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Preface
Iterations form a large subject of discrete mathematics. Some iterations have a practical
mathematical purpose such as numerical methods to find a root of a function. Other itera-
tions seem to have no other purpose than to satisfy our curiosity. Integer iteration can often
be stated in a simple way. For instance, for the Collatz iteration everybody can try some
starting numbers and observe how the orbits eventually arrive at 1. Despite the simplicity of
the Collatz iteration it has not yet been proven that all orbits will arrive at 1. Also other itera-
tions are hard to analyze. Maybe for this reason simple integer iterations trigger our curiosity.
Integer iterations are recreational for being comprehensible and for o!ering an opportunity to
search for records such as the largest length of an orbit or the largest element of an orbit.

In the present book we describe eleven recreational integer iterations. Chapter 1 is a small
introduction. For historical reasons chapter 2 and 3 are about the divisor sum iteration and
the aliquot divisor sum iteration respectively. Chapter 4 is about a variation of the divisor
sum iteration. It o!ers a lot of challenges to search for records of orbit lengths and orbit
maximums. A book about recreational integer iterations should certainly contain the Collatz
iteration. It is given attention in Chapter 5. The negative Collatz iteration, which is similar
to the Collatz iteration for negative integers, is covered in chapter 6. Generalized Collatz
versions are briefly considered in chapter 7. In chapter 8 we consider, mostly just for fun, two
iterations which to our best knowledge have not been considered in the literature. Chapter 9,
10, 11 and 12 are about the digit reversal iteration, the Kaprekar iteration, the squared digit
sum iteration and the digits factorial sum iteration. Since these four iteration are all applied
to integers with a limited number of digits, the orbit lengths are limited. As a consequence,
all orbits arrive at a cycle. For this reason they do not o!er us a never ending challenge to
search for records. In the final chapter we will consider an integer iteration based on Pillai’s
arithmetic function. It o!ers a rich cycle structure and challenges for numerical research.

As for all our books, the present book is intended for interested high school students, un-
dergraduate Mathematics students and anybody else interested in recreational mathematics.
It therefore is written in an informal way. A proof of a theorem will therefore not have the
rigidity as in scientific publications. We accept a loose line of argument for the benefit of
clarity and simplicity. Citations will not be given for well known concepts such as Euler’s
totient function. The reader is advised to consult the internet if more information on such
topics is desired. Only recent publications and relevant websites will be cited.

February 2025, Hans Montanus, Ron Westdijk
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Chapter 1

Introduction

An iteration is the repetition of a process in order to generate a sequence of successive numbers:
the orbit. The first number or first numbers of a sequence are prescribed: the initial condition.
A first example of an iteration is

nk = nk→1 + k . (1.1)

With initial condition n0 = 0 it leads to the sequence 0, 1, 3, 6, 10, 15, 21, 28, 36, .... The orbit
for starting value 0 is also generated without iterations by a closed-form expression:

nk =
1

2
k(k + 1) . (1.2)

A second example of an iteration is

nk = nk→1 + nk→2 . (1.3)

With initial condition n0 = 0 and n1 = 1 it leads to the Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13,
21, 34, 55, 89, .... Also this orbit can be generated by a closed-form expression:

nk =
1→
5




(
1 +

→
5

2

)k

↑
(
1↑

→
5

2

)k


 . (1.4)

The latter is known as Binet’s formula.

A third example of an iteration is

nk+1 =






3nk + 1

2
if nk

↓= 1 mod 2

nk

2

34
5

25
if nk

↓= 0 mod 2
(1.5)

where nk is a positive integer. If we start with n0 = 1 then n1 = 2, n2 = 1, n3 = 2 and
so on. The period two cycle (1, 2) is called the trivial cycle. If we start with n0 = 3 then
n1 = 5, n2 = 8, n3 = 4, n4 = 2, and so on. That is, for starting value n0 = 3 the orbit
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8 CHAPTER 1. INTRODUCTION

arrives after 4 steps at the (1, 2) cycle. To date it has been verified by computer that for each
starting values up to about 1021 that the orbit arrives at the trivial cycle (1, 2). It therefore
is conjectured that for every starting value larger than 0 the orbit will arrive at the trivial
cycle. It is known as the Collatz conjecture. The reason for the Collatz conjecture not being
proven yet is probably the absence of a suitable closed-form expression for the generation of
the sequences. Without a closed-form expression it is notorious di"cult to investigate prop-
erties in an analytical way. Instead, one investigates properties of Collatz sequences with the
aid of the computer. These e!orts lead to all kinds of record tables, see [1] and citations therein.

The aim of this book is to investigate properties of integer sequences generated by itera-
tions for which there is no suitable closed-form alternative. For historical reasons we start
with the divisor sum iteration and aliquot divisor sum iteration. We try to pay attention also
to less known iterations. An example of a less known iteration is

nk+1 =
ω(nk)

gcd (nk,ω(nk))
, (1.6)

where ω(x) is the divisor-sum of x and where gcd(x, y) is the greatest common divisor of x
and y. For brevity we will call the underlying function S:

S(n) = ω(n)

gcd (n,ω(n))
. (1.7)

Another less known iteration is

nk+1 =
P (nk)

gcd (nk,P (nk))
, (1.8)

where P (x) is the gcd-sum function also known as Pillai’s arithmetical function. For brevity
we will call the underlying function P:

P(n) =
P (n)

gcd (n,P (n))
. (1.9)

Some properties of iterations will be analyzed algebraically if the analysis is simple and ap-
propriate. For most properties we resort to numerical research. Writing computer code for
the investigation of iterations is often considered a recreational e!ort. It can be performed by
amateurs as well as by professionals.



Chapter 2

Divisor sum

2.1 Introduction

A single step iteration based on the sum of divisors is

ni+1 = ω(ni) , (2.1)

where ω(n) is the sum of the divisors of n:

ω(n) =
∑

d|n

d , (2.2)

where d runs over all divisors of n including n itself. For instance, for n = 2, n = 3, n = 4,
n = 6 and n = 12 we have ω(2) = 1 + 2 = 3, ω(3) = 1 + 3 = 4, ω(4) = 1 + 2 + 4 = 7, ω(6) =
1+2+3 = 6 = 12 and ω(12) = 1+2+3+4+6+12 = 28. We see, ω(12) = ω(4) ·ω(3), while
ω(12) ↔= ω(2) ·ω(6). In general, if n1 and n2 are relative prime, then ω(n1 ·n2) = ω(n1) ·ω(n2).
If we write the prime factorization of n as

n =
∏

pk|n

pωk
k , (2.3)

where εk ↗ 1 is the largest power of prime pk for which pωk
k is a divisor of n, then

ω(n) =
∏

pk|n

ω
(
pωk
k

)
. (2.4)

By means of the identity

1 + p+ p2 + ..... + pm =
pm+1 ↑ 1

p↑ 1
(2.5)

we can write

ω
(
pωk
k

)
=

pωk+1
k ↑ 1

pk ↑ 1
. (2.6)

9



10 CHAPTER 2. DIVISOR SUM

and thus

ω(n) =
∏

pk|n

pωk+1
k ↑ 1

pk ↑ 1
. (2.7)

For n = 1, 2, 3, 4, 5, 6, 7, 8, 9, ... the ω values are 1, 3, 4, 7, 6, 12, 8, 15, 13, .... The latter is the
sequence A000203 of the OEIS [2].

Since ω(1) = 1 the number 1 is a fixed point. Since ω(n) > n for n > 1, the orbits are
sequences of increasing numbers for n > 1. For instance, the orbit for 2 is 2, 3, 4, 7, 8, 15, ...

and the orbit for 5 is 5, 6, 12, 28, 56, ..., see the sequences A007497 and A051572 of the OEIS [2].

There exist no integer m such that ω(m) = 2: the number 2 is ‘untouchable’ or ‘unreach-
able’. The sequence of untouchable numbers for the map n ↘ ω(n) is 2, 5, 9, 10, 11, 16, 17,
19, 21, 22, 23, 25, 26, ..., see sequence A007369 of the OEIS.

2.2 Perfect numbers

If ω(n) = 2n then n is a perfect number. The first four perfect numbers are

21(22 ↑ 1) = 6 ,

22(23 ↑ 1) = 28 ,

24(25 ↑ 1) = 496 ,

26(27 ↑ 1) = 8128 . (2.8)

A number of the type 2m→1(2m ↑ 1) is perfect if and only if 2m ↑ 1 is prime. For 2m ↑ 1 to be
prime, m has to be prime. Prime numbers of the form 2m↑ 1 are known as Mersenne primes.
Primality of m does not guarantee primality of 2m ↑ 1. For instance, 211 ↑ 1 = 23 · 89 is not
prime. For the next prime p = 13 the number 213 ↑ 1 is prime. So, 212(213 ↑ 1) = 33 550 336

is perfect. It is still an open question whether an odd perfect number exists.

If ω(n) = k · n, with k integer, then n is a k-perfect number. If k = 2 then n is perfect
and if k ↗ 3 then n is multi-perfect.
Up to 109 there are four 3-perfect numbers:

23 · 3 · 5 = 120 ,

25 · 3 · 7 = 672 ,

29 · 3 · 11 · 31 = 523 776 ,

28 · 5 · 7 · 19 · 37 · 73 = 459 818 240 . (2.9)



2.3. SUPERPERFECT NUMBERS 11

Up to 109 there are six 4-perfect numbers:

25 · 33 · 5 · 7 = 30 240 ,

23 · 32 · 5 · 7 · 13 = 32 760 ,

22 · 32 · 5 · 72 · 13 · 19 = 2 178 540 ,

29 · 33 · 5 · 11 · 31 = 23 569 920 ,

27 · 33 · 52 · 17 · 31 = 45 532 800 ,

29 · 32 · 7 · 11 · 13 · 31 = 142 990 848 . (2.10)

The smallest 5-perfect number is larger then 109:

27 · 34 · 5 · 7 · 112 · 17 · 19 = 14 182 439 040 . (2.11)

Up to 109 there are no 6-perfect numbers.

2.3 Superperfect numbers

A two-step iteration of n based on the sum of divisors is ω(2)(n) = ω(ω(n)). Also

ni+2 = ω(2)(ni) . (2.12)

A number n is superperfect if it satisfies the equation

ω(2)(n) = 2 · n . (2.13)

Up to 109 there are seven superperfect numbers:

21 = 2 ,

22 = 4 ,

24 = 16 ,

26 = 64 ,

212 = 4096 ,

216 = 65 536 ,

218 = 262 144 . (2.14)

The next superperfect number is 230 = 1073 741 824. Each superperfect number above is half
times the sum of a Mersenne number and 1. This can be understood as follows: if n = 2p→1

then ω(n) = 2p ↑ 1. And if 2p ↑ 1 is a prime, then ω(ω(n)) = ω(2p ↑ 1) = 2p = 2n. It is not
known if there exists an odd superperfect number.

More general a number n is (2,k)-perfect if it satisfies the equation

ω(2)(n) = k · n . (2.15)



12 CHAPTER 2. DIVISOR SUM

Examples of (2,3)-perfect numbers are

23 = 8 ,

3 · 7 = 21 ,

29 = 512 . (2.16)

We see that (2,3)-perfect numbers can be odd.

Examples of (2,4)-perfect numbers are

3 · 5 = 15 ,

3 · 11 · 31 = 1023 ,

3 · 7 · 19 · 73 = 29 127 ,

33 · 19 · 31 · 2731 · 8191 = 355 744 082 763 . (2.17)

These four (2,4)-perfect numbers are all odd.

To date it is an open question if a (2,5)-perfect number exists.

Examples of (2,6)-perfect numbers are

2 · 3 · 7 = 42 ,

22 · 3 · 7 = 84 ,

25 · 5 = 160 ,

24 · 3 · 7 = 336 ,

26 · 3 · 7 = 1344 ,

212 · 3 · 7 = 86 016 ,

3 · 5 · 7 · 132 · 31 = 550 095 ,

216 · 3 · 7 = 1 376 256 ,

218 · 3 · 7 = 5 505 024 ,

230 · 3 · 7 = 22 548 578 304 . (2.18)

Except for 160 and 550095 the (2,6)-perfect numbers above are of the type n = 2p→1 · 3 · 7
where 2p ↑ 1 is a Mersenne prime. For these n it follows that ω(n) = (2p ↑ 1) · 25 and
ω(ω(n)) = ω(2p ↑ 1) · ω(25) = 2p · 32 · 7 = 6n.

The odd number, 550 095 = 3 · 5 · 7 · 132 · 31 is a little bit of interest. If an odd number n is
perfect, then n is a (2,6)-perfect number: ω(n) = 2n and ω (ω(n)) = ω(2n) = ω(2) ·ω(n) = 6n.
Although 550 095 is (2,6)-perfect, it is not perfect: ω(550095) = 1 124 352, while 2 · 550095 =

1 100 190. The relative deviation is
1124352↑ 1100190

1100190
≃ 0.021961.
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2.4 Approximate perfect numbers

A number is close to perfect if ω(n)↑ 2n is small but not zero. The smallest deviation occurs
for ⇐ω(n)↑ 2n⇐ = 1. The next to smallest deviation occurs for ⇐ω(n)↑ 2n⇐ = 2, etc.

Numbers for which ω(n) ↑ 2n = 1 are called quasiperfect numbers. Until today numbers
for which ω(n)↑ 2n = 1 have not been found.

Numbers for which ω(n) ↑ 2n = ↑1 are called almost perfect numbers. The only known
almost perfect numbers are powers of 2. Indeed, if n = 2k, then ω(n) = 2k+1 ↑ 1 and
ω(n) ↑ 2n = 2k+1 ↑ 1 ↑ 2 · 2k = ↑1. Until today it is not known if almost perfect odd num-
bers do exist. It even is not known if an almost perfect number n exist which is not a power of 2.

For numbers of the type
n = 2m→1 (2m ↑ 1↑ 2k) , (2.19)

with 2m ↑ 1↑ 2k a prime, we obtain

ω(n)↑ 2n = (2m ↑ 1) (2m ↑ 2k)↑ 2m (2m ↑ 1↑ 2k) = 2k . (2.20)

For k = 0 it is reduced to the perfect numbers: n = 2m→1 (2m ↑ 1) with 2m ↑ 1 a prime.

For k = 1 we have n = 2m→1 (2m ↑ 3). If 2m ↑ 3 is a prime then ω(n) ↑ 2n = 2. For
instance, for m = 3 we have n = 20 and ω(20) = 42. For m ⇒ 1000 the factor 2m ↑ 3 is a
prime if m = 3, 4, 5, 6, 9, 10, 12, 14, 20, 22, 24, 29, 94, 116, 122, 150, 174, 213, 221, 233, 266,
336, 452, 545, 689, 694 and 850. For n ⇒ 109 there are 9 numbers for which ω(n) ↑ 2n = 2.
Among them there are 8 of the type n = 2m→1 (2m ↑ 3) . Namely for m = 3, 4, 5, 6, 9, 10, 12
and 14. The exception is the number 650.

For k = ↑1 we have n = 2m→1 (2m + 1). If 2m + 1 is a prime then ω(n) ↑ 2n = ↑2. For
instance, for m = 1 we have n = 3 and ω(3) = 4. For m ⇒ 1000 the factor 2m + 1 is a prime
if m = 1, 2, 4, 8 and 16. For n ⇒ 109 there are 4 numbers for which ω(n)↑ 2n = ↑2. All 4 of
them are of the type n = 2m→1 (2m + 1) . Namely for m = 1, 2, 4 and 8.

