. Thus d = 0 for category 1. For E : yP=a234+0b
the cases with d # 0 occur for p =1 mod 6. This is the situation for categories 2 through 5.

Category 2: X7 =3 and Y] = 2.
Characteristics category 2: p = 1 mod 6, #E(F,) = 0 mod 12, ¢ = 0 mod 2, Xy = 4
mod 6 and Y3 =1 mod 2.

Category 3: X7 =3 and Y; = 0.
Characteristics category 3: p = 1 mod 6, #E(F,) = 4 mod 12, p = 0 mod 2, Xy = 0
mod 6 and Y3 =1 mod 2.

Category 4: X7 =0 and Y] = 2.
Characteristics category 4: p =1 mod 6, #E(F,) =23 mod 6, 4 =1 mod 2, X; =20 mod 3
and Y3 = 2 mod 6.

Category 5: X7 =0 and Y; = 0.
Characteristics category 5: p =1 mod 6, #E(F,) =21 mod 6, x =1 mod 2, Xo =20 mod 3
and Y3 =20 mod 2.
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4.4 Limitations for EpoRrg(Q).

The elliptic curve E : y* = 23 + 1 has 5 integer points: (—1,0), (0,1), (0,—1), (2,3) and
(2, —3) which form (together with @) a torsion group of order 6: start with P = (2,3) then
2P = (0,1) (a point of inflection), 3P = (—1,0) (the root), 4P = (0,—1), 5P = (2,—-3) and

6P = O. There are no other rational points; the rank is 0.

If we start with P = (2,3) on the modular curve E : 32 = 2 +1 mod 5 then 2P = (0,1),
3P = (4,0),4P = (0,4), 5P = (2,2) and 6P = O. If we start with P = (2,3) on the modular
curve E : 2> = 23+ 1 mod 7 then 2P = (0,1), 3P = (6,0), 4P = (0,6), 5P = (2,4) and
6P = O. The two examples illustrate that a torsion group on an elliptic curve E is present
in E(F,), except for a change of the coordinates because of the modulair counting. As a
consequence the order of the torsion group is a divisor of the order of the modular group:
#EToRs(Q) divides #E(F,). Since the latter holds for any p it holds for the greatest com-
mon divisor of different #E(F,). For E : y*> = 23 +1 we have #F(F5) = 6 and #FE(F7) = 12.
Since ged(6,12) = 6 it follows that #EpoRrg(Q) has to be a divisor of 6. There are no other

rational points, so the rank is 0. Below follow some additional examples.

For the elliptic curve E : y? = 2% + 2 we have #E(F7) = 9 and #E(F;3) = 19. Since
ged(9,19) = 1 it follows that #Eporg(Q) = 1. The elliptic curve E : y* = 2® + 2 has
(—=1,1) and (—1,—1) as integer points. Both generate an infinite sequence of rationals. In

conclusion, O is the single torsion point and the rank is 1.

For the elliptic curve E : y? = 2% + 3 we have #E(F7) = 13 and #FE(F13) = 9. Since
ged(13,9) = 1 it follows that #EpoRrg(Q) = 1. The elliptic curve E : y* = 2° + 3 has (1,2)

and (1, —2) as integer points. Both generate an infinite sequence of rationals; the rank is 1.

For the elliptic curve E : y? = 23 + 4 we have for p =5 mod 6: #E(F,) =p+12=0 mod 6
and for p =1 mod 6 we see from the tables that #E(F,) =0 mod 3. Since ged(6,3) = 3 it
follows that #E1oRrg(Q) divides 3. The elliptic curve E : y? = 2% + 4 has (0,2) and (0, —2)
as integer points. It are the points of inflection and form an integer torsion group of order 3.

There are no other rationals; the rank is 0.

For the elliptic curve E : y?> = 23 + 5 we have #E(F13) = 16 and #E(Fj9) = 27. Since
ged(16,27) = 1 it follows that #EpoRg(Q) = 1. The elliptic curve E : y? = 23 + 5 has
(—1,2) and (—1,—2) as integer points. Either one of them generates an infinite sequence of

rationals; the rank is 1.

For the elliptic curve E : y? = 23 + 6 we have #E(F;) = 4 and #FE(F13) = 7. Since
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ged(4,7) = 1 it follows that #EpoRrg(Q) = 1. The elliptic curve £ : y?> = 2% + 6 has no

rational points; the rank is 0.

For the elliptic curve E : y? = 2% + 7 we have #F(F13) = 7 and #E(Fj9) = 12. Since
ged(7,12) = 1 it follows that #E1oRg(Q) = 1. As mentioned before, the elliptic curve
E : y? = 23 + 7 has no rational points; the rank is 0.

2 = 23 + 8 we have for p = 5 mod 6:

As a final example, for the elliptic curve F : y
#E(F,) =p+1=0 mod 6 and for p =1 mod 6 we see from the tables that #E(F,) = 0
mod 2. Since ged(6,2) = 2 it follows that #EpoRg(Q) divides 2. The elliptic curve
E : y? = 23 4+ 8 has 1 integer point (—2,0) of order 2 and 6 integer points, (1,3), (1,—3),
(2,4), (2,—4), (46,312) and (46, —312), which generate infinite sequences of rationals. The
latter 6 integer points follow from addition of the torsion point (—2,0) and the integer point

(1,3). In conclusion, #EpoRg(Q) = 2 and the rank is 1.