For k = 2 we have n = 2m→1 (2m ↑ 5). If 2m ↑ 5 is a prime then ω(n) ↑ 2n = 4. For
instance, for m = 3 we have n = 12 and ω(12) = 28. For m ⇒ 1000 the factor 2m ↑ 5 is a
prime if m = 3, 4, 6, 8, 10, 12, 18, 20, 26, 32, 36, 56, 66, 118, 130, 150, 166, 206, 226, 550, 706
and 810. For n ⇒ 109 there are 10 numbers for which ω(n)↑ 2n = 4. Among them there are
6 of the type n = 2m→1 (2m ↑ 5) . Namely for m = 3, 4, 6, 8, 10 and 12. The four exceptions
are 70, 4030, 5830 and 1 848 964.
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For k = ↑2 we have n = 2m→1 (2m + 3). If 2m + 3 is a prime then ω(n) ↑ 2n = ↑4.
For instance, for m = 1 we have n = 5 and ω(5) = 6. For m ⇒ 1000 the factor 2m + 3 is
a prime if m = 1, 2, 3, 4, 6, 7, 12, 15, 16, 18, 28, 30, 55, 67, 84, 228, 390 and 784. For
n ⇒ 109 there are 14 numbers for which ω(n)↑ 2n = ↑4. Among them there are 8 of the type
n = 2m→1 (2m + 3). Namely for m = 1, 2, 3, 4, 6, 7, 12 and 15. The 6 exceptions are 110,
884, 18 632, 116 624, 15 370 304, 73 995 392.

For k = 3 we have n = 2m→1 (2m ↑ 7). If 2m↑7 is a prime then ω(n)↑2n = 6. For instance, for
m = 39 we have n = 151 115 727 449 904 501 489 664 and ω(n) = 302 231 454 899 809 002 979 334.
For m ⇒ 1000 the factor 2m ↑ 7 is a prime if m = 39 and 715. For n ⇒ 109 there are 3 num-
bers for which ω(n) ↑ 2n = 6: 8925, 32 445 and 442 365. None of them there are of the type
n = 2m→1 (2m ↑ 7).

For k = ↑3 we have n = 2m→1 (2m + 5). If 2m + 5 is a prime then ω(n) ↑ 2n = ↑6. For
instance, for m = 1 we have n = 7 and ω(7) = 8. For m ⇒ 1000 the factor 2m + 5 is a prime
if m = 1, 3, 5, 11, 47, 53, 141, 143, 191, 273 and 341. For n ⇒ 109 there are 8 numbers for
which ω(n)↑ 2n = ↑6. Among them there are 4 of the type n = 2m→1 (2m + 5) . Namely for
m = 1, 3, 5 and 11. The other 4 are 15, 315, 1155, 815 634 429.

For our purpose we will also give the results for k = 6, k = 28 and k = 496.

For k = 6 we have n = 2m→1 (2m ↑ 13). If 2m ↑ 13 is a prime then ω(n) ↑ 2n = 12. For
instance, for m = 4 we have n = 24 and ω(n) = 60. For m ⇒ 20 the factor 2m ↑ 13 is a
prime if m = 4, 5, 9, 13, and 17. The corresponding n = 2m→1 (2m ↑ 13) are 24, 304, 127 744,
33 501 184 and 8 589 082 624 respectively.

For k = 28 we have n = 2m→1 (2m ↑ 57). If 2m ↑ 57 is a prime then ω(n) ↑ 2n = 56.
For instance, for m = 6 we have n = 224 and ω(n) = 504. For m ⇒ 20 the factor 2m ↑ 57 is
a prime if m = 6, 7, 8, 10, 16 and 19. The corresponding n = 2m→1 (2m ↑ 57) are 224, 4544,
25 472, 495 104, 2 145 615 872 and 137 424 011 264 respectively.

For k = 496 we have n = 2m→1 (2m ↑ 993). If 2m ↑ 993 is a prime then ω(n)↑ 2n = 992. For
instance, for m = 10 we have n = 15872 and ω(n) = 32736. For m ⇒ 20 the factor 2m↑993 is
a prime if m = 10, 14 and 17. The corresponding n = 2m→1 (2m ↑ 993) are 15 872, 126 083 072
and 8 524 857 344 respectively.

The reason for the latter three k values is that for k a perfect number the relation ω(n)↑2n =

2k can also be achieved by numbers which are a product of a perfect number k and a prime
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which is co-prime to k. That is, if

n = 2m→1 (2m ↑ 1) p , (2.21)

with 2m ↑ 1 a prime and p a prime, we obtain

ω(n)↑ 2n = 2m (2m ↑ 1) (p+ 1)↑ 2 · 2m→1 (2m ↑ 1) p = 2 · 2m→1 (2m ↑ 1) . (2.22)

Indeed, for k = 2m→1 (2m ↑ 1) we have ω(n)↑ 2n = 2k.
In the next chapter we will further investigate this type of numbers.

For now, it is su"cient to see that all foregoing approximate perfect n in the series n = 2k,
n = 2m→1 (2m ↑ 1↑ 2k) or n = 2m→1 (2m ↑ 1) p are all even.

2.5 Approximate perfect odd numbers

Odd numbers n for which ω(n) is close to 2n are approximately perfect. The relative deviation

ϑ(n) =
⇐ω(n)↑ 2n⇐

2n
(2.23)

is used as a measure for the accuracy of the approximate perfection. The relative deviation is
also called the relative abundance. For increasing odd n the first 40 records of approximate
perfection are shown in the next table.

# n 2n ω(n) ω(n)↑ 2n ϑ(n)

1 1 2 1 -1 5.0000 · 10→1

2 3 6 4 -2 3.3333 · 10→1

3 9 18 13 -5 2.7778 · 10→1

4 15 30 24 -6 2.0000 · 10→1

5 45 90 78 -12 1.3333 · 10→1

6 105 210 192 -18 8.5714 · 10→2

7 315 630 624 -6 9.5238 · 10→3

8 1155 2310 2304 -6 2.5974 · 10→3

9 7425 14850 14880 30 2.0202 · 10→3

10 8415 16830 16848 18 1.0695 · 10→3

11 8925 17850 17856 6 3.3613 · 10→4

12 31815 63630 63648 18 2.8289 · 10→4
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# n 2n ω(n) ω(n)↑ 2n ϑ(n)

13 32445 64890 64896 6 9.2464 · 10→5

14 351351 702702 702720 18 2.5615 · 10→5

15 442365 884730 884736 6 6.7817 · 10→6

16 13800465 27600930 27600768 -162 5.8694 · 10→6

17 14571585 29143170 29143296 126 4.3235 · 10→6

18 16286445 32572890 32572800 -90 2.7630 · 10→6

19 20355825 40711650 40711680 30 7.3689 · 10→7

20 20487159 40974318 40974336 18 4.3930 · 10→7

21 78524145 157048290 157048320 30 1.9102 · 10→7

22 132701205 265402410 265402368 -42 1.5825 · 10→7

23 159030135 318060270 318060288 18 5.6593 · 10→8

24 815634435 1631268870 1631268864 -6 3.6781 · 10→9

25 2586415095 5172830190 5172830208 18 3.4797 · 10→9

26 29169504045 58339008090 58339008000 -90 1.5427 · 10→9

27 40833636525 81667273050 81667272960 -90 1.1020 · 10→9

28 125208115065 250416230130 250416230400 270 1.0782 · 10→9

29 127595519865 255191039730 255191040000 270 1.0580 · 10→9

30 154063853475 308127706950 308127707136 186 6.0365 · 10→10

31 295612416135 591224832270 591224832000 -270 4.5668 · 10→10.

32 394247024535 788494049070 788494049280 210 2.6633 · 10→10

33 636988686495 1273977372990 1273977372672 -318 2.4961 · 10→10

34 660733931655 1321467863310 1321467863040 -270 2.0432 · 10→10

35 724387847085 1448775694170 1448775694080 -90 6.2121 · 10→11

36 740099543085 1480199086170 1480199086080 -90 6.0803 · 10→11

37 1707894294975 3415788589950 3415788589824 -126 3.6888 · 10→11

38 3521313695835 7042627391670 7042627391904 234 3.3226 · 10→11

39 4439852974095 8879705948190 8879705948160 -30 3.3785 · 10→12

40 7454198513685 14908397027370 14908397027328 -42 2.8172 · 10→12

The numbers in the second column form the sequence A171929 of the OEIS [2].
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If n is an odd perfect number, then ω(n) should be divisible by 2 but not divisible by 4.
If we impose the condition of ω(n) not to be a multiple of 4 in addition to the condition of n
to be odd, then the approximate perfection records are as shown in the next table.

# n 2n ω(n) ω(n)↑ 2n ϑ(n)

1 5 10 6 -4 4.0000 · 10→1

2 45 90 78 -12 1.3333 · 10→1

3 405 810 726 -84 1.0370 · 10→1

4 2205 4410 4446 36 8.1633 · 10→3

5 26325 52650 52514 -136 2.5831 · 10→3

6 236925 473850 474362 512 1.0805 · 10→3

7 1380825 2761650 2763774 2124 7.6911 · 10→4

8 1660725 3321450 3323138 1688 5.0821 · 10→4

9 35698725 71397450 71396534 -916 1.2830 · 10→5

10 3138290325 6276580650 6276530754 -49896 7.9496 · 10→6

11 29891138805 59782277610 59782371990 94380 1.5787 · 10→6

12 73846750725 147693501450 147693652470 151020 1.0225 · 10→6

13 194401220013 388802440026 388802820042 380016 9.7740 · 10→7

14 194509436121 389018872242 389019242430 370188 9.5159 · 10→7

15 194581580193 389163160386 389163524022 363636 9.3440 · 10→7

16 194689796301 389379592602 389379946410 353808 9.0865 · 10→7

17 194798012409 389596024818 389596368798 343980 8.8291 · 10→7

18 194906228517 389812457034 389812791186 334152 8.5721 · 10→7

19 194942300553 389884601106 389884931982 330876 8.4865 · 10→7

20 195230876841 390461753682 390462058350 304668 7.8028 · 10→7

21 195339092949 390678185898 390678480738 294840 7.5469 · 10→7

22 195447309057 390894618114 390894903126 285012 7.2913 · 10→7

23 195699813309 391399626618 391399888698 262080 6.6960 · 10→7

24 195808029417 391616058834 391616311086 252252 6.4413 · 10→7

25 196024461633 392048923266 392049155862 232596 5.9328 · 10→7

26 196204821813 392409643626 392409859842 216216 5.5100 · 10→7

27 196349109957 392698219914 392698423026 203112 5.1722 · 10→7



18 CHAPTER 2. DIVISOR SUM

# n ω(n) ω(n)↑ 2n ϑ(n)

28 196745902353 393491971782 167076 4.2460 · 10→7

29 196781974389 393564112578 163800 4.1620 · 10→7

30 196962334569 393924816558 147420 3.7423 · 10→7

31 197323054929 394646224518 114660 2.9054 · 10→7

32 197431271037 394862646906 104832 2.6549 · 10→7

33 197755919361 395511914070 75348 1.9051 · 10→7

34 197828063433 395656195662 68796 1.7388 · 10→7

35 198044495649 396089040438 49140 1.2406 · 10→7

36 198188783793 396377603622 36036 9.0913 · 10→8

37 198369143973 396738307602 19656 4.9544 · 10→8

38 198513432117 397026870786 6552 1.6503 · 10→8

39 283665529390725 567331057322850 -729300 1.2855 · 10→9

40 3116918388785625 6233836778008186 218448 3.5042 · 10→11

41 12466503476482989375 24933006952944735762 -10621494 4.2599 · 10→13

The numbers 45, 405, 2205, 26325, ... in the second column form the sequence A228059 of the
OEIS.

In practice the condition that the divisor sum of a number n should be divisible by 2 but
not divisible by 4 means that n is of the form p4j+1 · r2, where r2 is the square part of n and
where p is a prime of the form 4k + 1 with j and k non-negative integers. For an impression
the first nine numbers in the second column and factorized in the form p4j+1 · r2, see below.

5 = 51 · (1)2

45 = 51 · (31)2

405 = 51 · (32)2

2205 = 51 · (31 · 71)2

26 325 = 131 · (32 · 51)2

236 925 = 131 · (33 · 51)2

1 380 825 = 171 · (31 · 51 · 191)2

1 660 725 = 611 · (31 · 51 · 111)2

35 698 725 = 611 · (32 · 51 · 171)2



Chapter 3

Aliquot divisor sum

3.1 Introduction

Aliquot divisors of an integer n are divisors of n except n itself. For instance, the aliquot
divisors of 12 are 1, 2, 3, 4 and 6. The sum of aliquot divisors of n is denoted as s(n). It is
just the divisor sum of n minus n:

s(n) = ω(n)↑ n , (3.1)

where ω(n) is the usual divisor sum of n as we already have met before.

An iteration based on the sum of aliquot divisors is

nk+1 = s(nk) . (3.2)

With initial condition n0 = 1 it leads to the sequence 1, 0. The sequence is terminated when it
arrives at 0 since s(0) is undefined. The initial condition n0 = 2 leads to the sequence 2, 1, 0.
The initial condition n0 = 3 leads to the sequence 3, 1, 0. The initial condition n0 = 4 leads
to the sequence 4, 3, 1, 0. The initial condition n0 = 5 leads to the sequence 5, 1, 0. The initial
condition n0 = 6 leads to the sequence 6, 6, 6, ...... That is, 6 is a fixed point. In general,
n is a fixed point if s(n) = n. The perfect number property s(n) = n is equivalent to the
property ω(n) = 2n. So, the fixed points of the iteration nk+1 = s(nk) are perfect numbers.
The property s(n) = (k ↑ 1) · n is equivalent to the property ω(n) = k · n and it defines a
multi-perfect number for k > 2.

Sometimes an orbit seems to be infinitely long in the sense that it seems to arrive neither
at a periodic cycle nor at 0. For instance for 276 the orbit goes as
276, 396, 696, 1104, 1872, 3770, 3790, 3050, 2716, 2772, 5964, 10 164, 19 628,...
After 800 steps the orbit of 276 is at the 81 digit number
359365395338503080287901208213182053967105084900064321775191103706183295245088746.

19
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The first 800 numbers of the orbit of 276 are even.

Other numbers for which the orbit seems to have infinite length are 306, 396, 552, 564, 660,
696, 780, 828, 888, 966, 1074, 1086, 1098, 1104, 1134, 1218, 1302, 1314, 1320, 1338, ... , see
sequence A131884 of the OEIS [2].

Some numbers cannot be the sum of aliquot divisors; they are untouchable. The list of
untouchables for s(n) is 2, 5, 52, 88, 96, 120, 124, 146, 162, 188, 206, 210, 216, ..., see sequence
A005114 of the OEIS. It is an open question whether 5 is the only odd untouchable for s(n).

3.2 Arithmetic sequences in orbits

Let n be a product of a perfect number and a prime which is co-prime to the perfect number.
That is, let

n = 2m→1 (2m ↑ 1) · p , (3.3)

where 2m ↑ 1 is prime and where p is a prime satisfying gcd
(
2m→1 (2m ↑ 1) , p

)
= 1.

As already shown in the previous chapter, for such n there holds

ω(n) = ω(2m→1) · ω(2m ↑ 1) · ω(p) = (2m ↑ 1)2m · (p+ 1) . (3.4)

As a consequence

s(n) = ω(n)↑ n = (2m ↑ 1)2m→1(2p+ 2)↑ 2m→1(2m ↑ 1) · p (3.5)

= 2m→1(2m ↑ 1)(p+ 2) = n+ 2m(2m ↑ 1) .

That is, the successor of n is twice a perfect number larger than n. If p+2 also is a prime and
co-prime to the perfect number, we can repeat the procedure and we obtain that the successor
of s(n) is twice the perfect number larger than s(n). We then have an arithmetic sequence of
three successive orbit numbers with twice the perfect number as constant di!erence.

The first example is for m = 2. Since p cannot be 2 or 3, we start with p = 5. Then
n = 6 · 5 = 30, s(30) = 30 + 12 = 42. Since 5 + 2 = 7 is a prime and co-prime to 6, we
have s(2)(30) = s(s(30)) = s(42) = 42 + 12 = 54. The next prime co-prime to 6 is 11. So,
s(66) = 6 · (11+ 2) = 78. Since 11+ 2 = 13 is a prime, we have s(2)(66) = s(s(66)) = s(78) =

78+12 = 90. The full orbit of 30 goes as: 30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1,
0. Since s(54) happens to be 66 we have in the orbit starting with 30 an arithmetic sequence
of six numbers: 30, 42, 54, 66, 78 and 90.

The second example is for m = 3. Since p cannot be 2 or 7, we start with p = 3. Then
n = 28 · 3 = 84, s(84) = 84 + 56 = 140. Since 3 + 2 = 5 is a prime and co-prime to 28, we
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have s(2)(84) = s(s(84)) = s(140) = 140+56 = 196. Since 5+2 = 7 is not co-prime to 28, we
cannot repeat the procedure. And since s(196) = 203 is not 56 larger than 196, the arithmetic
sequence in the orbit 84, 140, 196, 203, 37, 1 consists of the three numbers 84, 140 and 196.
Next we try p = 11. Then n = 28 · 11 = 308, s(308) = 308 + 56 = 364. Since 11 + 2 = 13 is
a prime co-prime to 28, we have s(2)(308) = s(s(308)) = s(364) = 364 + 56 = 420. Since 420

does not happen to be 56 larger than 420, the arithmetic sequence consists of three numbers:
308, 364 and 420.

The next example is for m = 5. Since p cannot be 2 or 31, we start with p = 3. Then
n = 496 · 3 = 1488, s(1488) = 1488 + 992 = 2480. Since 3 + 2 = 5 is a prime and co-prime to
496, we have s(2)(1488) = s(2480) = 2480+992 = 3472. Since 5+2 = 7 is a prime and co-prime
to 496, we have s(3)(1488) = s(3472) = 3472 + 992 = 4464. Since s(4464) = 8432 is not 992
larger than 4464, the arithmetic sequence consists of four numbers: 1488, 2480, 3472 and 4464.

Of course, by taking other perfect numbers and or other primes we can create many ex-
amples of arithmetic triples in orbits for the aliquot divisor sum.

Numerical inspection of orbits starting with n ⇒ 109 delivers no arithmetic sequence longer
than 5 numbers other than the sequence 30, 42, 54, 66, 78, 90. So, for the aliquot divisor sum
iteration the sequence 30, 42, 54, 66, 78, 90 probably is the largest arithmetic sequence.

In the previous chapter we saw that numbers of the type n = 2m→1 (2m ↑ 1↑ 2k) with k

a perfect number and 2m ↑ 1 ↑ 2k a prime, also does satisfy ω(n) ↑ 2n = 2k and thus
s(n)↑ n = 2k.

3.3 Some statistics

Among the numbers 1 through 109 there are 9 327 005 numbers whose successor is 12 larger.
There are 9 327 002 primes p such that 6p ⇒ 109. Since the primes 2 and 3 are not allowed
for p there are 9 327 000 numbers of the type 6p below 109. There are 4 numbers of the type
2m→1(2m ↑ 13): 24, 304, 127 744 and 33 501 184. The remaining number is 54.

Among the numbers 1 through 109 there are 2 187 839 numbers whose successor is 56 larger.
There are 2 187 829 primes p such that 28p ⇒ 109. Since the primes 2 and 7 are not allowed
for p there are 2 187 827 numbers of the type 28p below 109. Of the remaining 12 numbers
there are 4 numbers of the type 2m→1(2m ↑ 57): 224, 4544, 25 472 and 495 104. The other 8
numbers are 1372, 9272, 14 552, 74 992, 6 019 264, 15 317 696, 35 019 968 and 53 032 832.

Among the numbers 1 through 109 there are 150 093 numbers whose successor is 992 larger.
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There are 150 065 primes p such that 496p ⇒ 109. Since the primes 2 and 31 are not allowed for
p there are 150 063 numbers of the type 496p below 109. Of the remaining 30 numbers there
are 2 numbers of the type 2m→1(2m↑993): 15 872 and 126 083 072. The other 28 numbers are
2892, 6104, 170 612, ..., 524 187 392.

Among the numbers 1 through 109 there are 11 582 numbers whose successor is 16 256 larger.
There are 11 567 primes p such that 8128p ⇒ 109. Since the primes 2 and 127 are not allowed
for p there are 11 565 numbers of the type 8128p below 109. Of the remaining 17 numbers
there is one number of the type 2m→1(2m ↑ 16257): 1 040 384. The other 16 numbers are
48 684, 112 952, 353 672, 396 112, ...,855 935 072.

Among the numbers 1 through 109 there are 9 numbers whose successor is 67 100 672 larger.
There are 10 primes p such that 33550336p ⇒ 109. The primes 2 and 8191 are not allowed
for p, however 8191 already is lower than 109/33550336. As a net result there are 9 numbers
below 109 whose successor is 67 100 672 larger, which are all of the type 33550336p.

Hereafter, we will denote the number of n ⇒ x for which s(n) = n + 12 as ε12(x), and
the number of n ⇒ x for which s(n) = n + 56 as ε56(x), etc. As we saw, the contributions
to ε12(x) by numbers not of the type 6p are practically negligible. Hence, ε12(x) is approx-
imately given by the number of primes ⇒ x/6. A su"ciently good approximation for the
number of primes ⇒ x is

µ(x) =
x

lnx

(
1 +

1

lnx


. (3.6)

All together, we get

ε12(x) ≃
x/6

ln(x/6)

(
1 +

1

ln(x/6)


. (3.7)

For x = 109 we have

ε12(10
9) ≃ 109/6

ln(109/6)

(
1 +

1

ln(109/6)


≃ 9.27 · 106 . (3.8)

It deviates less than 1% from the actual value 9 237 005.
A similar calculation leads to the following approximations:

ε56(10
9) ≃ 109/28

ln(109/28)

(
1 +

1

ln(109/28)


≃ 2.17 · 106 , (3.9)

which deviates less than 1% from the actual value 2 187 839.

ε992(10
9) ≃ 109/496

ln(109/496)

(
1 +

1

ln(109/496)


≃ 1.485 · 105 , (3.10)
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which deviates 1.1% from the actual value 150 093.

ε16256(10
9) ≃ 109/8128

ln(109/8128)

(
1 +

1

ln(109/8128)


≃ 1.14 · 104 , (3.11)

which deviates 1.6% from the actual value 11 582.

For the ratios we get
ε12(109)

ε56(109)
=

9327005

2187839
≃ 4.263 , (3.12)

ε56(109)

ε992(109)
=

2187839

150093
≃ 14.58 , (3.13)

ε992(109)

ε16256(109)
=

150093

11582
≃ 12.96 , (3.14)

By means of the approximate prime counting function we would have got

ε12(109)

ε56(109)
≃ µ(109/6)

µ(109/28)
≃ 4.268 , (3.15)

ε56(109)

ε992(109)
≃ µ(109/28)

µ(109/496)
≃ 14.63 , (3.16)

ε992(109)

ε16256(109)
≃ µ(109/496)

µ(109/8128)
≃ 13.03 , (3.17)

In the limit where x ↘ ⇑ we obtain

lim
x↑↓

ε12(x)

ε56(x)
≃ lim

x↑↓

µ(x/6)

µ(x/28)
=

28

6
≃ 4.667 , (3.18)

lim
x↑↓

ε56(x)

ε992(x)
≃ lim

x↑↓

µ(x/28)

µ(x/496)
=

496

28
≃ 17.71 , (3.19)

lim
x↑↓

ε992(x)

ε16256(x)
≃ lim

x↑↓

µ(x/496)

µ(x/8128)
=

8128

496
≃ 16.39 . (3.20)

Between 109 and ⇑ the ratio ε12/ε56 slightly increases from 4.26 to 4.67, the ratio ε56/ε992

slightly increases from 14.6 to 17.7, and the ratio ε992/ε16256 slightly increases from 13.0 to
16.4,. The ratios being more or less independent of x makes them useful as indicators for
the randomness of the occurrences of properties s(n) = n + 12, s(n) = n + 56, etc. If these
properties occur more or less random, then one might expect the ratios will be reflected in the
numbers of a lengthy orbit. As we will see in the next section the statistics in lengthy orbits
are remarkably di!erent.
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3.4 Lengthy orbits

For the investigation of lengthy orbits we will confine to orbits which do not merge with a
lengthy orbit with smaller starting number or are part of another orbit. Of course, for as far
as we can inspect. To be specific, the orbit of 306 merges with the orbit of 276, the orbit of
396 is part of the orbit of 276, the orbit of 696 merges with the orbit of 276, the orbit of 780
is part of the orbit of 564, the orbit of 828 merges with the orbit of 660, the orbit of 888 is
part of the orbit of 552, the orbits of 1086 and 1098 are part of the orbit of 1074, the orbit of
1104 is part of the orbit of 276, the orbits of 1218 and 1302 merge with the orbit of 1134, the
orbit of 1314 merges with the orbit of 564, the orbit of 1320 is part of the orbit of 1074, the
orbits of 1338 and 1350 are part of the orbit of 966, the orbit of 1356 is part of the orbit of
660, the orbit of 1392 is part of the orbit of 552 and the orbit of 1410 merges with the orbit
of 966. As a consequence, the first eight lengthy orbits suited for investigation are 276, 552,
564, 660, 966, 1074, 1134 and 1464.

In the orbit of 276 there are numbers whose successor is 56 larger. As an example, if n0 = 276

then n8 = 2716 and its successor is n9 = 2772. For k ⇒ 800 the nk for which nk+1 = nk + 56

are given in the next table.

k nk

8 2716
12 19 628

19 54 628

23 465 668

24 465 724

42 4 946 860 492

44 9 344 070 652

49 27 410 152 084

67 5 641 400 009 252

68 5 641 400 009 308

79 2 556 878 765 995 204

94 13 780 400 058 385 352 252

96 14 272 557 426 581 383 244

129553 006 807 242 922 594 628 276
1391 590 495 621 615 121 371 199 252
1571 825 045 749 999 763 720 560 245 492
77015519053469409445075122600866343140070463822047551313401831800906126348266868
788458489890858162966848272193721941844164128303706788715232527676570255647679924



3.5. PERSISTENT FACTORS 25

All the eighteen nk in the table are of the type 28p. Since n23 and n24 are successive orbit
numbers and n67 and n68 are successive orbit numbers , the orbit contains two triples with
constant di!erence 56: (465 668, 465 724, 465 780) and (5 641 400 009 252, 5 641 400 009 308,
5 641 400 009 364). For k ⇒ 800 there are no numbers of the type 6p or 496p. Hereafter we wil
not mention absent type of orbit numbers.

In the orbit of 552 there are for k ⇒ 728 eleven numbers whose successor is 56 larger. They
are all of the type 28p.

In the orbit of 564 there is for k ⇒ 1000 only one orbit number whose successor is 56 larger. It
is of the type 28p. For k ⇒ 1000 there are eleven numbers in the orbit of 564 whose successor
is 12 larger. They are all of the type 6p. In the orbit of 660 there are for k ⇒ 364 two numbers
whose successor is 12 larger. Both are of the type 6p. For k ⇒ 364 there are two numbers in
the orbit of 660 whose successor is 56 larger. Both are of the type 28p.

In the orbit of 966 there are for k ⇒ 380 five numbers whose successor is 12 larger. They
are of the type 6p. Two of them, n18 and n19, are successive orbit numbers. Therefore the
orbit contains a triple with constant di!erence 12: (82 254, 82 266, 82 278). In the orbit of
966 there are for k ⇒ 380 six numbers whose successor is 56 larger. They are all of the type 28p.

In the orbit of 1074 there are for k ⇒ 1000 six numbers whose successor is 12 larger. They are
all of the type 6p. Since n0 and n1 are successive orbit numbers, the orbit contains a triple
with constant di!erence 12: (1074, 1086, 1098). For k ⇒ 1000 there are eight numbers in the
orbit of 1074 whose successor is 56 larger. They are all of the type 28p. For k ⇒ 1000 there
are four numbers in the orbit of 1074 whose successor is 992 larger. They are all of the type
496p.

In the orbit of 1134 there are for k ⇒ 750 eleven numbers whose successor is 12 larger.
They are all of the type 6p.

In the orbit of 1464 there are for k ⇒ 1600 six numbers whose successor is 12 larger. They are
all of the type 6p. For k ⇒ 1600 there are ten numbers in the orbit of 1464 whose successor is
56 larger. They are all of the type 28p. For k ⇒ 1600 there are five numbers in the orbit of
1464 whose successor is 992 larger. They are all of the type 496p.

3.5 Persistent factors

By inspection of the orbit starting with 276 we found that 255 out of the first 801 orbit
numbers have 22 · 7 as part of their prime factorization. We also found that orbit numbers
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containing a factor 22 · 7 are often succeeded by a number who also contain a factor 22 · 7,
leading to sequences of successive orbit numbers containing a factor 22 · 7. Apparently 22 · 7
is to a certain extent a persistent factor. This can be understood as follows. When an orbit
arrives at a number nk = 22 · 7 · r, where r > 1 has not 2 or 7 as a divisor, then nk+1 also has
22 · 7 as a divisor:

nk+1 = ω(nk)↑ nk = ω(22) · ω(7) · ω(r)↑ 22 · 7 · r (3.21)

= 7 · 23 · ω(r)↑ 22 · 7 · r = 22 · 7 · (2ω(r)↑ r) .

Since 2ω(r) ↑ r is odd, only the presence of 7 as a divisor of (2ω(r) ↑ r) may cause the next
orbit number not containing 22 · 7 in its prime factorization and the sequence is broken.

There are more persistent factors. To derive them we write an orbit number n as

n = d · r , (3.22)

where the integer d is the persistent factor and the integer r is n/d with gcd(d, r) = 1. For its
successor we obtain

s(n) = ω(d) · ω(r)↑ d · r = d ·
(
ω(d)

d
· ω(r)↑ r


. (3.23)

For d to be a persistent factor we can require ω(d)/d to be integer. Now ω(r) is odd only if r
is a square. The probability for a number r to be a square is very small for large r. Therefore
almost all ω(r) will be even. For even ω(r) it is su"cient to require ω(d)/d to be half-integer.
All together we require

ω(d)

d
=

m

2
+ 1 , (3.24)

where m is a positive integer. Then

s(n) = d ·
( m

2
+ 1


· ω(r)↑ r

)
. (3.25)

Since ω(r) ↗ r we have for r > 1

s(n) >
m

2
n . (3.26)

In particular for r = 1 we have
s(d) =

m

2
d . (3.27)

The multiplication factor µ is defined as the ratio of s(n) and n:

s(n) = µn . (3.28)

If r = 1 then
µ =

m

2
(3.29)



3.6. DRIVERS 27

is the multiplication factor of a persistent factor. For instance, if d is a perfect number, then
ω(d) = 2d and µ = 1. If d is a 3-perfect number, ω(d) = 3d, then µ = 2. If r > 1 then
µ > m/2. Its value depends on r.

The requirement (3.24) leads to 14 persistent factors smaller than 106, see next table.

d µ

2 1/2

6 = 2 · 3 1

24 = 23 · 3 3/2

28 = 22 · 7 1

120 = 23 · 3 · 5 2

496 = 24 · 31 1

672 = 25 · 3 · 7 2

4320 = 25 · 33 · 5 5/2

4680 = 23 · 32 · 5 · 13 5/2

8128 = 26 · 127 1

26 208 = 25 · 32 · 7 · 13 5/2

30 240 = 25 · 33 · 5 · 7 3

32 760 = 23 · 32 · 5 · 7 · 13 3

523 776 = 29 · 3 · 11 · 31 2

Notice that if 6 is a persistent factor, then also 2 is a persistent factor. The same holds for
120 and 24, for 30 240 and 4320, and for 32 760 and 4680. In these cases the largest one is
taken as the persistent factor.

3.6 Drivers

Large d with relatively many prime factors are usually not very persistent. So, to select the
d which are persistent and substantially present in orbits one needs a selection criterion. To
this end d, which is even, is written as d = 2av, where v is odd. As a selection criterion one
requires v to be a divisor of 2a+1↑ 1 and 2a→1 to be a divisor of ω(v). Numbers 2av satisfying
these two conditions are called drivers [3]. Let us obtain the drivers for the first ten a. This
can be done by head.
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For a = 1 the conditions read v|3 and 1|ω(v). They are satisfied for v = 1 and v = 3.
For v = 1 the driver is 2 and for v = 3 the driver is 6.