In the foregoing examples we took the ged (#E(F,,), #E(Fy,)) for two different primes p;
and po. In general, one should consider more primes to obtain the smallest gcd. For the
elliptic curve E : 32 = 23 + b the rank r, #E10oRs(Q) and the smallest ged are tabulated
for b =1 through 30, see next table, where ¢ is an abbreviation for #EpoRrg(Q).

b [1|2(3]4|5(6]7[8(9]10({11|12{13|14]15|16|17|18]19(20|21|22|23|24|25|26|27|28|29|30

r (0/1/1|0{1/0(0|1{1|1|{1}{1({0|0|2]0(2|1|1}(0|0|1]|0}|2|0|1]|0]|1|0|1

If one takes the ged of the set {#FE(IF,)} for a sufficiently large number of primes p, then:
if b is a sixth power

t=ged =

6

3 if b is a square
2 if bis a cube

1

otherwise

4.5 Polynomials for y? = 23 + ax + b over F,

The elliptic curve 4> = 23 4+ ax mod p can be investigated in a similar way as for 2 = 3+ b

mod p. One of the observations will be that y?> = 2% 4+ axz mod p is supersingular if p = 3
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mod 4. In this section our concern will be the more general equation y? = 2> +az+b mod p.
Usually it is written as y2 = 22 + ax + b over Fporas E: y? = 23 + ax + b over F,. For the
present purpose it is convenient to use the following notation: E(F,a,b) is the elliptic curve
y? = 23 + ax + b over F,. The group order, usually denoted as #E(F,), will be denoted as
N(p,a,b). The difference between N (p,a,b) and p + 1 will be denoted as d(p, a,b):

N(p,a,b) =p+1+d(p,a,b). (4.1)

The differences d(p, a,b) are congruent (mod p) with a two dimensional polynomial P in a
and b: d(p,a,b) = P(p,a,b) mod p. Thus N(p,a,b) =1+ P(p,a,b) mod p. For the first few

prime numbers the polynomials P(p,a,b) are shown in the table.

p P(p,a,b)

5 3a

7 4b

11 2ab

13 6a> + 11v?

17 15a* + 2ab?

19 9a3b + 113

23 13a*b + 14ab®

29 194" + 21a*b? + 24ab*

31 29a%b + 30a3b3 + 4b°

37 35a° 4 31a%b? + 8a3b* + 10b°

41 31a' 4 38a"b% + 11a*b* + 36ab°

43 a®b + 7a%b? + 33a3b° + 3507

47 10a'%b + 20a7b? + 15a*0° + 14ab”

53 146" + 10a'°0% + 40a7b* + 44a*b% + 2ab®

59 26a'2b 4 37a'°0® 4 2a7b° + 53a*b” + 3ab’

61 51a'® 4 39a'?b? + 55a°b* 4 31a%b8 + 9a3b® + 4710
67 23a15b + 64a'2b3 + 46a°b° + 41a5b” + 66a°b° + 16!
71 10a'%b + 7a'3b? + 35000 4 594767 + 21a*h” + 68ab!
73 6a'® + 20a'°b% + 45a2b* + 630”08 + 49a5b® + 2443610 4 10612

Table 4.1: Polynomials P(p,a,b) for which N(p,a,b) =21+ P(p,a,b) mod p.
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According to a theorem of Hasse there holds

|d(p,a,b)| <2/p. (4.2)

As a consequence, the polynomials uniquely determine the group order N(p,a,b) if p > 4,/p
— p > 16. For example, if we want to know the group order for y? = 23 + 52 + 7 over Fig, we
obtain P(19,5,7) = 9-5%-7+11-73 = 11648, N(19,5,7) = 1+11648 =2 2 mod 19. Of the num-
bers {...,—17,2,21,40,59, ...} only 21 satisfies Hasse’s theorem. Therefore N(19,5,7) = 21.

The powers n and m of the terms a™b" in the polynomials have the property 4n+6m = p—1.

We can write the polynomials as

m
Z ckczpzl;l_?’kl)mC ifp=1 mod4
P(p,a,b) = {550 (4.3)
—3
z:ckapT_3]‘7_1(72]“'1 ifp=3 mod4,
k=0
— d 12
where m = Z P 11;10 ) = Ll%J
For b = 0 the latter polynomials are reduced to
p—1
coa = ifp=1 mod4
P(p,a,0) = (4.4)
0 if p=3 mod4
We can write the polynomials also as
m -1
Z cm_kagkpr_% ifp=1 mod6
P(p,a,b) = ¢ k30 (4.5)
—5
Zcm_ka%ﬂb%_% ifp=5 mod6.
k=0
— d 12
Also here m = 2 (p 11;0 ) = L%J
For a = 0 the latter polynomials are reduced to
cmb}%‘1 ifp=1 mod6
P(p,0,b) = (4.6)

0 if p=5 mod 6

For the supersingular case b =2 0 mod p and p = 3 mod 4 we have P(p,a,0) = 0. For the
supersingular case a = 0 mod p and p = 5 mod 6 we have P(p,0,b) = 0. For the singular

case a =2 b= 0 mod p we have P(p,0,0) = 0. For these cases the group order is equal to p+1.
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For b = a the polynomials reduce to

P(p,a,a) =) cpa’* (4.7)
k=0
_p—(p mod 12) P p—(p m0d4)_£
where m = D —L12J and)\——4 —L4J.

The coefficients c¢; of the polynomials can be obtained by solving the following system of

equations

m
N(p,a,a)%’l—i—cha)‘*k modp, a=12 .., m+1. (4.8)
k=0
The group orders N(p,a,a) in the system equations are calculated numerically.

Patterns are present in the coefficients c¢;. Every prime p satisfying p = 1 mod 4 can be
written uniquely as p = (£2n)? + (£m)? with n and m integers. Taking the signs such
that +(2n) £ m = 1 mod 4 then the group order follows from (see page 115 of the book of
Washington [1] ):
p+1—2m, if p—aisa fourth power mod p
N(p,a,0) =< p+1+2m, if p—ais asquare but not a fourth power mod p (4.9)
pE4n, otherwise.
For p = 17, for example, the squares mod 17 are {1,4,9,16,8,2,15,13}. The fourth powers
mod 17 are {1,16,13,4}. The squares which are not a fourth power are {9,8,2,15}. Since
17 = 4% 4+ 12 we have
1741-2=16, ifp—a modpe {1,4,13,16}
N(17,a,0) = 17 +1+2=20, ifp—a modp < {2,8,9,15} (4.10)
17+ 1+8, if p—a modpe {3,56,7,10,11,12,14}.
For b = 0 the polynomial for p = 17 reduces to P(17,a,0) = 15a*, which also leads to
N(17,a,0) = 16 for a = 1,4,13,16, to N(17,a,0) = 20 for a = 2,8,9,15, to N(17,a,0) = 26
for a = 3,5,12,14 and to N(17,a,0) = 10 for a = 6,7,10,11. A single value for a is sufficient
to derive the coefficient ¢y from the group order theorem. For a = 1 it means that
—2m, if p—1 is a fourth power mod p
co = { +2m, if p—1is a square but not a fourth power mod p (4.11)
+4n, otherwise.

If we apply the latter to for example p = 29 = 22 4+ (—5)?, we find that p — 1 = 28 is a square:
122 = 28 mod 29 and that p — 1 = 28 is not a fourth power. Hence, ¢g = 2m = 2 - -5 =
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—10=19 mod p. You can apply it yourself to the ¢¢ for p = 5,13,37,41, etc.

As another example we consider a pattern in some of the coefficients guiding the terms s
If p= 1 mod 6 then for the coefficient ¢, of the term cmb% there holds:

em =4 mod p if the prime p has the form 12k% + 12k + 7 with £ =0,1,2,3, .....

em =10 mod p if p = 12k? + 25 with k =0,1,2,3,....

Cm =16 mod p if p = 12k? + 12k + 67 with £k = 0,1,2,3, ....

Cm =22 mod p if p = 12k? + 121 with £ =0,1,2,3, ...

Cm =228 mod p if p = 12k? + 12k + 199 with k£ =0,1,2,3, ....

cm =34 mod p if p = 12k? + 289 with £k =0,1,2,3, ...

Cm =240 mod p if p = 12k + 12k + 403 with k£ =0,1,2,3, ....

Cm =46 mod p if p = 12k + 529 with £k =0,1,2,3, ...,

and so on.

If p= 1 mod 12 the pattern can be summarized as

em =210+ 12n mod p if p = 12k + (6n + 5)? with k =0,1,2,3, ...,

and if p =2 7 mod 12 the pattern can be summarized as

em = 4+12n mod pif p = 12k% + 12k + (6n 4+ 2)? + 3 with £ =0,1,2,3, ....

If we apply the latter to for example p = 73 = 12-22 + (6 - 0 + 5)2, we find ¢, =
ce = 10. As a consequence, N(73,0,b) = 1+ 10b'2 mod 73. Thus N(73,0,1) = 1+ 10
mod 73 = ..., 11,84, 157, ... of which 84 is within the Hasse bounds; N(73,0,1) = 84. And
N(73,0,2) =21+ 10-2'2 mod 73 = ..., 8,81,154, ... of which 81 is within the Hasse bounds;
N(73,0,2) = 81. You can apply it yourself to the ¢,, for p =7,31,37,67,73, etc.

4.6 Congruence relations for N(p,a,0) and N(p,0,b)

Group orders are usually determined by numerical methods. A basic method consists in mak-
ing a list of squares of the numbers 1 through (p — 1)/2. Start with n = 0. Increase n by 2
for every 0 < = < p for which 22 4+ ax +b mod p is an element of the list. Increase n by 1 for
every 0 < z < p for which 22 +azx+b =0 mod p. When you are finished N(p, a,b) = n. The
method is slow. Faster methods are more complicated. A fast method is Schoof’s algorithm.
Very briefly, Schoof’s algorithm consists in finding a point of which the order is larger than
4,/p. Then there is only one value for the group order (which is a multiple of the order of the
point) satisfying Hasse’s theorem. Since the evaluation of approximately p/12 expressions is
time consuming the polynomials are not of practical use. An exception occurs for the case
b =0 and the case a = 0.

We first consider the case b = 0. From the equation (4.4)) we obtain the following congruence

relation:
p—1

d(p,a,0) - (a')* =d(p,d,0)- a7  mod D. (4.12)
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For p is a prime number the substitution of ¢’ = p —a in eq. (4.12) yields

d(p,a,0) =d(p,p—a,0), if p=1 mod 8 (4.13)
and
d(p,a,0) +d(p,p—a,0) =0, if p=5 mod 8. (4.14)
Alternatively,
N(p,a,0) = N(p,p—a,0), if p=1 mod 8 (4.15)
and
N(p,a,0)+ N(p,p—a,0)=2(p+1), if p=5 mod 8. (4.16)

From eq. (4.12) it follows
(N(p,a,0) = 1) - ()T = (N(p,1,0) ~ 1) -a"T mod p. (4.17)

That is, if N(p,a’,0) has been found numerically then one obtains N(p, a,0) almost instantly.
We only have to check the two smallest values larger than zero. As an example we consider
p = 53 for which N(53,1,0) = 68. Suppose we want to know N(53,11,0). From eq. it
follows N (53,11,0)—1 = 67-11'2 = 39 mod 53. From the two smallest values for N (53,11, 0),
40 and 93, the first satisfies Hasse’s theorem. Hence, N(53,11,0) = 40.

Next we consider the case a = 0. From the equation (4.6 we obtain the following congruence
relation:

d(p,0,b) - (V)5 = d(p,0,0')-b"5 mod p. (4.18)

In particular for &’ =1 it is reduced to
d(p,0,b) =2 d(p,0,1) - b5 mod p. (4.19)

Since p is a prime number the substitution of & = p — b in eq. (4.18) yields

d(p,0,b) =d(p,0,p—>b), if p=1 mod 12 (4.20)
and
d(p,0,b) +d(p,0,p—b) =0, if p=7 mod 12. (4.21)
Alternatively,
N(p,0,b) = N(p,0,p—10b), if p=1 mod 12 (4.22)
and
N(p,0,b) + N(p,0,p—0)=2(p+1), if p=7 mod 12. (4.23)

From eq. (4.18) it follows
p—1
6

(N(p,0,b) —1)- ()55 = (N(p,0,1) —1)- "5 mod p. (4.24)
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If N(p,0,b) has been found numerically then one obtains N(p, 0,b) almost instantly. We only
have to check the two smallest values larger than zero. As an example we consider p = 67
for which N(67,0,1) = 84. Suppose we want to know N (67,0,12). From eq. it follows
N(67,0,12) — 1 =2 83 - 121 = 11 mod 67. From the two smallest values for N(67,0,12), 12
and 79, the second satisfies Hasse’s theorem. Hence, N(67,0,12) = 79.