For a = 2 the conditions read v|7 and 2|ω(v). They are satisfied for v = 7. The driver is 28.
For a = 3 the conditions read v|15 = 3 · 5 and 4|ω(v). They are satisfied for v = 3 and v = 15.

For v = 3 the driver is 24 and for v = 15 the driver is 120.
For a = 4 the conditions read v|31 and 8|ω(v). They are satisfied for v = 31. The driver is
496.
For a = 5 the conditions read v|63 = 32 · 7 and 16|ω(v). They are satisfied for v = 21.

The driver is 672.
For a = 6 the conditions read v|127 and 32|ω(v). They are satisfied for v = 127.

The driver is 8128.
For a = 7 the conditions read v|255 = 3 · 5 · 17 and 64|ω(v). No v satisfies both conditions.
For a = 8 the conditions read v|511 = 7 · 73 and 128|ω(v). No v satisfies both conditions.
For a = 9 the conditions read v|1023 = 3 ·11 ·31 and 256|ω(v). They are satisfied for v = 1023.

The driver is 523 776.
For a = 10 the conditions read v|2047 = 23 · 89 and 512|ω(v). No v satisfies both conditions.

It is proven that for a > 10 there is no v satisfying both conditions, except if v = 2a+1↑ 1 is a
Mersenne prime [3]. The first example of the exception is a = 12. Then the conditions v|8191
and 2048|ω(v) are satisfied for v = 8191 and the driver is the perfect number 33 550 336.
In conclusion, a driver is a perfect number or a member of {2, 24, 120, 672, 523 776}.

It seems a bit strange that 523 776 has survived as a driver while 4320, 4680, 26 208, 30 240
and 32 760 have not. Alternatively, one could also use the selection criterion that a driver is a
persistent factor smaller than 10 000, or that a persistent factor is smaller than 1000, or that
a persistent factor is smaller than 10 000 and has not more than three di!erent prime factors,
or whatever seems suited.

Before we try to find a suitable selection criterion we will first investigate how frequent a
persistent fraction occurs in lengthy orbits, its average multiplication factor and the average
length of the sequence of successive orbit numbers containing the persistent factor. For in-
stance, in the first 801 numbers of the orbit starting with 276 the persistent factors 2, 24 and
28 occurred 60, 26 and 255 times respectively. The mean multiplication factors are 0.664, 1.642
and 1.294 respectively. The mean sequence lengths are 30.00, 8.67 and 8.50 respectively. For
the lengthy orbits starting with 276, 552, 564, 660, 966, 1074, 1134 and 1464 the frequencies
of persistent factors 2, 6, 24, 28, 120, 496, 672, 4320, 4680 and 8128 are shown the next table.
The second column is the investigated length of the orbit.
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n0 # 2 6 24 28 120 496 672 4320 4680 8128

276 801 60 0 26 255 0 0 0 0 0 0

552 729 30 0 9 433 0 0 0 0 0 0

564 1001 264 406 8 3 0 0 0 0 0 0

660 316 18 24 7 3 0 0 159 0 0 0

966 382 9 19 23 124 126 0 0 0 0 0

1074 1001 236 27 82 86 10 108 0 0 0 0

1134 751 225 102 30 0 32 0 0 0 0 0

1464 1640 446 189 20 129 6 186 3 0 0 0

For the same orbits the mean of the observed multiplication factors of persistent factors are
shown the next table. The second row is the theoretical minimum of the multiplication factor.

n0 2 6 24 28 120 496 672 4320 4680 8128

⇓µ⇔ 0.500 1.000 1.500 1.000 2.000 1.000 2.000 2.500 2.500 1.000

276 0.664 - 1.642 1.294 - - - - - -

552 0.552 - 1.562 1.411 - - - - - -

564 1.093 1.154 1.714 1.264 - - - - - -

660 1.195 1.242 1.629 1.196 - - 2.228 - - -

966 1.573 1.227 2.260 1.450 2.163 - - - - -

1074 0.644 1.157 1.628 1.378 2.185 1.431 - - - -

1134 0.879 1.184 1.834 - 2.182 - - - - -

1464 0.706 1.182 1.588 1.427 2.057 1.486 2.408 - - -

For the same orbits the mean sequence lengths of persistent factors are shown the next table.
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n0 2 6 24 28 120 496 672 4320 4680 8128

276 30.00 - 8.67 8.50 - - - - - -

552 10.00 - 3.00 11.39 - - - - - -

564 13.89 22.56 4.00 3.00 - - - - - -

660 2.57 6.00 2.33 3.00 - - 11.75 - - -

966 4.50 9.50 2.30 13.78 15.75 - - - - -

1074 15.73 6.75 6.83 10.75 3.33 27.00 - - - -

1134 14.06 8.50 3.00 - 6.40 - - - - -

1464 15.93 18.90 5.00 9.21 6.00 20.00 3.00 - - -

We see that persistent factors larger than 1000 do not occur in the 6620 investigated orbit
numbers ranging from 4 through 99 digits. Hence, a practical selection criterion for driver is:
a persistent factor below 1000. It selects as a driver: 2, 6, 24, 28, 120, 496 and 672.

3.7 Amicable and sociable numbers

If s(n0) = n1 ↔= n0 and s(n1) = n0, then (n0,n1) is a pair of amicable numbers. The first
amicable pairs are (220, 284), (1184, 1210), (2620, 2924), (5020, 5564), (6232, 6368), ... There
are 586 amicable pairs with smallest member below 109. The number of amicable pairs with
smallest member smaller than or equal to k is plotted in the next figure for k ⇒ 109.
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Figure 3.1: Number of amicable pairs with smallest member smaller than or equal to k.
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It still is an open question whether or not there are infinitely many amicable pairs.

For amicable pairs below 109 we observe that both members have equal parity. Among the 586
amicable pairs below 109 there are 432 pairs with both members even and 154 pairs with both
members odd. It is an open question if amicable pairs exist with one odd and one even member.

An amicable pair is considered regular if the non-common part of each member is square
free. Thus if we write a pair (n0,n1) as (gN0, gN1), where g is the greatest common divisor
of n0 and n1, g = GCD(n0,n1), then the cycle is regular if N0 and N1 are both square free.
A pair is irregular if it is not regular. For example, for the pair (220, 284) = (22 · 5 · 11, 22 · 71)
the common factor is 22 and the non common parts are (5 · 11, 71). Since N0 = 5 · 11 and
N1 = 71 are both square free, the pair (220, 284) is regular. As another example, for the
pair (1184, 1210) = (25 · 37, 2 · 5 · 112) the common factor is 21 and the non common parts
as (24 · 37, 5 · 112). Since N0 = 24 · 37 and N1 = 5 · 112 are not both square free, the pair
(1184, 1210) is irregular. Of the 586 amicable pairs concerned above, 505 are regular and 81
are irregular. That is, approximately 86% of these 586 pairs are regular.

A pair of amicable numbers is in fact a period 2 cycle. One can also look for period m

cycles. The set (n0,n1,n2, ...,nm→1) is a period m cycle if s(m)(n0) = n0. The cycle is ele-
mentary if no two members are equal. The elements of such sets are sociable numbers.

Below 109 there are no period 3 cycles.

Below 109 there are 14 elementary period 4 cycles:
1 (1 264 460, 1 547 860, 1 727 636, 1 305 184),
2 (2 115 324, 3 317 740, 3 649 556, 2 797 612),
3 (2 784 580, 3 265 940, 3 707 572, 3 370 604),
4 (4 938 136, 5 753 864, 5 504 056, 5 423 384),
5 (7 169 104, 7 538 660, 8 292 568, 7 520 432),
6 (18 048 976, 20 100 368, 18 914 992, 19 252 208),
7 (18 656 380, 20 522 060, 28 630 036, 24 289 964),
8 (28 158 165, 29 902 635, 30 853 845, 29 971 755),
9 (46 722 700, 56 833 172, 53 718 220, 59 090 084),
10 (81 128 632, 91 314 968, 96 389 032, 91 401 368),
11 (174 277 820, 205 718 020, 262 372 988, 210 967 684),
12 (209 524 210, 246 667 790, 231 439 570, 230 143 790),
13 (330 003 580, 363 003 980, 399 304 420, 440 004 764),
14 (498 215 416, 506 040 584, 583 014 136, 510 137 384).
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We observe that all four members of a period 4 cycle have equal parity. Similar to what
is done for amicable pairs, a period 4 cycle is considered regular if the non-common part of
each member is square free. Thus if we write the members (n0,n1,n2,n3) of a period 4 cy-
cle as (gN0, gN1, gN2, gN3), where g = GCD(n0,n1,n2,n3), then the cycle is regular if N0,
N1, N2 and N3 are all square free. Among the 14 period 4 cycles given above the 1-th, 2-
nd, 5-th and 9-th one are not regular. That is, approximately 71% of these 14 pairs are regular.

By considering also starting value larger than 109 one obtains a lot more amicable pairs
and period 4 cycles. At the moment more than a billion amicable pairs and more than five
thousand period 4 cycles are known. For other cycle lengths there are just a few cycles known
now:
1 period 5 cycle: (12496, 14288, 15472, 14536, 14264),

5 period 6 cycles:
(21 548 919 483, 23 625 285 957, 24 825 443 643, 26 762 383 557, 25 958 284 443, 23 816 997 477),
(90 632 826 380, 101 889 891 700, 127 527 369 100, 159 713 440 756, ..., 106 246 338 676),
(1 771 417 411 016, 1 851 936 384 424, 2 118 923 133 656, 2 426 887 897 384, ..., 2 024 477 041 144),
(3 524 434 872 392, 4 483 305 479 608, 4 017 343 956 392, 4 574 630 214 808, ..., 3 890 837 171 608),
(4 773 123 705 616, 5 826 394 399 664, 5 574 013 457 296, 5 454 772 780 208, ..., 5 091 331 952 624),

4 period 8 cycles:
(1 095 447 416, 1 259 477 224, 1 156 962 296, 1 330 251 784, 1 221 976 136, ..., 1 213 138 984).
(1 276 254 780, 2 299 401 444, 3 071 310 364, 2 303 482 780, 2 629 903 076, ..., 1 697 298 124),
(7 914 374 573 864, 8 650 595 472 376, 10 411 746 556 424, 9 975 530 282 296, ..., 8 890 420 285 336),
(138 344 559 911 415, 150 752 214 775 305, 156 933 404 745 975, ..., 168 479 018 493 705),

1 period 9 cycle:
(805 984 760, 1 268 997 640, 1 803 863 720, 2 308 845 400, 3 059 220 620, ..., 1 611 969 514)

and 1 period 28 cycle:
(14 316, 19 116, 31 704, 47 616, 83 328, 177 792, 295 488, 629 072, 589 786, 294 896, 358 336,

418 904, 366 556, 274 924, 275 444, 243 760, 376 736, 381 028, 285 778, 152 990, 122 410, 97 946,

48 976, 45 946, 22 976, 22 744, 19 916, 17 716).



Chapter 4

S function

4.1 Introduction

By means of the sum-of-divisors function ω and a greatest common divisor we create the
following iteration:

nk+1 =
ω(nk)

gcd (nk,ω(nk))
, (4.1)

where gcd (nk,ω(nk)) is the greatest common divisor of nk and ω(nk). For brevity we will
denote the iteration as

nk+1 = S(nk) , (4.2)

where the S function is defined as

S(n) = ω(n)

gcd (n,ω(n))
. (4.3)

For instance, for n = 6 we obtain S(6) = ω(6)

gcd (6,ω(6))
=

12

gcd(6, 12)
=

12

6
= 2 and for n = 7

we obtain S(7) = ω(7)

gcd (7,ω(7))
=

8

gcd(7, 8)
=

8

1
= 8.

4.2 Cycles of the S function

For n = 1, 2, 3, 4, 5, 6, 7, 8, 9, ... the corresponding S values form the sequence 1, 3, 4, 7, 6, 2,

8, 15, 13, .... The latter is known as the sequence A017665 of the OEIS [2].

If we start with n0 = 1 then n1 = 1, n2 = 1, and so on. That is, (1) is the trivial pe-
riod 1 cycle or fixed point. We will denote it as c0. If we start with n0 = 2 then n1 = 3,
n2 = 4, n3 = 7, n4 = 8, n5 = 15, n6 = 8, etc. That is, (8, 15) is a period 2 cycle, which we
will denote as c1. For starting values smaller than 66, the graph is shown in the next figure.

33
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We see that for starting values smaller than 66 the iteration also shows a period 6 cycle.

For starting values n0 ⇒ 1010 the iteration nk+1 = S(nk) contains
one fixed point: c0 = (1),
three period 2 cycles: c1 = (8, 15), c2 = (512, 1023), c3 = (29127, 47360) and
one period 6 cycle: c4 = (127, 128, 255, 144, 403, 448).

The smallest n0 for which the orbit ends in c4 is 16. The orbit is 16, 31, 32, 63, 104, 105, 64,
127, ... The smallest n0 for which the orbit ends in c2 is 81. The orbit is 81, 121, 133, 160,
189, 320, 381, 512, ... The smallest n0 for which the orbit ends in c3 is 22 521. The orbit is
22 521, 30 032, 29 109, 40 192, 40 369, 47 360, 29 127, ...
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4.3 Statistics of cycle arrivals

For n0 ⇒ 108 the fractions of starting numbers for which the orbit arrives in c1, c2, c3 or c4

are plotted in the next figure.
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Figure 4.1: The fractions of starting numbers of which the orbit arrives in c1 (black), c2

(green), c3 (red) or c4 (blue).

Each fraction seems to approach a limit value for n0 ↘ ⇑.
For n0 ⇒ 108 the fractions of starting numbers for which the orbit arrives in c1, c2, c3 or c4

are approximately 0.2211, 0.0487, 0.00147 and 0.7287 respectively.
For n0 ⇒ 108 the fractions of starting numbers for which the orbit arrives in c1 at 8, in c1 at
15, in c2 at 512, in c2 at 1023, in c3 at 29 127, in c3 at 47 360, in c4 at 127, in c4 at 128, in
c4 at 255, in c4 at 144, in c4 at 403 or in c4 at 448 are approximately 0.1985, 0.0226, 0.0408,
0.0079, 0.00070, 0.00078, 0.4749, 0.2284, 0.0089, 0.0040, 0.0091, 0.0034 respectively.

4.4 Statistics of untouchables

If we start with n0 = 2 then n1 = 3, n2 = 4, n3 = 7, n4 = 8, n5 = 15, n6 = 8, n7 = 15

and so on. From the orbit 2, 3, 4, 7, 8, 15, 8, ... we see that number 3 has 2 as predecessor
and that 4 has 3 as predecessor and that 7 has 4 as predecessor and so on. However, 2 itself
does not have a predecessor yet. So, if the starting numbers are confined to numbers of the
set {1, 2, 3, 4} then 2 is untouchable. If we start with n0 = 5 then n1 = 6, n2 = 2, n3 = 3,
and so on, until it ends in the period 2 cycle (8, 15). So, for starting numbers {1, 2, 3, 4, 5}
the number 2 is no longer untouchable. Number 5 is the smallest starting number for which
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2 is no longer untouchable. It turns out that 23 is the smallest starting number for which 5
is no longer untouchable. The smallest starting number for which a number n is no longer
untouchable will be denoted as tn.

If we start with numbers smaller than 103, the first part of the list of tn is as follows:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

tn 1 5 2 2 23 5 2 2 10 979 ? 9 9 9 2 33 ? 17 485 19 19 ? ? 23 187 45 34 78 ? 29

From t10 = 979 we see that 10 is an untouchable number if we confine to starting numbers
smaller than 979. The question marks at position 11, 17, 22, 23, 29, ... show that for starting
numbers smaller than 1000 the numbers 11, 17, 22, 23, 29, ... are untouchable. Question
marks may disappear by taking larger starting numbers.

For starting numbers smaller than 106 the first part of the list of tn is as follows:

n 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

tn 5 2 2 10 979 33425 9 9 9 2 33 230153 17 485 19 19 1782 ? 23 187 45 34 78 ? 29

With respect to the previous situation the question marks for n = 11, 17 and 22 have disap-
peared.

By means of numerical inspection it is found that 23 becomes touchable for the first time
if we start with n0 = 1404 630 689. The orbit is 1 404 630 689, 1 907 020 800, 23, 24, 5, 6, 2,
3, 4, 7, 8, 15, 8, ... A numerical inspection also learns that 29 is untouchable if the starting
values are smaller than 1010.

It raises the question whether a number 29 will become touchable if large enough starting
numbers are used or are they truly untouchable in the sense that they stay untouchable even
if infinitely large starting numbers are used.

If we only start with numbers from the set {1, 2, 3, 4}, then 2 is the only element of the
set {1, 2, 3, 4} which is untouchable. The ratio of untouchables and set length is 1/4. If
we only start with numbers from the set {1, 2, 3, 4, 5}, then 5 is the only element of the set
{1, 2, 3, 4, 5} which is untouchable. The ratio of untouchables and set length is 1/5. As before,
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we let un be the number of elements of the set {1, 2, 3, ...,n} which are untouchable if we only
start with numbers from the set {1, 2, 3, ...,n}. The ratio of untouchables and set length is
un/n. For numbers up to 108 the ratio un/n is plotted against n in the next figure.

100 101 102 103 104 105 106 107 108
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

u
n
/n

Figure 4.2: The ratio un/n, see text.

The question arises: what is the value of the ratio un/n in the limit n ↘ ⇑?

4.5 Statistics of distances

Let us denote the number of steps required for a starting number n0 to arrive at a periodic
cycle as D(n0): the distance of n0. As a consequence, D(n0) = 0 if n0 is an element of one
of the cycles c0 through c4. For example, for the orbit 100, 217, 256, 511, 592, 589, 640, 153,
26, 21, 32, 63, 104, 105, 64, 127,... we have D(100) = 15. For n0 ⇒ 108 the largest distance is
41. It occurs for n0 = 59 635 801: D(59635801) = 41. The distribution of distances is shown
in the next figure.



38 CHAPTER 4. S FUNCTION

0 5 10 15 20 25 30 35 40

100

101

102

103

104

105

106

107

distance D

fr
eq

ue
nc

y

Figure 4.3: Distribution of distances for starting numbers smaller than or equal to: 104

(orange), 105 (red), 106 (green), 107 (blue), 108 (black).

The distribution of distances for numbers smaller than or equal to 108 is shown on a linear
scale in the next figure.
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Figure 4.4: Distribution of distances for numbers smaller than or equal to 108.
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4.6 Even and odd orbit numbers

There are starting numbers for which successive orbit numbers repeatedly change from odd
to even and from even to odd. For instance, for starting number 36 the orbit is 36, 91, 16, 31,
32, 63, 104, 105, 64, 127, ... That is, even, odd, even, odd, even, odd, even, odd, even, odd, ...
Orbits with 2 or more successive even orbit numbers or with 2 or more successive odd orbit
numbers do also occur. We start considering rows of even numbers.

For starting number 5 the orbit is 5, 6, 2, 3, 4, 7, 8, 15, 8, ... The orbit contains a row
with 2 successive even orbit numbers. Moreover, 5 is the smallest starting numbers for which
a row with 2 successive orbit numbers appears. The smallest starting numbers n0 for which
the orbit contains a row with k successive even numbers are tabulated below for n0 ⇒ 108.

n0 1 2 5 37 109 370 2061 10 982 24 466 59 341 262 534 3 759 878 13 126 565 43 439 846

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13

The next figure shows a plot of the records of the length k of even rows.
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Figure 4.5: The length records of even rows.

For n0 ⇒ 108 only starting number 43 439 846 leads to a row with 13 successive even orbit
numbers. The orbit is 43 439 846, 32 579 886, 10 859 964, 2 111 662, 1 810 008, 71 110, 69 048,
2990, 3024, 620, 336, 62, 48, 31, 32, 63, 104, 105, 64, 127, ... We see the orbit descends from
43439846 to 31.

Next we will look for orbits with two or more successive odd orbit numbers in a row. Among



40 CHAPTER 4. S FUNCTION

the odd numbers only the odd squares have an odd successor. The smallest starting number
for which a row with 2 successive odd orbit numbers occur is 9. The orbit is 9, 13, 14, 12, 7,
8, 15, 8, ... The smallest starting number for which a row with 3 successive odd orbit numbers
occur is 81. The orbit is 81, 121, 133, 160, 189, 320, 381, 512, 1023, 512, ... There are 128
unique rows of 3 successive odd numbers with the first element of the row smaller than 1016.
To get an impression the first six of them are shown below.

81, 121, 133 = 34 , 112 , 7 · 19.
480 249, 361, 381 = 34 · 72 · 112 , 192 , 3 · 127.
7 935 489, 3 964 081, 4 381 419 = 34 · 3132 , 112 · 1812 , 3 · 7 · 19 · 79 · 139.
9 090 225, 5 697 769, 1 075 419 = 34 · 52 · 672 , 72 · 112 · 312 , 32 · 192 · 331.
580 858 201, 106 440 489, 18 129 631 = 72 · 112 · 3132 , 32 · 192 · 1812 , 13 · 79 · 127 · 139.
849 431 025, 7 958 041, 10 357 983 = 32 · 52 · 292 · 672 , 72 · 132 · 312 , 33 · 19 · 61 · 331.

The 128-th row with 3 successive odd numbers is
9 654 983 776 089 729 , 14 128 780 415 929 , 15 008 108 788 269 = 982597772 , 37588272 ,
15008108788269 = 36 · 72 · 112 · 1512 · 3132 , 192 · 1812 · 10932 , 33 · 79 · 127 · 139 · 398581.

The arithmetic of 9 654 983 776 089 729 is as follows:
ω(9654983776089729) = ω(36 · 72 · 112 · 1512 · 3132) = ω(36) ·ω(72) ·ω(112) ·ω(1512) ·ω(3132) =
1093 · 57 · 133 · 22953 · 98283 = 1093 · (3 · 19) · (7 · 19) · (3 · 7 · 1093) · (3 · 1812).

Since ω(9654983776089729) has the factors 33 and 72 in common with 9654983776089729,
we have S(9654983776089729) = 192 ·1812 ·10932 = 37588272, which is an odd square. There-
fore S(S(965498377608972900)) is odd, although not a square. As a result there are three
successive odds in a row.

For 4 successive odds in a row the first three elements of the row have to be an odd square.
The probability for a row with four successive odds is very small. To get a rough estimate of
the small probability we consider the 5 · 107 odd squares smaller than 1016. Among the 5 · 107

odd successors there are 148 odd squares. The probability for an odd square to have an odd
square successor therefore is

148

5 · 107 ≃ 3 · 10→6. The probability for an odd square to have

two odd square successors is (3 · 10→6)2 ≃ 10→11. So, among the 5 · 108 odd square starting
values smaller than 1018 we expect approximately 0.005 rows with 4 successive odd numbers.
No wonder a numerical inspection of odd squares smaller than 1018 did not deliver a row with
4 successive odd elements. For an expectation value of more than one row with 4 successive
odd elements the search domain has to be extended to 1024.
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4.7 Records of maximums

Starting number 2 has orbit {2, 3, 4, 7, 8, 15, 8, ...}. The largest value is the element 15 of
cycle c1. We will call it the maximum M , thus M(2) = 15. Starting number 5 has orbit
{5, 6, 2, 3, 4, 7, 8, 15, 8, ...}. We thus have M(5) = 15. The maximum M(5) does not supersede
the previous maximum M(2), so it is not a maximum record. We have to wait until starting
number 16 for a maximum record: M(16) = 448. The next maximum record is M(81) = 1023.
The first maximum record which is not an element of a cycle is M(343) = 2160. The maximum
records are tabulated below for n0 ⇒ 109.

# n0 M record

1 1 1

2 2 15

3 16 448

4 81 1023

5 343 2160

6 490 4218

7 935 4256

8 1029 22 528

9 5061 65 535

10 8661 73 216

11 18 049 602 547

12 39 981 1 048 575

13 100 261 1 432 640

14 194 913 4 194 303

15 630 436 8 567 136

# n0 M record

16 911 937 19 299 763

17 1 972 659 25 165 821

18 2 262 393 34 713 728

19 2 949 429 46 467 543

20 5 862 213 78 913 536

21 6 482 116 89 522 176

22 10 200 621 115 343 360

23 13 475 300 155 493 536

24 22 003 275 158 414 464

25 23 110 311 268 435 455

26 31 810 161 274 148 352

27 32 098 437 292 563 381

28 35 006 209 621 974 144

29 51 856 928 671 088 640

30 63 370 587 797 516 013

# n0 M record

31 83 024 433 921 298 059

32 89 498 073 1 077 210 372

33 92 530 767 1 320 991 872

34 119 340 783 1 487 137 239

35 133 875 301 1 610 612 733

36 191 411 613 2 864 709 632

37 226 442 331 3 221 225 469

38 232 943 763 4 294 967 295

39 336 920 101 4 975 793 152

40 547 264 135 5 141 692 416

41 551 895 033 6 214 123 520

42 663 592 629 6 341 787 648

43 676 473 985 6 214 123 520

44 749 816 677 6 979 321 843

45 786 780 633 17 179 869 183

The records of orbit maximums have been plotted against the starting numbers n0 ⇒ 109 in
the next figure.
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Figure 4.6: Records of orbit maximums M plotted against starting value n0.

As we saw, for starting value 2 the orbit is 2, 3, 4, 7, 8, 15, 8, ... Its maximum, 15, is
a maximum record which occurs on the sixth position of the orbit. In the next figure the
position of a maximum record in an orbit is plotted against the starting value of the orbit.
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Figure 4.7: The m-th position of a maximum record in an orbit against n0.

The position of a maximum record in an orbit seems to be quite independent of the starting
value of the orbit; the correlation is approximately ↑0.071.
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4.8 Records of distances

We saw earlier that the distance is 4 when one starts with number 2. That is, D(2) = 4. For
increasing starting numbers we get D(3) = 3, D(4) = 2, D(5) = 6 D(6) = 5 and so on. We
see the distance D(5) does supersede D(2). The next time a new distance record occurs is for
number 16. The distance records D are tabulated below for n0 ⇒ 1010.

# n0 D record

1 2 4

2 5 6

3 16 7

4 19 8

5 36 9

6 46 10

7 97 14

8 100 15

# n0 D record

9 315 16

10 328 17

11 453 18

12 977 19

13 1029 22

14 1171 24

15 1954 25

16 8125 26

# n0 D record

17 9597 29

18 10 964 30

19 41 763 31

20 129 603 32

21 154 081 33

22 582 928 34

23 728 659 35

24 3 451 988 36

# n0 D record

25 4 934 601 37

26 7 378 869 39

27 47 424 794 40

28 59 635 801 41

29 409 271 426 42

30 995 329 569 43

31 1 775 850 573 45

32 2 029 543 507 47

The records of distances D are plotted against starting numbers n0 in the next figure.
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Figure 4.8: The records of distances D plotted against starting value n0.
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For n0 ⇒ 108 a simultaneous orbit maximum record and distance record occurs for n0 = 2,
16, 100 and 1029.

4.9 Questions

The iteration with the S function does raise some questions:

Question 1: Are (1), (8, 15) (127, 128, 255, 144, 403, 448), (512, 1023) and (29 127, 47 360)

the only cycles?

Question 2: Does there exist an untouchable number?

Question 3: Is the smallest starting number for which an orbit contains a triple of suc-
cessive odds equal to the first number of the triple?

Question 4: Does there exist a row with 4 or more successive odd numbers in a row?



Chapter 5

Collatz problem

5.1 Introduction

The Collatz problem or 3n+ 1 problem is based on the iteration

nk+1 =






3nk + 1

2
if nk

↓= 1 mod 2

nk

2

34
5

25
if nk

↓= 0 mod 2
(5.1)

where nk is a positive integer. If we start with n0 = 1 then the orbit is 1, 2, 1 , 2, 1, 2, ...
That is (1, 2) is a period 2 cycle. We will denote it as c1. For starting number 3 the orbit is 3,
5, 8, 4, 2, 1, ... For starting number 7 the orbit is 7, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1, ... We
see that for starting numbers 3 and 7 the orbits arrive at c1. It has been verified by computer
that for starting values up to almost 1021 the orbit arrives at the cycle c1.

5.2 Statistics of untouchables

For the Collatz iteration we will keep track of the smallest starting number tn for which a
number n is no longer untouchable.

The numbers t1 through t100 are shown below.
1, 1, 6, 3, 3, 12, 9, 3, 18, 7, 7, 24, 7, 9, 30, 21, 7, 36, 25, 7, 42, 19, 15, 48, 33, 7, 54, 37, 19, 60,
27, 21, 66, 45, 15, 72, 43, 25, 78, 15, 27, 84, 57, 19, 90, 27, 27, 96, 43, 33, 102, 69, 15, 108, 73,
37, 114, 51, 39, 120, 27, 27, 126, 75, 43, 132, 39, 45, 138, 93, 27, 144, 97, 43, 150, 39, 51, 156,
105, 15, 162, 109, 55, 168, 75, 57, 174, 117, 39, 180, 27, 27, 186, 55, 63, 192, 129, 43, 198, 133.
Since the third number is 6 we see that 3 is untouchable if we start with numbers smaller than
6. Similarly, 6 is untouchable if the starting numbers are confined to numbers smaller than 12
and 7 is untouchable if the starting numbers are confined to numbers smaller than 9, etc.

45
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Since every number has at least one predecessor (the numbers 2, 5, 8, 11, ..., 3k ↑ 1, ...
have two predecessors) there will on the long run be no untouchables. However, if we confine
to a limited set of starting numbers, then there will be untouchables. For instance, the list
above of t1 through t100 contains 22 numbers larger than 100. This implies that if we only
start with numbers from the set {1, 2, ..., 99, 100}, then 22 numbers would be untouchable:
u100 = 22. The ratio of untouchables and set length is 22/100 = 0.22. For larger sets the ratio
slightly changes. For numbers up to 105 the ratio un/n is plotted against n in the next figure.
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Figure 5.1: The ratio un/n against set length n.

The curve strongly suggest a limit value for the ratio un/n. We obtained

lim
n↑↓

u(n)

n
≃ 0.213 . (5.2)

5.3 Statistics of distances

As before we denote the number of steps required for a starting number n0 to arrive at the
periodic cycle (1, 2) as the distance D(n). The distance D(n0) = 0 if n0 is an element of the
cycle c1. Thus D(1) = 0 and D(2) = 0. For n0 ⇒ 108 the largest distance is 591. It occurs
for n0 = 63 728 127: D(63728127) = 591. The distribution of distances is shown in the next
figure.
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Figure 5.2: Distribution of distances for starting numbers smaller than or equal to: 104

(orange), 105 (red), 106 (green), 107 (blue), 108 (black).

The distribution of distances for numbers smaller than or equal to 108 is shown on a linear
scale in the next figure.
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Figure 5.3: Distribution of distances for numbers smaller than or equal to 108.
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5.4 Even and odd orbit numbers

When an odd number of an orbit iterates to an even number 2ab with b odd, there will be a

successive even numbers in a row. Rows with successive odd numbers do also occur. We will
start considering rows of even numbers.

For starting number 3 the orbit 3, 5, 8, 4, 2, 1, ... contains a row with three successive
even numbers. Moreover, 3 is the smallest starting number for which a row with three suc-
cessive even orbit numbers appears. The smallest starting numbers n0 for which the orbit
contains a row with at least k successive even numbers are tabulated below for n0 ⇒ 108.

n0 1 3 3 15 21 64 75 151 151 1024 1365 4096 5461 7407 14563 65536 87381 184111

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

n0 184111 932067 932067 4194304 5592405 13256071 13256071 26512143 26512143

k 19 20 21 22 23 24 25 26 27

For k = 6, 10, 12, 16 and 22 there holds precisely n0 = 2k. The next figure shows a plot of the
length records of even rows.
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Figure 5.4: Records of length k of even rows against starting value n0 of an orbit. The dashed
curve is the function n0 = 2k.
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The smallest starting number with a row with 27 successive even orbit numbers is 26 512 143.
The orbit is 26 512 143, 39 768 215, 59 652 323, 89 478 485, 134 217 728, 67 108 864, 33 554 432,
16 777 216, 8 388 608, 4 194 304, 2 097 152, 1 048 576, 524 288, 262 144, 131 072, 65 536, 32 768,
16 384, 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, ... Since 134 217 728 = 227

the row descends in 26 steps from 227 to 2.