Congruence relations related to the ones given before are

0 mod 8 if a is a fourth power

0 mod 8 if a is 4 times a fourth power
N(p=1 mod8,a,0) =< 0,4 mod 8 if a is a square

0,4 mod 8 if a is 2 times a square

0,2,4 mod 8 otherwise,

0 mod 8 if @ is 4 times a fourth power
4 mod 8 if a is a fourth power
N(p=5 mod 8,a,0) =< 2 mod8 if a is 2 times a square

0,4 mod 8 if a is a square
0,2,4 mod 8 otherwise

and
0 mod 12 if b is a sixth power
0,4 d 12 if b i b
N(p=1 mod6,0,b)={ = ™M o5 A cube
0,3,9 mod 12 if b is a square

0,1,3,4,7,9 mod 12 otherwise.

4.7 Moments for N(p,a,0) and N(p,0,b)

For p 25 mod 8 a consequence of eq. (4.16) is

p—1
Y Np.a0)=p-1)p+1)=p*-1 (4.25)

a=1

By inspection it is found it also holds for p 2 1 mod 8. Therefore the identity

p—1
Z N(p7 a, O) = p2 -1 (426)
a=1
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holds for all p =21 mod 4.
The k-th moment N(p,a,0) is defined as

z_: N*(p,a,0) (4.27)

For the supersingular case, p =2 3 mod 4, there holds for all k:

> Ni(p,a,0)=(p—D(p+1)*. (4.28)

For k£ > 0 this can also be written as
p—1 Jj=k &
> N¥(p,a,0) = (p—1) ()p] (4.29)
a=1

For p =1 mod 6 we found by inspection for 0 < k < 3:

]:k’
ZN’“ (p,a,0) < > (4.30)
]:0
For k > 4 the latter identity is violated. However, for k > 4 we have
p—1 J=k N2
SN pa,0) = (p— 1) | 6kp) + 3 ( ) v (431)
a=1 7=0 J
p—1
where the integer d(k, p) is the deviation. That is, p — 1 still is a divisor of Z N*(p, a,0).
a=1

For p =2 7 mod 12 a consequence of eq. (4.23) is

p—1

> N(p,0,b)=(p-1)p+1)=p°—1. (4.32)
b=1

From inspection it is found that it also holds for p 2 1 mod 12. Therefore, the identity

p—1
> N(p,0,b) =p*> - 1. (4.33)
b=1

holds for all p =21 mod 6.

The k-th momentum of N(p,0,b) is defined as

pZ_:Nk(p,O, b). (4.34)
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For the supersingular case, p =2 5 mod 6, there holds for all k:

p—1
S N5 (p,0,6) = (p— 1)(p + 1)F. (4.35)
b=1

For k > 0 this can also be written as

p—1 Jj=k i
> N¥(p,0,b) = (p—l)z<.)pj. (4.36)
b=1 =0
For primes p =2 1 mod 6 we found by inspection for 0 < k < 5:
p—1 j=k k 2
S NF(p,0,0) = (p— 1) ()w (4.37)

For k > 6 the latter identity is violated. However, for k£ > 6 we have

p—1 Jj=k k 2
> 800 = -1 s+ 3 () ] (1.38)
b=1 =0 J
p—1
where the integer d(k, p) is the deviation. That is, p — 1 is still a divisor of Z N*¥(p,0,b).
b=1

4.8 Generating function

For the determination of the order of the elliptic curve Y2 — Y = X3 — X? over the field Fp

with p a prime, one can apply the following infinite product:

Flg)=q [] 0 —q™*(1—q"™)". (4.39)

m=1

Expansion of the product and elimination. of the brackets leads to

2 2 2 2 2
Flg) = q(1-q?(1—-¢")" (1-¢*)"(1-¢")" (1-¢*)"(1-¢")"...
— q_2q2_q3+2q4+q5+2q6_2q7_2q9_2q10+q11_2q12
g3 4 aght — 15— 410 — 21T 4418 4 (4.40)

We can write

Flg) =Y dug". (4.41)
n=1

The sequence of successive coefficients d,, is the sequence A006571 of the OEIS [6]. The

coefficient d,, is the deviation of the order from p + 1:

#E[Fp) =p+1—1bp, (4.42)
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comparable with the equation (4.1J).
Since it generates the series with coefficients dj, the product equation (4.39) is the generating
function for the order of E: Y2—Y = X3 — X2 over F,,. The equation (4.39) has been derived

from the theory of modular forms |7].

We give three examples and compare things with the order determination on the basis of

the polynomial P(p,a,b).

Example 1

To find the order of E: Y2 —Y = X3 — X2 over the field F;5 one takes the coefficient d;5 = 4
and subtract it from p + 1. The result is #E(F13) = 13+ 1 — 4 = 10. We thus obtain 10 for
the order of the elliptic curve Y2 —Y = X3 — X2 over Fy3. The 10 points are (0,0), (0, 1),
(1,0), (1,1), (2,6), (2,8), (8,3), (8,11), (10,7) and infinity O.

To find the order we could also have used the polynomial P(13,a,b) = 6a>® + 11b% from the
table in section 4.5. To this end we have perform a linear transform of the elliptic curve
Y2 - Y = X3 — X? to the Weierstrass form 3% = 22 + ax + b. By means of the substitution

12 108
T+ Y:y+

X = 4.43
36 ’ 216 ( )

the equation Y2 — Y = X3 — X2 is transformed to the Weierstrass form
y? = 2% — 4322 4 8208. (4.44)
For a = —432 and b = 8208 the discriminant is D = —2%3'211. Over Fi3 the constants

a and b are reduced to a = —432 = 10 mod 13 and b = 8208 = 5 mod 13. Substitution
of the latter in P(13,a,b) = 6a3 + 11b% gives P(13,a,b) = 9 mod 13. Of the set {..., 17,
—4,9,22,35,...} only 9 satisfies the Hasse bounds. In this way we also obtain 10 for the order
of E: y? = 23 — 4322 + 8208 over F13. Now, the 10 points are (1,4), (1,9), (3,6), (3,7), (8,5),
(8,8), (10,0), (11,4), (11,9) and infinity O. The (z,y) coordinates on E : y? = 2% —4322+8208
over [F13 are related to the (X,Y) coordinates of £ : Y2 —Y = X3 — X2 over Fy3 via

x=36X —12 mod 13 y = 216Y — 108 mod 13. (4.45)

Example 2

For the order of E : Y2 —Y = X3 — X2 over the field Fy7 one can take the coefficient dj7 = —2
and subtract it from p+ 1. The result is #E(F17) = 17+ 1 — —2 = 20. We thus obtain 20 for
the order of the elliptic curve Y2 —Y = X3 — X2 over Fy7. The 20 points are (0,0), (0, 1),
(1,0), (1,1), (2,9), (7,8), (7,10), (8,3), (8,13), (9,2), (9,16), (11,5), (11,13), (12,5), (12,13),
(13,8), (13,10), (15,8), (15,10) and O.