Next we will look for orbits with two or more successive odd orbit numbers in a row. The
smallest starting numbers n for which the orbit contains a row with at least k successive odd
numbers are tabulated below for n0 ⇒ 108.

n0 1 3 7 15 27 27 127 255 511 1023 1819 4095 4255 16383 32767 65535 77671

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

n0 262143 459759 1048575 2097151 4194303 7456539 16777215 33554431 67108863

k 18 19 20 21 22 23 24 25 26

The records do satisfy n0 = 2k↑1, except for n0 = 27, 1819, 4255, 77 671, 459 759 and 7 456 539.
The next figure shows a plot of the length records of odd rows.
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Figure 5.5: Records of length k of odd rows against starting value n0 of an orbit. The dashed
curve is the function n0 = 2k ↑ 1
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For starting numbers n0 which do satisfy the relation n0 = 2k ↑ 1, the next number is n1 =(
3
(
2k ↑ 1

)
+1

)
/2 =

(
3 · 2k ↑ 2

)
/2 = 3 · 2k→1 ↑ 1. After two steps we have n2 = 32 · 2k→2 ↑ 1.

Repetition of the arithmetic leads to nm = 3m · 2k→m ↑ 1. After k steps we have nk = 3k ↑ 1,
which is even. Hence, starting with n0 = 2k ↑ 1 we obtain an orbit with a row of k odd
numbers.

5.5 Records of maximums

Starting number 3 has orbit 3, 5, 8, 4, 2, 1, 2, .... Since the orbit never leaves the c1 = (1, 2)

cycle, the maximum value of the orbit is 8. We will call it the maximum M , thus M(3) = 8.
Starting number 7 we have the orbit 7, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1, 2, ... That is, M(7) = 26,
which is a new maximum record. Continuing the search we find the next maximum record for
n0 = 15: M(15) = 80. The maximum records are tabulated below for n0 ⇒ 108.

# n0 M record

1 1 2

2 3 8

3 7 26

4 15 80

5 27 4616

6 255 6560

7 447 19 682

8 639 20 762

9 703 125 252

10 1819 638 468

11 4255 3 405 068

12 4591 4 076 810

13 9663 13 557 212

14 20 895 25 071 632

# n0 M record

15 26 623 53 179 010

16 31 911 60 506 432

17 60 975 296 639 576

18 77 671 785 412 368

19 113 383 1 241 055 674

20 138 367 1 399 161 680

21 159 487 8 601 188 876

22 270 271 12 324 038 948

23 665 215 26 241 642 656

24 704 511 28 495 741 760

25 1 042 431 45 119 577 824

26 1 212 415 69 823 368 404

27 1 441 407 75 814 787 186

28 1 875 711 77 952 174 848

# n0 M record

29 1 988 859 78 457 189 112

30 2 643 183 95 229 909 242

31 2 684 647 176 308 906 472

32 3 041 127 311 358 950 810

33 3 873 535 429 277 584 788

34 4 637 979 659 401 147 466

35 5 656 191 1 206 246 808 304

36 6 416 623 2 399 998 472 684

37 6 631 675 30 171 305 459 816

38 19 638 399 153 148 462 601 876

39 38 595 583 237 318 849 425 546

40 80 049 391 1 092 571 914 585 050

The records of orbit maximums have been plotted against starting numbers n0 ⇒ 108 in the
next figure.
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Figure 5.6: The records of orbit maximums M against starting value n.

For n0 ⇒ 108 a simultaneous odd row length record and orbit maximum record occurs for
n = 1, 3, 7, 15, 255, 1819, 4255, 77 671.

5.6 Records of distances

For starting numbers n0 > 2 the distances are D(3) = 4, D(4) = 1, D(5) = 3, D(6) = 5 and
so on. We see the distance D(6) does supersede D(3). The next time a new distance record
occurs is for starting number 7. The distance records are tabulated below for n0 ⇒ 109.

# n0 D record

1 3 4

2 6 5

3 7 10

4 9 12

5 18 13

6 25 15

7 27 69

8 54 70

# n0 D record

9 73 72

10 97 74

11 129 76

12 171 78

13 231 80

14 313 82

15 327 90

16 649 91

# n0 D record

17 703 107

18 871 112

19 1161 114

20 2223 115

21 2463 131

22 2919 136

23 3711 149

24 6171 164

# n0 D record

25 10 971 168

26 13 255 173

27 17 647 175

28 23 529 177

29 26 623 193

30 34 239 195

31 35 655 203

32 52 527 213
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# n0 D rec.

33 77 031 220

34 106 239 222

35 142 587 235

36 156 159 240

37 216 367 242

38 230 631 277

39 410 011 281

40 511 935 294

# n0 D rec.

41 626 331 318

42 837 799 328

43 1 117 065 330

44 1 501 353 332

45 1 723 519 348

46 2 298 025 350

47 3 064 033 352

48 3 542 887 365

# n0 D rec.

49 3 732 423 373

50 5 649 499 383

51 6 649 279 415

52 8 400 511 428

53 11 200 681 430

54 14 934 241 432

55 15 733 191 440

56 31 466 383 441

# n D rec.

57 36 791 535 465

58 63 728 127 591

59 127 456 254 592

60 169 941 673 594

61 226 588 897 596

62 268 549 803 601

63 537 099 606 602

64 670 617 279 615

The records of distances are plotted against the starting numbers for n0 ⇒ 1010 in the next
figure.

100 101 102 103 104 105 106 107 108 109 1010
0

200

400

600

800

n0

D

Figure 5.7: The records of distances D against starting value n0.

For n0 ⇒ 108 both an orbit maximum record and a distance record occurs for n = 3, 7, 27,
703 and 26 623.
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5.7 Rows of equal distance

Inspection tells there are many pairs {n,n+1} which end at the cycle c1 after the same amount
of steps. The first pair is the trivial pair (1, 2) which both have distance 0. The next pair is
(12, 13). Although the orbits are di!erent, 12, 6, 3, 5, 8, 4, ... and 13, 20, 10, 5, 8, 4, ..., the
distance is 6 in both cases. In general pairs of the type (8k+12, 8k+13) have the same distance
since 8k+12 ↘ 4k+6 ↘ 2k+3 ↘ 3k+5 and 8k+13 ↘ 12k+20 ↘ 6k+10 ↘ 3k+5. The
second pair is (14, 15). Despite the di!erent orbits, 7, 11,17, 26, 13, 20, ... and 15, 23, 35, 53,
80, 40, 20, ..., the distance is 11 in both cases. In general pairs of the type (64k+14, 64k+15)

have the same distance since
64k + 14 ↘ 32k + 7 ↘ 48k + 11 ↘ 72k + 17 ↘ 108k + 26 ↘ 54k + 13 ↘ 81k + 20 and
64k + 15 ↘ 96k + 23 ↘ 144k + 35 ↘ 216k + 53 ↘ 324k + 80 ↘ 162k + 40 ↘ 81k + 20.
The next pair is (18, 19) which has distance 13. Thereafter follows the pairs (20, 21) with
distance 5 and (22, 23) with distance 10. Then we meet a triple (28, 29, 30) for which all three
members have distance 12. The part (28, 29) is a pair of the type (8k+12, 8k+13) and (28, 30)

is the double of the pair (14, 15). The next triple is (36, 37, 38) with distance 14. The first row
with 4 members is (314, 315, 316, 317) with distance 25. For equal distance rows (r1, r2, ..., rε)
with row length ϖ, the first element r1 and the distance D are tabulated below for r1 ⇒ 107.

ϖ r1 D

1 1 0

2 12 6

3 28 12

4 314 25

5 98 17

6 386 76

7 943 25

8 1494 32

9 1680 29

ϖ r1 D

10 4722 40

11 6576 88

12 11696 92

13 3982 35

14 2987 33

15 17 548 91

16 36 208 30

17 7083 39

18 59 692 50

ϖ r1 D

19 159 116 53

20 79 592 52

21 57 857 107

22 212 160 55

23 352 258 70

24 221 185 63

25 57 346 53

26 294 913 65

27 252 548 117

ϖ r1 D

28 530 052 69

29 331 778 62

30 524 289 69

31 1 088 129 135

32 913 319 130

33 2 065 786 128

34 1 541 308 126

35 1 032 875 127

36 1 264 924 86

ϖ r1 D

37 8 151 894 149

38 3 705 089 78

39 2 754 368 130

40 596 310 66

41 2 886 352 138

42 4 896 680 134

43 3 350 448 78

44 3 848 468 140

45

For n0 ⇒ 107 we have tabulated below the number rows with row length ϖ whose members
have the same distance.

ϖ 1 2 3 4 5 6 7 8 9 10

# rows 2 787 389 1 098 440 576 687 210 458 138 891 107 824 47 172 25 150 9850 9276
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ϖ 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

# rows 7764 4619 3143 2529 3772 1430 1255 360 475 499 299 271 266 179 173

ϖ 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

# rows 179 75 57 46 87 53 29 12 17 18 8 2 5 11 7 4 3 5 4 0

For row lengths ϖ = 1 through 44, the cumulative number of rows with length ϖ are plotted
against n0 for n0 ⇒ 107, see next figure.
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Figure 5.8: The number of same distance rows with length ϖ against n0 for the Collatz
iteration. The diagonal (dashed line) is drawn for comparison.

5.8 Question

For the Collatz iteration it is still an open question if every orbit ends in the (1, 2) cycle.



Chapter 6

Negative Collatz

6.1 Introduction

The Collatz iteration or 3n + 1 iteration for negative n is identical to an iteration based on
3n↑ 1 for positive n. In this chapter we will consider sequences of integers generated by the
discrete iteration

nk+1 =






3nk ↑ 1

2
if nk

↓= 1 mod 2

nk

2

34
5

25
if nk

↓= 0 mod 2
(6.1)

where nk is a positive integer. For the negative Collatz iteration we have
one fixed point: (1),
one period 3 cycle: (5, 7, 10) and
one period 11 cycle: (17, 25, 37, 55, 82, 41, 61, 91, 136, 68, 34).

It is not known whether another cycle does exist. It also is not known whether sequences
always end in a cycle for every starting number.

6.2 Statistics of cycle arrivals

For starting numbers n0 ⇒ 107 the fractions of numbers of which the sequences end in c1, c2
and c3 are plotted in the next figure.

55



56 CHAPTER 6. NEGATIVE COLLATZ

100 101 102 103 104 105 106 107
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c1

c2

c3

n0

fr
ac

ti
on

en
di

ng
in

c i

Figure 6.1: The fractions of numbers of which the sequences end in c1 (black), c2 (blue) and
c3 (green).

For n0 ⇒ 108 the fractions of numbers for which the orbit arrives in c1, c2 and c3 are approx-
imately 0.327, 0.324 and 0.348 respectively.
For n0 ⇒ 107 the fraction of numbers for which the orbit arrives in c1 at (1) , in c2 at (5), in
c2 at (7), in c2 at (10), in c3 at (17), in c3 at (25), in c3 at (37), in c3 at (55), in c3 at (82),
in c3 at (41), in c3 at (61), in c3 at (91), in c3 at (136), in c3 at (68) and in c3 at (34) are
approximately 0.327, 0, 0.268, 0.056, 0, 0.055, 0.035, 0.0055, 0.0031, 0, 0.196, 0.0057, 0.0021,
0 and 0.0457 respectively.

6.3 Statistics of untouchables

For each number n we will keep track of the smallest starting number tn for which a number
is no longer untouchable. If we start with numbers smaller than or equal to 100, the first 100
elements of the list of tn is as follows:
1, 3, 6, 3, 5, 12, 5, 11, 18, 5, 15, 24, 9, 9, 30, 11, 17, 36, 9, 27, 42, 15, 21, 48, 17, 35, 54, 9, 39, 60, 21,

29, 66, 17, 47, 72, 17, 51, 78, 27, 17, 84, 29, 53, 90, 21, 63, 96, 33, 45, ?, 35, 57, ?, 17, 75, ?, 39, 53, ?,
17, 83, ?, 29, 87, ?, 45, 17, ?, 47, 57, ?, 33, 99, ?, 51, 69, ?, 53, ?, ?, 17, ?, ?, 57, 65, ?, 53, ?, ?, 17, ?, ?,
63, 57, ?, 65, ?, ?, 45.
We see, for instance, that t6 = 12. It means that 6 is untouchable if we restrict to starting
numbers smaller than 12. The 22 question marks show the numbers which are untouchable
if we start with numbers smaller than or equal to 100. They become touchable if we start
with numbers smaller than or equal to 200. Then there are 44 untouchables in the first 200
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elements of the list of tn. To be specific, the 44 untouchables are all in the last 100 elements
of the list t1 through t200. They become touchable if we start with numbers smaller than or
equal to 400. Then new untouchables will show up in the last 200 elements of the list of t1
through t400, and so on.

As before we let un be the number of untouchables if we start with positive integers smaller
than n. For n = 100 we have u100 = 22 and the ratio of untouchables and starting numbers
is 0.22. For n = 200 we have u200 = 44 and the ratio of untouchables and starting numbers is
0.22. For n = 1000 we have u1000 = 214 and the ratio of untouchables and starting numbers
is 0.214. For numbers up to 105 the ratio un/n is plotted against n in the next figure.
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Figure 6.2: The ratio un/n against starting value n.

The curve strongly suggest a limit value for the ratio un/n. We obtained

lim
n↑↓

u(n)

n
≃ 0.213 . (6.2)

It seems to be the same value as for the positive Collatz iteration.

6.4 Statistics of distances

As before, the number of steps required for a starting number n to arrive at a periodic cycle
is the distance D(n). Thus D(1) = 0, D(2) = 1, D(3) = 3 and so on. For n ⇒ 108 the
largest distance is 472. It occurs for n0 = 80 545 041: D(80545041) = 472. The distribution
of distances is shown in the next figure.
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Figure 6.3: Distribution of distances for starting numbers smaller than or equal to: 104

(orange), 105 (red), 106 (green), 107 (blue), 108 (black).

The distribution of distances for numbers smaller than or equal to 108 is shown on a linear
scale in the next figure.
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Figure 6.4: Distribution of distances for numbers smaller than or equal to 108.
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6.5 Even and odd orbit numbers

When an odd number of an orbit iterates to an even number 2ab with b odd, there will be a

successive even numbers in a row. Rows with successive odd numbers do also occur. We will
start considering rows of even numbers.

For starting number 11 the orbit 11, 16, 8, 4, 2, 1, ... contains a row with four succes-
sive even numbers. Moreover, 11 is the smallest starting number for which a row with 4
successive orbit numbers appears. The smallest starting numbers for which the orbit contains
a row with at least k successive even numbers are tabulated below for n0 ⇒ 108.

n0 1 2 3 8 11 29 29 128 171 512 683 1812 1812 7193 10923 32768 38837

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n0 77673 77673 524288 699051 2097152 2796203 5891589 5891589 33554432 44739243

k 17 18 19 20 21 22 23 24 25 26

For k = 0, 1, 3, 7, 9, 15, 19, 21 and 25 there holds precisely n0 = 2k. The next figure shows a
plot of the length records of even rows.
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Figure 6.5: Records of length k of even rows against starting value n0 of an orbit. The dashed
curve is the function n0 = 2k.
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The smallest starting number which leads to a row with 26 successive even orbit numbers
is 44 739 243. The orbit is 44 739 243, 67 108 864 = 226, 33 554 432, 16 777 216, 8 388 608,
4 194 304, 2 097 152, 1 048 576, 524 288, 262 144, 131 072, 65 536, 32 768, 16 384, 8192, 4096,
2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, ... Since 67 108 864 = 226 the row descends in
26 steps from 226 to 2.