We could also have used the polynomial P(17,a,b) = 15a* + 2ab? from the table in section
4.5. For y? = o3 — 432z + 8208 over F17 the constants a and b are reduced to a = —432 = 10
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mod 17 and b = 8208 = 14 mod 17. Substitution of the latter in P(17,a,b) = 15a* + 2ab?
gives P(17,a,b) =2 mod 17. Of the set {..., —32,—15,2,19, 36, ...} only 19 satisfies the Hasse

bounds. In this way we also obtain 20 for the order.

Example 3

For the order of E : Y2 —Y = X3 — X2 over the field Fs3 we take the coefficient dy3 = —6
and subtract it from p + 1. The result is #FE(Fs3) = 434+ 1 — —6 = 50. We thus obtain 50 for
the order of the elliptic curve Y2 —Y = X3 — X2 over Fy3. The 50 points are (0,0), (0, 1),
(1,0), (1,1), (2,10), (2,34), (4,18), (4,26), (5,17), (5,27), (7,20), (7,24), (9,12), (9,32),
(11,3), (11,41), (12,20), (12,24), (16,8), (16,36), (18,10), (18,34), (19,18), (19, 26), (20, 22),
(21,18), (21,26), (24,10), (24, 34), (25,20), (25, 24), (28,4), (28,40), (29,13), (29,31), (30,7),
(30,37), (31,5), (31,39), (32,14), (32,30), (36,15), (36,29), (37,3), (37,41), (39,3), (39,41),
(42,19), (42,25) and O. To get an impression the 49 finite integer points are shown in the

next figure.

45 Y2 -Y = X3 - X? mod 43 B

40 . B

35 -

30 | . B

20 L4 o . [

15 + . B

T T
0 5 10 15 20 25 30 35 40 45

For the determination of the order we could also have used the polynomial P(43,a,b) =
a’b + 7a5b 4 33a3b° 4 3507 from the table in section 4.5. For y? = 2% — 432x 4 8208 over Fy3
the constants a and b are reduced to a = —432 = 41 mod 43 and b = 8208 = 38 mod 43.
Substitution of the latter in P(43,a,b) = a®b + 7a®b® + 33a3b° + 35b" gives P(43,a,b) = 6
mod 43. Of the set {..., —80, —37,6,49,92, ...} only 49 satisfies the Hasse bounds. In this way

we also obtain 50 for the order.



Chapter 5
Cryptography

5.1 Introduction

Cryptography is the art of encrypting and decoding messages. The goal of the encryption is
to keep a message secret. It is effective as long as others are not able to decode. Suppose
Alice sends to Bob the following encrypted message: KRZEXJ JAFIWEMRCA. It is a bit
difficult to decipher because the length of the message is very small. For a large message,
say a page, you can count the frequency of characters and compare it with general frequen-
cies. The leading character, the character which occurs most, probably is an encrypted E.
The next to leading character probably is an encrypted T, etc. After a view trials you will
obtain the original message. The encryption method for the given message is simple: Denote
the characters A, B, ..., Z as a(1),a(2),...,a(26). If a(m) is a character in the message,
then the encrypted character is a(2m mod 27). For example, E= a(5) — «(10) =J, and
T= «a(20) — «(40 mod 27) = «(13) =M. For the encryption with 2m mod 27 the de-
coding key is (27 'm mod 27) = a(14m mod 27). For example, M=a(13) — «(13 - 14
mod 27) = «(182 mod 27) = «(20) =T. Knowing the decryption key one easily finds the
original message: SIMPLE ENCRYPTION. Alice and Bob could also have encrypted the mes-
sage by a(m) — «a(4m mod 27): VIYJUT TBLRSJZIFB. Or by a(m) — a(5m mod 27):
NRKZFY YPOIQZSRUP. Or by a(m) — a(k-m mod 27) for any 1 < k < 27 for which
ged(k,27) = 1. Of course, the method is extremely weak and in general keys are much larger
numbers. Nevertheless, the example illustrates Alice and Bob somehow have to exchange the
common key k. It makes the method vulnerable for eavedroppers. The exchange of a common
key can be avoided by means of the Diffie-Hellman key exchange. It is based on modular
elliptic curves and briefly works as follows: Alice and Bob use an elliptic curve E(F,) and a
point P on the curve. Both E(F,) and P are not secret, it is the public key. Alice chooses a
secret number a, Alice’s private key, and Bob chooses a secret number b, Bob’s private key.
Alice computes the point aP and sends it to Bob. Bob computes the point P and sends it
to Alice. Alice computes the point abP and Bob computes baP. Both use abP = baP for

85
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their common key. They just have to convert the point abP to a number. For instance, by
taking the x coordinate of abP as the common key. Anyway, Alice and Bob have established

a common key without exchanging it.

Another property of the given encryption example is that the characters of the message are
encrypted. Elliptic curves also are used for message encryption. A message can be represented
as a point on an elliptic curve over [F,, with p a large prime. A simple way is for instance to
write A as 01, b as 02 though Z as 26, and a space delimiter as 00. Then the message SIMPLE
ENCRYPTION is converted to a number m: m = 1909131612050005140318251620091514. A
famous method to send m is RSA (Rivest-Shamir-Adleman). Alice tells Bob she wants to
sent him a secret message. Bob chooses two large primes, p and ¢, and computes the prod-
ucts: n = pqg and k = (p — 1)(¢ — 1). Bob also chooses two integers d and e such that
de 2 1 mod k. Bob sends n and e to Alice; n and e are public. In return Alice computes

4 mod n.