Next we will look for orbits with two or more successive odd orbit numbers in a row. For this
we only run through a cycle once. Otherwise everything would be dominated by the orbit
1,1,1,1,... For this situation the smallest starting numbers for which the orbit contains a row
with at least k successive odd numbers are tabulated below for n0 ⇒ 108.

n0 1 9 9 17 33 65 129 153 321 321 2049 4097 8193 14565 32769 65537 131073

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

n0 262145 524289 932069 2097153 4194305 8388609 16777217 26512145 26512145

k 18 19 20 21 22 23 24 25 26

The records do satisfy n0 = 2k + 1, except for n = 1, 153, 321, 14 565, 932 069 and 26 512 145.
The next figure shows a plot of the length records of odd rows.
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Figure 6.6: Records of length k of odd rows against starting value n0 of an orbit. The dashed
curve is the function n0 = 2k + 1.
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For starting numbers n0 which do satisfy the relation n0 = 2k + 1 the next number is n1 =(
3
(
2k + 1

)
↑ 1

)
/2 =

(
3 · 2k + 2

)
/2 = 3 · 2k→1 +1. After two steps we have n2 = 32 · 2k→2 +1.

Repetition of the arithmetic leads to nm = 3m · 2k→m + 1. After k steps we have nk = 3k + 1,
which is even. Hence, starting with n0 = 2k + 1 we obtain an orbit with a row of k odd
numbers.

6.6 Records of maximums

Starting number 3 has orbit {3, 4, 2, 1, 1, ...}. The maximum value of the orbit is 4, thus
M(3) = 4. Starting number 5 has orbit {7, 10, 5, 7, ...}. The maximum value of the orbit is 10.
Thus M(5) = 10 which is a new maximum record. The maximum records µ(n) are tabulated
below for n0 ⇒ 108.

# n M record

1 1 1

2 2 2

3 3 4

4 5 10

5 9 28

6 17 136

7 33 244

8 65 820

9 129 2188

10 153 16 606

11 321 66 430

12 1425 83 188

# n M record

13 1601 131 356

14 1889 413 344

15 3393 417 718

16 4097 957 664

17 6929 1 439 776

18 8193 1 594 324

19 10 497 2 908 468

20 11 025 40 219 750

21 18 273 44 442 028

22 28 161 195 046 228

23 74 585 477 250 624

24 85 265 510 919 012

# n M record

25 149 345 4 837 921 750

26 337 761 4 862 920 456

27 558 341 39 156 432 022

28 839 429 39 246 157 990

29 1 022 105 45 360 267 382

30 1 467 393 3 293 075 932 912

31 7 932 689 7 033 004 986 294

32 8 612 097 15 270 716 514 700

33 23 911 397 39 704 218 231 240

34 58 882 625 127 143 512 668 792

35 75 567 105 1 101 396 273 700 744

For n0 ⇒ 108 a simultaneous odd row length record and orbit maximum record occurs for
n = 1, 9, 17, 33, 65, 129, 153, 321, 4097 and 8193. The records of orbit maximums have been
plotted against starting value n0 ⇒ 108 in the next figure.
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Figure 6.7: The records of orbit maximums M against starting value n0.

6.7 Records of distances

For the first few starting numbers the distances are D(2) = 1, D(3) = 3, D(4) = 2, D(5) = 3,
D(6) = 4 and so on. We see the distance D(6) does supersede D(3). That is, D(6) is a
distance record. The next time a new distance record occurs is for starting number 9. The
distance records are tabulated below for n0 ⇒ 108.

# n0 D record

1 2 1

2 3 3

3 6 4

4 9 5

5 15 7

6 29 8

7 39 10

8 53 12

# n0 D record

9 57 20

10 65 25

11 87 27

12 153 52

13 305 53

14 321 61

15 641 62

16 677 70

# n0 D record

17 903 72

18 1209 74

19 1425 98

20 1689 103

21 2981 107

22 3975 109

23 5337 111

24 5505 117

# n0 D record

25 6929 132

26 7301 140

27 9735 142

28 11 025 153

29 18 273 184

30 21 657 189

31 38 501 193

32 47 897 195
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# n0 D rec.

33 54 021 201

34 54 081 203

35 64 025 206

36 64 097 208

37 85 463 210

38 113 951 212

39 126 465 228

40 149 889 233

# n0 D rec.

41 253 959 235

42 266 469 237

43 304 901 250

44 361 365 255

45 482 817 341

46 858 341 345

47 1 144 455 347

48 2 288 909 348

# n0 D rec.

49 3 051 879 350

50 3 387 153 366

51 3 759 257 382

52 5 012 343 384

53 6 546 273 424

54 13 092 545 425

55 16 347 225 438

56 19 374 489 443

# n0 D rec.

57 38 748 977 444

58 40 821 969 452

59 43 005 861 460

60 80 545 041 472

61 0 0

62 0 0

63 0 0

64 0 0

The records of distances are plotted against starting number n0 ⇒ 108 in the next figure.
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Figure 6.8: The records of distances against starting value n.

For n0 ⇒ 108 a simultaneous orbit maximum record and distance record occurs for n0 =2, 3,
65, 153, 321, 1425, 6929, 11 025 and 18 273.

6.8 Question

For the Negative Collatz iteration it is still an open question whether or not every orbit ends
in one of the three cycles c1, c2 and c3?
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Chapter 7

Generalised Collatz

7.1 Introduction

We will consider the sequence of positive integers that occurs for the iteration

nk+1 =






3nk + w

2
if nk

↓= 1 mod 2
nk

2
if nk

↓= 0 mod 2
(7.1)

where ni is a positive integer and where w is an odd integer. Suppose we are interested in the
value of w for which a period 7 cycle occurs such that four members of the cycle are odd and
three members of the cycle are even. An example of such an odd even ratio is a cycle which
goes as (odd, odd, odd, even, odd, even, even). To such a cycle corresponds a parity cycle
which contains a 1 if a cycle element is odd and a 0 if a cycle element is even. Thus to a (odd,
odd, odd, even, odd, even, even) cycle corresponds the parity cycle (1, 1, 1, 0, 1, 0, 0). Let us
look at the orbit for this parity cycle. Starting with number n0 we successively obtain
n1 =

3n0 + w

2
,

n2 =
3n1 + w

2
= ... =

32n0 +
(
31 + 21

)
w

22
,

n3 =
3n2 + w

2
= ... =

33n0 +
(
32 + 31 · 21 + 22

)
w

23
,

n4 =
n3

2
=

33n0 +
(
32 + 31 · 21 + 22

)
w

24
,

n5 =
3n4 + w

2
= ... =

34n0 +
(
33 + 32 · 21 + 3 · 22 + 24

)
w

25
,

n6 =
n5

2
=

34n0 +
(
33 + 32 · 21 + 3 · 22 + 24

)
w

26
,

n7 =
n6

2
=

34n0 +
(
33 + 32 · 21 + 3 · 22 + 24

)
w

27
.

For a period 7 cycle the condition n7 = n0 leads to

n0 =

(
3320 + 3221 + 3122 + 3024

)
w

27 ↑ 34
=

73w

47
. (7.2)

65



66 CHAPTER 7. GENERALISED COLLATZ

The starting number n0 is an odd integer only if w = 47 or an odd multiple of 47. For
w = 47 we have n0 = 73. The corresponding cycle is (73, 133, 223, 358, 179, 292, 146). For
w an odd multiple of 47, w = 47u say, we have n0 = 73u and the corresponding cycle,
(73u, 133u, 223u, 358u, 179u, 292u, 146u), is just a multiple of the cycle (73, 133, 223, 358, 179,

292, 146). In the sequel we confine to the smallest value of w for which n0 is integer.

In equation (7.2) the powers of 2 in the four terms between brackets are 1 smaller than
the position of 1’s in the parity cycle. In general, if the parity cycle of period p is denoted
as (k1, k2, k3, ..., kp) and if the parity cycle includes odd numbers exactly q times at positions
r1 < · · · < rq, then the unique solution which generates a cycle of period p in iteration scheme
(7.1) is given by

n0 =

(
3q→12r1→1 + 3q→22r2→1 + · · ·+ 302rq→1

)
w

2p ↑ 3q
. (7.3)

For example, parity cycle (1, 1, 1, 1, 0, 0, 0) we obtain

n0 =

(
3320 + 3221 + 3122 + 3023

)
w

27 ↑ 34
=

65w

47
. (7.4)

Then, by taking w = 47 we obtain n0 = 65 and cycle is (65, 121, 205, 331, 520, 260, 130).
Since there are

(7
4

)
= 35 ways to position four 1’s among 7 places, there are 35 di!er-

ent parity cycles. Furthermore, since (0, 1, 1, 1, 1, 0, 0), (0, 0, 1, 1, 1, 1, 0), (0, 0, 0, 1, 1, 1, 1),
(1, 0, 0, 0, 1, 1, 1), etc. are just 7 periodic shifts of a unique parity cycle, there will be 35

7 = 5

unique cycles of length 7. To construct unique parity cycles in a systematic way as much as
possible, we notice that for four 1’s among 7 places there must at least exist a row of two or
more adjacent 1’s. We therefore can require k1 = 1, k2 = 1 and k7 = 0. Since there are

(4
2

)
= 6

ways to position two 1’s among 4 places, we obtain six possibilities for unique parity cycles.
The six possibilities are (1, 1, 1, 1, 0, 0, 0), (1, 1, 1, 0, 1, 0, 0), (1, 1, 0, 1, 1, 0, 0), (1, 1, 1, 0, 0, 1, 0),
(1, 1, 0, 1, 0, 1, 0) and (1, 1, 0, 0, 1, 1, 0). Next we observe that possibility (1, 1, 0, 0, 1, 1, 0) is just
a shift of possibility (1, 1, 0, 1, 1, 0, 0). So, we arrive at five unique parity cycles. The parity
cycles and the corresponding orbit cycles are:
(1, 1, 1, 1, 0, 0, 0) ↘ (65, 121, 205, 331, 520, 260, 130),
(1, 1, 1, 0, 1, 0, 0) ↘ (73, 133, 223, 358, 179, 292, 146),
(1, 1, 0, 1, 1, 0, 0) ↘ (85, 151, 250, 125, 211, 340, 170),
(1, 1, 1, 0, 0, 1, 0) ↘ (89, 157, 259, 412, 206, 103, 178),
(1, 1, 0, 1, 0, 1, 0) ↘ (101, 175, 286, 143, 238, 119, 202).

Now we can proceed in two ways. The first way is to fix w = 47 and look for all periods
p of the corresponding cycles. The second way is too look for all w values which deliver period
7 cycles.
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7.2 Cycles for (3n+ 47)/2 iteration

Here we will consider the orbits of positive integers which occur for the iteration

nk+1 =






3nk + 47

2
if ni

↓= 1 mod 2
nk

2
if ni

↓= 0 mod 2 .
(7.5)

For this iteration the starting numbers of period p cycles with q odds, are given by

n0 =

(
3q→12r1→1 + 3q→22r2→1 + · · ·+ 302rq→1

)
47

2p ↑ 3q
. (7.6)

Again r1 < · · · < rq are the positions of the q odds in the parity cycle.

Let G be the greatest common divisor of
(
3q→12r1→1 + 3q→22r2→1 + · · ·+ 302rq→1

)
and 2p↑ 3q.

If G = 1 the value of n0 is only a positive integer if 2p ↑ 3q = 47 or if 2p ↑ 3q = 1. The
condition 2p ↑ 3q = 1 is satisfied if p = 2 and q = 1. For period 2 parity cycle (1, 0) we obtain
n0 = 3020 · 47 = 47. The corresponding period 2 cycle is (47, 94). The condition 2p ↑ 3q = 47

is satisfied probably only for p = 7 and q = 4. This leads to the five period 7 cycles as derived
in the previous section.

For G ↔= 1 the value of n0 is only an integer if 2p ↑ 3q = 47G. Such a situation occurs
for the period 18 parity cycle (1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0). That is, p = 18 and
q = 7 and

n0 =
(3620 + 3521 + 3423 + 3326 + 3229 + 31210 + 30214)47

218 ↑ 37
=

27655 · 47
259957

=
5 · 5531 · 47
47 · 5531 = 5 .

The corresponding period 18 cycle is
(5, 31, 70, 35, 76, 38, 19, 52, 26, 13, 43, 88, 44, 22, 11, 40, 20, 10).
Another situation with G ↔= 1 occurs for the period 28 parity cycle (1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1,
1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0). Now p = 28 and q = 16 and

n0 =
119887625 · 47
225388735

=
53 · 11 · 13 · 19 · 353 · 47
5 · 11 · 13 · 19 · 47 · 353 = 52 .

The corresponding period 28 cycle is (25, 61, 115, 196, 98, 49, 97, 169, 277, 439, 682, 341, 535,

826, 413, 643, 988, 494, 247, 394, 197, 319, 502, 251, 400, 200, 100, 50).

For n0 ⇒ 105 and w = 47 there is no cycle with a period larger than 28.
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7.3 Period records

Period 28 for w = 47 is not a period record. Already for w = 23 a period 43 cycle occurs.
That record was preceded by a period 31 cycle for w = 17. For w > 47 we obtain the records
p = 66 for w = 61, p = 100 for w = 85 and so on, where p denotes the cycle period. Given
a cycle which contains a period record, we will denote its smallest element as c min, and the
smallest starting number for which the orbit ends in such a cycle as n0 min. For positive odd
w < 2000 the records for p, c min and n0 min are tabulated below.

w p c min n0 min

1 2 1 1

5 27 187 123

17 31 23 9

23 43 41 1

29 65 3811 2531

61 66 235 175

85 100 7 1

w p c min n0 min

107 106 1 1

125 118 899 387

139 136 11 1

143 140 7 1

197 141 5 1

253 162 13 3

313 200 35 1

w p c min n0 min

371 222 25 1

509 262 5 3

563 426 19 1

1135 476 13 1

1163 526 13 1

1307 636 1 1

1699 737 23 1

The data for w and p records are plotted in the next figure.
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Figure 7.1: A plot for the records of cycle periods against w for n0 ⇒ 105.
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7.4 Values of w for period 7 cycles

In the first section of this chapter we explained why five di!erent period 7 cycles with 4 odd
elements do occur for w = 47. In this section we will systematically derive the value for w for
which period 7 cycles occur with other than 4 odd elements.
We start with a period 7 cycle without odd elements. The parity cycle is (0, 0, 0, 0, 0, 0, 0).
That is, n7 =

n0

27
. The condition n7 = n0 has the trivial solution n0 = 0. Actually, n0 = 0 is

a period 1 cycle or fixed point. We will confine to period 7 cycles which are not a multiple of
smaller cycles and count n0 = 0 to the trivial period 1 cycle (0).
Next we consider a period 7 cycle with 1 odd element. The only unique possibility for the
parity cycle is (1, 0, 0, 0, 0, 0, 0) since other possibilities like (0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0),
etc. are just periodic shifts of (1, 0, 0, 0, 0, 0, 0). According to equation 7.3 the parity cycle

(1, 0, 0, 0, 0, 0, 0) corresponds to n0 =
3020w

27 ↑ 31
=

w

125
. The smallest value of w for which n0 is

integer is w = 125. Then n0 = 1 and the cycle is (1, 64, 32, 16, 8, 4, 2). The shifted parity cycles
(0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0), etc. just correspond to cycles starting with the elements
64, 32, etc.
Next we consider a period 7 cycle with 2 odd elements. The unique possibilities are
(1, 1, 0, 0, 0, 0, 0), (1, 0, 1, 0, 0, 0, 0) and (1, 0, 0, 1, 0, 0, 0). To (1, 1, 0, 0, 0, 0, 0) corresponds
n0 =

(3120+3021)w
27→32 = 5w

119 . The smallest value of w for which n0 is integer is w = 119.
Then n0 = 5 and the cycle is (5, 67, 160, 80, 40, 20, 10). To (1, 0, 1, 0, 0, 0, 0) corresponds
n0 =

(3120+3022)w
27→32 = 7w

119 = w
17 . The smallest value of w for which n0 is integer is w = 17.