¢ = m® mod n and sends it to Bob. With his secret number d Bob computes ¢
Since ¢? 2 (m®)? = m mod n Bob recovers m. One should use very large primes to have
n > m and to make the factorization of n difficult. The message can also be sent by means
of elliptic curves. Then one uses m as the z coordinate of a point on an elliptic curve. If
there is no point on the curve for x = 1909131612050005140318251620091514, on tries © =
190913161205000514031825162009151401, = = 190913161205000514031825162009151402, etc.
until it is the & coordinate of a point M on the curve. Alice can send the message to Bob by
means of Massey-Omura encryption. Alice chooses a secret number a, her private key, and
Bob chooses a secret number b, his private key. Alice computes the point aM and sends it to
Bob. Bob computes the point baM and sends it to Alice. Alice computes the point a~'baM
and sends it to Bob. Bob computes b='a 'baM = M, which he converts to characters to

obtain the message.

Often the message or document itself is not confidential. Bob just wants to be sure the
document is send by Alice. It requires an algorithm to verify the digital signature is valid
and belongs to Alice. An algorithm based on elliptic curves is ECDSA (Elliptic Curve Dig-
ital Signature Algorithm). Alice and Bob use an elliptic curve E(FF,) with group order N.
Alice chooses a secret number a, her private key. Alice chooses a point P on the curve of
order IV, and computes () = aP. Alice and Bob also use a function f which converts a point
(z,y) on the curve to a number. The function f(z,y) = x, as mentioned above, is an exam-
ple. The set (E(F,), N, P,Q) is the public key. For each message Alice chooses a random
integer k£ and computes R = kP. The message or document is represented as an integer m
by means of a hash function (hash functions will be considered further on). Alice computes
g = k7'(m + axp) mod N, where xy is the x coordinate of point R. Alice sends the three

1 1

numbers m, R and g to Bob. Bob computes u = ¢g7*m mod N, v = ¢gxr mod N and

verifies if uP + v@ is equal to R. If the document is really signed by Alice, thus with the use
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of a, then uP +vQ = g~ 'mP + g '2rQ = g~ '(mP + xraP) = g 'kgP = kP = R. If it is
signed by someone else with ¢’ = k~!(m + a’zg) mod N, then uP +vQ # R.

In the foregoing examples a lot of technical details are omitted for brevity and simplicity.
For instance, one should use elliptic curves for which it is supposed to be difficult to deter-
mine the secret key a from the public points P and aP. To achieve the latter one should at
least use large values for a and p. We also did not give a complete survey of existing methods.
Instead, we will focus on the ECDSA as used in the bitcoin blockchain. Before we turn to the

bitcoin ECDSA we first consider number bases.

5.2 Number bases

Our usual numbers are expressed in a decimal system by means of ten characters: 0,1,2,3,4,...,9.
For example, 374 means 3-10%247-10' +4-10° and 405.6 means 4-10240-10'+5-10°4+6-10"".
For the decimal system the base is 10. One can also use other bases. Suppose we want to
count in base 7. Then we only use the characters 0,1,2,3,4,5 and 6. The number 532 in base
7 has the value 5- 72 +3 - 7' +2.7% = 268. That is, 532 in base 7 equals 268 in base 10.
We see a number obtains its proper value if you know its base. Numbers should therefore be
expressed together with their base. For example, 532 in base 7 equals 268 in base 10 is written
as (532)7 = (268)19. Suppose we want to count in base 12. Then we need two additional
characters. Usually one takes ‘a’ for 10 and ‘b’ for 11. The number 5ab in base 12 has the
value 5-122 410 - 121 + 11 - 7° = 851 in base 10. Thus (5ab)i2 = (851)19. In daily life one
writes the numbers without the base since we just know the base is 10. Hereafter, a number
in base 10 will be written without its base. Thus, (532)7 = 268 and (5ab)12 = 851.

In computers a bit is either a 0 or a 1. A group of 8 bits make a byte. The first bit of
the byte represents the sign of a number. With the other 7 bytes we can for instance make
(0001011)g = 23 + 2! + 20 = 11 or (1111111) = 26 + 25 + 24 + 23 + 22 4 21 4 20 = 127
Since (1111111)3 + (0000001); = (10000000)s = 27, the latter can be briefly written as
(1111111)9 = 27 — 1 = 127. The base 2 system is known as the binary system.

For example, the number 447 in the bases 2 through 16 is: (110111111)9, (121120)3, (12333)4,
(3242)5, (2023)6, (1206)7, (677)s, (546)9, (447)10, (377)11, (313)12, (285)13, (23d)14, (lec)is
and (1bf);6. The base 16 system is called the hexadecimal system.

If a number in base 10 ends on 0, 2, 4, 5, 6 or 8 then it is not a prime number, since 2
and 5 are divisors of 10. Similarly, if a number in base 12 ends on 0, 2, 3, 4, 6, 8, 9 or ‘a’
then it is not a prime number, since 2 and 3 are divisors of 12. For example, for the num-

ber 188321739 it is not immediately clear if it is a prime or composite. In base 12 it reads
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(5309a5a3)12. Since it ends on a 3 the number 188321739 must be divisible by 3 and is therefore
composite. Similarly, for the number (3199467)12 it is not immediately clear if it is a prime or

composite. In base 10 it reads 9409615. Since it ends on a 5 we immediately see it is composite.

It may be illuminating to show the first 32 integers in different bases, see the next table.

base

(base 10) number 2 4 8 12 16
1 1 1 1 1 1
2 10 2 2 2 2
3 11 3 3 3 3
4 100 10 4 4 4
) 101 11 5 5 5
6 110 12 6 6 6
7 111 13 7 7 7
8 1000 20 10 8 8
9 1001 21 11 9 9
10 1010 22 12 a a
11 1011 23 13 b b
12 1100 30 14 10 c
13 1101 31 15 11 d
14 1110 32 16 12 e
15 1111 33 17 13 f
16 10000 100 20 14 10
17 10001 101 21 15 11
18 10010 102 22 16 12
19 10011 103 23 17 13
20 10100 110 24 18 14
21 10101 111 25 19 15
22 10110 112 26 la 16
23 10111 113 27 1b 17
24 11000 120 30 20 18
25 11001 121 31 21 19
26 11010 122 32 22 la
27 11011 123 33 23 1b
28 11100 130 34 24 lc
29 11101 131 35 25 1d
30 11110 132 36 26 le
31 11111 133 37 27 1f
32 100000 200 40 28 20
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5.3 Bitcoin ECDSA

The bitcoin digital signatures uses the elliptic curve E(F,) : y?> = 3 +7 mod p, where p is

the prime
115792089237316195423570985008687907853269984665640564039457584007908834671663

Its value is equal to p = 22%6 — 232 29 _ 98 _ 97 _ 96 _ 24 _ 1 TIn base 16 it reads

p = {EEEE (RO (PECEE (PECAET (P (T e ffffc2f. For this value of p the integer points
on the curve E(F,) : y> = 23 + 7 mod p form a cyclic group of order #E(F,) = N =
115792089237316195423570985008687907852837564279074904382605163141518161494337.

In base 16 the order reads fHFffT T T fiffffe baaedce6 afd8a03b bfd25e8c¢ d0364141.
The order, which is somewhat smaller than p, is a prime. The bitcoin base point is P =

(55066263022277343669578718895168534326250603453777594175500187360389116729240,
32670510020758816978083085130507043184471273380659243275938904335757337482424).

In base 16 the base point reads P =
(79be667e f9dcbbac 55206295 ce870b07 029bfedb 2dce28d9 59f2815b 1681798,
483ada77 26a3c465 bdadfbfc 0e1108a8 fd17b448 a6855419 9c47d08f th10d4bS).

The base point P is an element of E(FF,) and its order is equal to the aforementioned group
order N. The modular elliptic curve E(F,) : y?> = 2° + 7 mod p with p and base point P as
given above is called secp256k1 by the Standards for Efficient Cryptography Group.

The signature process is as follows. Alice chooses (of course the computer software ran-
domly chooses) a secret number a, her private key. Alice computes Q = aP, her public key.
Since the order of P is a prime there is precisely one value for a for which aP = Q. @ can
be calculated efficiently as will be shown below. However, the reconstruction of a from the
public points @ and P is extremely time consuming; billions of years with the presently known
algorithms. For each message Alice chooses a random integer k& and computes R = kP. The
message or document m is represented as an integer h by means of a hash function (hash
functions will be considered further on). Alice computes s = k~'(h +r-a) mod N, where r
is the = coordinate of point R. The signature of the hashed message h is the pair (r,s). To
check if the signature is legal one computes u = s~'h mod N and v = s~ 'r mod N, and
verifies if uP + v@ is equal to R. If the document is really signed by Alice, thus with the use
of a, then uP +vQ = s 'hP + s 'rQ = s ' (hP+r-aP) = s 'k-sP = kP = R. If it is
signed by someone else with s’ = k~'(h 4+ a’-r) mod N, then uP + vQ # R. That is, there
is an extremely small probability (1 out of 107®) that a’ happens to equal a.
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Since the numbers are extremely large it is very time consuming to do calculations explic-
itly. To show explicitly the calculation of a P for some a < N we take a smaller prime: p = 43.
For this value of p the integer points on the curve E(F,) : y?> = 23 +7 mod p form a cyclic
group of order #E(F,) = N = 31. Let P = (20,3) be the base point and let 19 be the
value for a. Thus, @ = 19P. It can be computed by successively calculating 2P, 3P, 4P,
..., 19P. That would take 18 steps. However, it is more efficient to calculate 2P = (13,21),
4P = (12,31), 8P = (42,36) and 16 P = (40, 25) with the doubling formula and than compute
16P 4 2P + P with the addition formula. Then we obtain 19P = (38,21) in 6 steps. Another
way is to compute 9P = (37,36) from 8P+ P, double it to 18P = (25, 25) and add P to obtain
19P = (38,21). The latter also takes 6 steps. Either way one arrives at Q) = (38,21). Suppose
the hashed message is h = 15 and suppose further that k = 26 for the signature of the message.

The first computation is R = kP = 26P = (34,40). So, r = 34. The second computa-
tion is k= mod 31 for k = 26. Since 6-26 = 156 = 1 mod 31 we have 26" 22 6 mod 31.
The third computation is s = k~'(h + 7 - a) mod N. Substituting the values we obtain
s =16(15434-19) = 3966 = 29 mod 31. So, s = 29. The signature therefore is (34, 29).

Next we consider the verification. The first computation is s~! mod 31. Since 15-29 = 435 =2
1 mod 31 we have 297! 22 15 mod 31. The second computationis v = s~'h = 15-15 = 225 =
8 mod 31. The third computation is v = s™'r = 1534 = 510 = 14 mod 31. The fourth
computation is uP + v@Q = 8P + 14Q = 8(20,3) + 14(38,21) = (42, 36) + (25,25) = (34, 40).
Since R = (34, 40) we have verified uP + v@ indeed is equal to R and the signature is valid.

5.4 Hash function

In the foregoing example we just took h = 15 and did not worry about the hash function.
What is denoted as h is actually a hash of a message m. That is, h(m) = H(m) mod N,
where H is the hash function. It is a repeated conversion of the input string by means of
hash algorithms. For bitcoin signatures and keys the important hash function is SHA256. It
is an abbreviation for ‘Secure Hash Algorithm with an output length of 256 bits’. The output
length is always 256 bits (32 bytes). Identical inputs lead to identical outputs. Slightly dif-
ferent inputs lead to completely different outputs. We will not show how the SHA256 works.
We will just illustrate how it is applied. As a first example we consider the string: "message".

After the application of SHA256 we obtain the following number in hexadecimal system:
abb30a13e45914982b79f9b7e3fba994cfd1{3fb22{71cealafbf02b460c6d1d.

The number contains 32 bytes (64 characters). To consider the hashing of other messages
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we add a counter; in the blockchain world it is called a nonce. Let us consider the string
"messagel". After the application of SHA256 we obtain the following number in hexadecimal

System:

97d035e32036a670058{2bede008a7¢c56355489750a5dabf2af342db4a968e99.

Next we increase the nonce: "message2". After SHA256 we obtain in hexadecimal system:
e09b16811444401b35c¢94081ee8c82a761bcd3cfd7260cf063e3fec520f5f5e9.

We see that a very small change of the string leads to a completely different number. In
summary, no matter the length of the string the hash result of SHA256 always is a 32 byte
number in hexagonal base. Furthermore, if two messages differ by just a single character the
two hash results will be completely different. It therefore is practically impossible to find (with

reverse engineering) an input string a given output string.

Now we make a jump in the nonce and consider the string "messagel5". Then we obtain
that SHA256(messagel5) is equal to:

08ddaf8df28d5eee382f1b9bal9laecc331260df321cha715chf39bc3ab9c0cad.
We see the hash starts with a zero. For "messagel69" the hash even starts with two zero’s:
009c5abcd3a674c926ec880886ab57f226e2¢h981a2fc43e00b47b92a8e528b1.

There seems to be no structure or relation between the message string and the number of
starting zero’s of the hash. If the zero’s and ones appear in a random order, one expects n
starting zero’s in a fraction 16~ of the occasions. It will take on average 16™ attempts to find
a SHA256 hash starting with n zero’s. To find a hash starting with, say, 10 zero’s requires
about 160 ~ 10'2 attempts. That is a lot of work and it is an essential part of the blockchains

technology.

5.5 Blockchain and mining

Transactions of cryptocurrencies are recorded. A list of transactions looks like:
0.01384267 bitcoin from Alice to Bob
0.31082855 bitcoin from Bob to Charlie
0.02581299 bitcoin from Alice to Charlie

and so on.
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In reality, a transaction also contain the public key of the sender and the public key of the
receiver, both Baseb8 encoded into a string of 34 alphanumeric characters from the set 1
through 9, ‘a’ through ‘z’ except the small L and A through Z except O and I(capital i). A
public key is created as follows. One starts with, for instance, the hexadecimal word

023bb54d336d30a6fchb9cfl Taabbafefbdb6509c0465c¢0c13c6427f74a0fdce213.

The first byte, 02, is the parity of the y-coordinate and the other 32 bytes is the hexadecimal
z-coordinate. First SHA256 is applied to the latter. The result is the hexadecimal word

d9847cd0e87fe3e6d9e6{2f8a600e6a04ad4468e2c¢1979436b1e5b59a9f0{d08.

Next the hash function RIPEMD160 is applied. The result is the hexadecimal word
61182fab45b8bb6141142f732a9426fbdf5e409.

Two zero’s are placed in front of it:

0061182fab45b8bb6141142{732ae9426fbdf5e409.

To the latter result SHA256 is applied:
2ac64aebbcda686f0cdd1ballledfa0552d693ecc86fedd7c325f3b2818d8b8&4.

Then SHA256 is once more applied:
777097fe0c570f4ea8dc395cbctb33a64fe86cd0e7528e9fed8falcHe0fd86ct.

The first four bytes, that is 777097fe, are concatenated to the end of the RIPEMD160 -+
front 00 result:

0061182fab45b8bb6141142f7322e9426fbdf5e409777097fe.
Finally, the latter hexadecimal word is Base58 encoded:
19rPX6VXBW8JjaR2QD8Hvd6VKu4sUldp4u.

The latter is a the Base58 encoded public key as used in the blockchain.
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All the transactions are grouped into blocks. If enough new transactions have appeared a
new block will be created. Each block consists of a block header, a SHA256 hash of the block
header and the list of transactions. Each block header consists of a version number (4 bytes),
the previous block header hash (32 bytes), the Merkle root (32 bytes) which will be explained
below, a UNIX timestamp (4 bytes), the difficulty target (4 bytes) which determines the num-
ber of starting zero’s of the block header hash and the nonce (4 bytes).

Before we proceed we first consider the Merkle root. Each transaction is given a SHA256
hash: transaction 1 — H(1), transaction 2 — H(2), transaction 3 — H(3), etc. Then pairs
of hashes are hashed: H(1)+H(2) — H(12), H(3)+H(4) — H(34), H(5)+H(6) — H(56), etc.
Again pairs of hashes are hashed: H(12)+H(34) — H(1234), H(56)+H(78) — H(5678), etc.
In the end we are left with a single hash, which is the Merkle root. Starting from the root the

hashes form a binary tree. It is invented for time efficient verifications.

For the block header hash all the numbers in the block header are concatenated and the
result is hashed with SHA256. If the latter hash does not start with the required number
of zero’s, the nonce is increased and a new hash is generated. The process of trying a large
number of nonces until the hash starts with the required number of zero’s is called mining.
If a hash satisfies the requirements the block is accepted and the miner is rewarded with a
given amount of bitcoins. A little later, about every 10 minutes, enough transactions will have
appeared and a new block will be created. Part of the header of the new block is the hash of

the previous block header. Therefore the blocks are connected: the block chain.

Suppose Alice buys a painting from art painter Bob for 0.1 bitcoin. Suppose after the transfer
of the painting and the ‘money’ Alice decides to cheat Bob. Alice changes the transaction to,
for instance, 0.01 bitcoin instead of 0.1 bitcoin. However, the small change, causes a different
hash of the transaction and therefore to a different Merkle root. As a consequence the block
header hash changes and Alice is forced to go to the long process of finding a new block header
hash with the required number of starting zero’s. By the time she has found new block header
all the other miners are a few blocks ahead of her. Because of the chain her alternative block
header hash will change the block header of the successor block which in turn will change the
next successor block and so on. By the time Alice has found hashes for them too all the other
miners are far ahead of her. In the end the longer list of blocks created by all the miners will
be accepted and the single alternative block (or short list of alternative blocks) of Alice will be
declined. The longer list of blocks has taken more work, delivered by all the miners. Because

of this ‘proof of work’ it is regarded as the correct list of blocks.

It should be noted that not all the details are mentioned. For instance, the block header

numbers being byte reversed is omitted. Such details are rather technicalities. In summary,
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the validity of a transaction is achieved by means of ECDSA and the reliability of the chain of
blocks of transactions is achieved by the hashing, with difficulty, of the block headers. Since
we are more interested in the underlying mathematics we focussed on modular counting and

elliptic curves in the preceding chapters. In the next and final section we will just consider

the bitcoin rate.

5.6 Bitcoin rate

The price of a bitcoin (BTC) in US dollars (USD) is very volatile. The history of the BTC-
USD rate is shown in the next diagram.
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from 1 october 2009. Of course, historical trends do say nothing about future developments.
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