Then n0 = 1 and the cycle is (1, 10, 5, 16, 8, 4, 2). To (1, 0, 0, 1, 0, 0, 0) corresponds
n0 =

(3120+3023)w
27→32 = 11w

119 . The smallest value of w for which n0 is integer is w = 119. Then
n0 = 11 and the cycle is (11, 76, 38, 19, 88, 44, 22).
For period 7 cycle with 3 odd elements the unique possibilities are (1, 1, 1, 0, 0, 0, 0),
(1, 1, 0, 1, 0, 0, 0), (1, 1, 0, 0, 1, 0, 0), (1, 1, 0, 0, 0, 1, 0) and (1, 0, 1, 0, 1, 0, 0). These five par-
ity cycles correspond with the cycles (19, 79, 169, 304, 152, 76, 38), (23, 85, 178, 89, 184, 92, 46),
(31, 97, 196, 98, 49, 124, 62), (47, 121, 232, 116, 58, 29, 94) and (37, 106, 53, 130, 65, 148, 74) re-
spectively all for w = 101.
For period 7 cycles with 5 odd elements the unique possibilities are (1, 1, 1, 1, 1, 0, 0),
(1, 1, 1, 1, 0, 1, 0) and (1, 1, 1, 0, 1, 1, 0). These three parity cycles correspond with the cycles
(211, 259, 331, 439, 601, 844, 422), (227, 283, 367, 493, 682, 341, 454) and
(251, 319, 421, 574, 287, 373, 502) respectively all for w = ↑115.
For period 7 cycles with 6 odd elements there is only one unique possibility: (1, 1, 1, 1, 1, 1, 0).
It corresponds with the cycle (665, 697, 745, 817, 925, 1087, 1330) for w = ↑601.
Finally, for a period 7 cycle with 7 odd elements the parity cycle is (1, 1, 1, 1, 1, 1, 1). It corre-
sponds with the period 7 cycle (1, 1, 1, 1, 1, 1, 1) for w = ↑1. It is a multiple of the fixed point
(1) and will be discarded for period 7 cycles. The results for period 7 cycles are tabulated
below.
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w parity cycle cycle

125 (1, 0, 0, 0, 0, 0, 0) (1, 64, 32, 16, 8, 4, 2)

119 (1, 1, 0, 0, 0, 0, 0) (5, 67, 160, 80, 40, 20, 10)

17 (1, 0, 1, 0, 0, 0, 0) (1, 10, 5, 16, 8, 4, 2)

119 (1, 0, 0, 1, 0, 0, 0) (11, 76, 38, 19, 88, 44, 22)

101 (1, 1, 1, 0, 0, 0, 0) (19, 79, 169, 304, 152, 76, 38)

101 (1, 1, 0, 1, 0, 0, 0) (23, 85, 178, 89, 184, 92, 46)

101 (1, 1, 0, 0, 1, 0, 0) (31, 97, 196, 98, 49, 124, 62)

101 (1, 1, 0, 0, 0, 1, 0) (47, 121, 232, 116, 58, 29, 94)

101 (1, 0, 1, 0, 1, 0, 0) (37, 106, 53, 130, 65, 148, 74)

47 (1, 1, 1, 1, 0, 0, 0) (65, 121, 205, 331, 520, 260, 130)

47 (1, 1, 1, 0, 1, 0, 0) (73, 133, 223, 358, 179, 292, 146)

47 (1, 1, 0, 1, 1, 0, 0) (85, 151, 250, 125, 211, 340, 170)

47 (1, 1, 1, 0, 0, 1, 0) (89, 157, 259, 412, 206, 103, 178)

47 (1, 1, 0, 1, 0, 1, 0) (101, 175, 286, 143, 238, 119, 202)

-115 (1, 1, 1, 1, 1, 0, 0) (211, 259, 331, 439, 601, 844, 422)

-115 (1, 1, 1, 1, 0, 1, 0) (227, 283, 367, 493, 682, 341, 454)

-115 (1, 1, 1, 0, 1, 1, 0) (251, 319, 421, 574, 287, 373, 502)

-601 (1, 1, 1, 1, 1, 1, 0) (665, 697, 745, 817, 925, 1087, 1330)

There are 1, 3, 5, 5, 3, 1 period 7 cycles with 1, 2, 3, 4, 5, 6 odd elements respectively. The
w values which lead to periodic 7 cycles are -601, -115, 17, 47, 101, 119 and 125.

The following observation for cycle elements might be of interest: If we add the even ele-
ments of a cycle and subtract the odd elements, then the result is w times the number of odd
elements. Examples are:
64 + 32 + 16 + 8 + 4 + 2↑ 1 = 125 = w

160 + 80 + 40 + 20 + 10↑ 5↑ 67 = 238 = 2 · 119 = 2w

10 + 16 + 8 + 4 + 2↑ 1↑ 5 = 34 = 2 · 17 = 2w

304 + 152 + 76 + 38↑ 19↑ 79↑ 169 = 303 = 3 · 101 = 3w

1330↑ 665↑ 697↑ 745↑ 817↑ 925↑ 1087 = ↑3606 = 6 ·↑601 = 6w
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Let us denote the sum of the even elements minus the sum of the odd elements of a cy-
cle as h and the number of odd elements of a cycle as q. Then we observe the following
relation between h and w and q:

h = wq . (7.7)

7.5 Cycles with a given period

In this section we consider cycles occurring in the iteration (7.1). The smallest cycles are
period 1 cycles or fixed points. To the parity cycle (0) corresponds the fixed point (0) for any
value of w. For this case h = wq is satisfied for every w since h = 0 and q = 0. To the parity
cycle (1) corresponds the fixed point (1) for w = ↑1. The table is

w q parity cycle cycle ! even ! odd h

↖ 0 (0) (0) 0 0 0

-1 1 (1) (1) 0 1 -1

There is one unique period 2 parity cycle which is not a multiple of a fixed point: (1, 0). The
corresponding cycle is (1, 2) for w = 1. The table is

w q parity cycle cycle ! even ! odd h

1 1 (1, 0) (1, 2) 2 1 1

There are two unique period 3 parity cycles which is not a multiple of a fixed point: (1, 0, 0)

and (1, 1, 0). The corresponding cycles are (1, 4, 2) for w = 5 and (5, 7, 10) for w = ↑1. The
table is

w q parity cycle cycle ! even ! odd h

5 1 (1, 0, 0) (1, 4, 2) 6 1 5

-1 2 (1, 1, 0) (5, 7, 10) 10 12 -2

For unique parity cycles with period 4, 5 and 6 the tables are
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w q parity cycle cycle ! even ! odd h

13 1 (1, 0, 0, 0) (1, 8, 4, 2) 14 1 13

7 2 (1, 1, 0, 0) (5, 11, 20, 10) 30 16 14

-11 3 (1, 1, 1, 0) (19, 23, 29, 38) 38 71 -33

w q parity cycle cycle ! even ! odd h

29 1 (1, 0, 0, 0, 0) (1, 16, 8, 4, 2) 30 1 29

23 2 (1, 1, 0, 0, 0) (5, 19, 40, 20, 10) 70 24 46

23 2 (1, 0, 1, 0, 0) (7, 22, 11, 28, 14) 64 18 46

5 3 (1, 1, 1, 0, 0) (19, 31, 49, 76, 38) 114 99 15

5 3 (1, 1, 0, 1, 0) (23, 37, 58, 29, 46) 104 89 15

-49 4 (1, 1, 1, 1, 0) (65, 73, 85, 103, 130) 130 326 -196

w q parity cycle cycle ! even ! odd h

61 1 (1, 0, 0, 0, 0, 0) (1, 32, 16, 8, 4, 2) 62 1 61

11 2 (1, 1, 0, 0, 0, 0) (1, 7, 16, 8, 4, 2) 30 8 22

55 2 (1, 0, 1, 0, 0, 0) (7, 38, 19, 56, 28, 14) 136 26 110

37 3 (1, 1, 1, 0, 0, 0) (19, 47, 89, 152, 76, 38) 266 155 111

37 3 (1, 1, 0, 1, 0, 0) (23, 53, 98, 49, 92, 46) 236 125 111

37 3 (1, 1, 0, 0, 1, 0) (31, 65, 116, 58, 29, 62) 236 125 111

-17 4 (1, 1, 1, 1, 0, 0) (65, 89, 125, 179, 260, 130) 390 458 -68

-17 4 (1, 1, 1, 0, 1, 0) (73, 101, 143, 206, 103, 146) 352 420 -68

-179 5 (1, 1, 1, 1, 1, 0) (211, 227, 251, 287, 341, 422) 422 1317 -895

The table for unique period 7 cycles has already been shown in the previous section. If a(p) is
the number of unique cycles with period p then the sequence a(p) for p = 1, 2, 3, 4, 5, ... goes
as 2, 1, 2, 3, 6, 9, 18, .... The latter sequence is known as sequence A001037 of the OEIS [2].
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7.6 Cycles with |w | = 1

Let the numerator and denominator of equation 7.3 be Nw and D respectively. That is

N = 3q→12r1→1 + 3q→22r2→1 + · · ·+ 302rq→1 (7.8)

and
D = 2p ↑ 3q , (7.9)

where p is the cycle period, q is the number of odd elements in the cycle and the ri, i =

1, 2, ..., q, are the positions of the odd elements in the cycle. For an alternative way to describe
N we write a period p parity cycle as (c1, c2, ..., cp), where ck is either 0 or 1. Of course,
c1 + c2 + ... + cp = q. Let Ck be given by

Ck =
p∑

m=k+1

cm . (7.10)

Then N is also given by

N =
p∑

k

ck 3
Ck 2k→1 . (7.11)

To obtain a cycle with w = ↑1 the denominator D should be negative and |D| should be
a divisor of N . For this situation we already met two cases: (1) and (5, 7, 10). For the
fixed point (1) we have N = 3020 = 1 and D = 21 ↑ 31 = ↑1. For the period 3 cycle
(5, 7, 10) we have N = 3120 + 3021 = 5 and D = 23 ↑ 32 = ↑1. The reason for these cy-
cles is clear: |D| = 1 always is a divisor of N . There happens to be a case with |D| > 1:
(17, 25, 37, 55, 82, 41, 61, 91, 136, 68, 34) with parity cycle (1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0). For this
case we have N = 3620 + 3521 + 3422 + 3323 + 3225 + 3126 + 3027 = 2363 = 17 · 139 and
D = 211 ↑ 37 = ↑139. This case occurs because 139 happens to be a divisor of 2363.

To obtain a cycle with w = 1 the denominator D should be positive and a divisor of N . For
this situation we already met one case: (1, 2). For the trivial cycle (1, 2) we have N = 3020 = 1

and D = 22 ↑ 31 = 1. Since D = 1 it always is a divisor of N . To day, cases with D > 1 have
not been found.

The closer |D| to 1 the larger the probability for |D| to be a divisor of N . In general, a
relatively small denominator occurs if 2p ≃ 3q. However, for increasing period the value of
2p ≃ 3q is almost of the same order as 2p. The larger the period, the smaller the probability
for a cycle to exist.
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7.7 Further generalization

Throughout this chapter we considered the iteration (7.1), where the 1 in (3n + 1)/2 is gen-
eralized to w. A further generalization is obtained by considering the iteration

nk+1 =






vnk + w

2
if nk

↓= 1 mod 2
nk

2
if nk

↓= 0 mod 2 ,
(7.12)

where v and w are odd integers. However, for an odd v larger than 3 there is a large probability
for orbits to run to infinity. For instance, for the iteration

nk+1 =






5nk + 1

2
if nk

↓= 1 mod 2
nk

2
if nk

↓= 0 mod 2
(7.13)

the orbit starting with 7 goes as 7, 18, 9, 23, 58, 29, 73, 183, 458, 229, 573, 1433, 8958,
4479, 11198, ... It is the sequence A185455 of the OEIS [2]. The orbit runs to large val-
ues: for k = 199 the element nk of the orbit exceeds 1015, for k = 2176 the orbit exceeds
10100, for k = 21572 the orbit exceeds 101000 and for k = 207216 the orbit exceeds 1010000.
No wonder it is conjectured that the orbit goes to infinity, although it still is an open question.

For the (5n+w)/2 iteration we found by inspection for several w the smallest positive n0 for
which the orbit seems to run to infinity, see the next table.

w -29 -27 -25 -23 -21 -19 -17 -15 -13 -11 -9 -7 -5 -3 -1

n0 1 1 43 19 95 1 11 37 7 25 17 33 19 17 9

w 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

n0 7 5 13 19 15 5 5 7 5 1 11 3 21 5 1



Chapter 8

M and W function

8.1 Introduction

Inspired by the Collatz function we create the following iteration:

nk+1 =






pnk ↑ nk if nk is odd ,

nk

2
if nk is even ,

(8.1)

where pn is the n-th prime. For brevity we will denote the iteration as

nk+1 = M(nk) , (8.2)

where the M function is defined as

M(n) =






pn ↑ n if n is odd ,

n

2
if n is even .

(8.3)

For instance, for n0 = 7 we have n1 = p7 ↑ 7 = 17 ↑ 7 = 10, n2 = 10/2 = 5, n3 = p5 ↑ 5 =

11↑ 5 = 6, and so on. The orbit is 7, 10, 5, 6, 3, 2, 1, 1, 1, ....

8.2 Cycles of the M function

For starting values n0 ⇒ 108 the iteration nk+1 = M(nk) contains
one fixed point: c1 = 1, and
one period 7 cycle: c2 = (211, 1086, 543, 3376, 1688, 844, 422).

Not all orbits end in c1 or c2. Instead, some orbit seems to grow to infinity. The growth
is more or less irregular. The smallest n0 which seems to exhibit a growth to infinity is 35.
The orbit goes as 35, 114, 57, 212, 106, 53, 188, 94, 47, 164, 82, 41, 138, 69, 278, 139, 658,

75
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329, 1878, 939, 6454, 3227, 26 534, 13 267, 129 786, ... After 89 steps the orbit is arrived at
n89 = 1299 179 087 596 844 773. The next n0 which seems to exhibit a growth to infinity
and which is not already in the orbit of 35, is 55. The orbit goes as: 55, 202, 101, 446,
223, 1186, 593, 3746, 1873, 14218, 7109, 64 728, ... After 57 steps the orbit is arrived at
n57 = 334 499 083 750 963 285.

8.3 Statistics of cycle arrivals

For n0 ⇒ 108 the fractions of starting numbers for which the orbit arrives in c1, c2 or grows
to infinity are plotted in the next figure.
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Figure 8.1: The fractions of starting numbers of which the orbit arrives in c1 (blue), c2 (green)
or grows to ⇑ (black).

Each fraction approaches a limit value for n0 ↘ ⇑. The limit values of the fractions for which
the orbit ends in c1, c2 and ⇑ are 0, 0 and 1 respectively.

The fraction of c2 is for all n0 negligible. For small n0 most orbits arrive at c1. For large n0

most orbits grow to infinity. The tipping point is near n0 = 255. Even if pn0/n0 would be a
constant, a larger n0 would lead to a larger probability for an orbit to grow to infinity. This
behavior is enhanced by the fact that pn0/n0 grows as lnn0. A theoretical approximation of
the ratio pn/n is [4]

ϱn = lnn+ ln lnn↑ 1 +
ln lnn↑ 2

lnn
↑ (ln lnn)2 ↑ 6 ln lnn+ 11

2(lnn)2
. (8.4)
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A more practical approximation of the ratio pn/n is

µn = 0.71 + 1.058 lnn . (8.5)

8.4 Approximation for the n-th prime

Let us denote the ratio pn/n as ςn:
ςn =

pn
n

. (8.6)

In the next figure we have plotted the ςn and the approximations ϱn and µn.
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Figure 8.2: The value of ςn for n = 2k, with 0 ⇒ k ⇒ 57 an integer (black dots), the
approximation ϱn (orange) and the approximation µn (green).

To get a more detailed impression of the accuracy of the approximations, the values of ς, ϱ/ς
and µ/ς are shown for various n in the next table.
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n ς ϱ/ς µ/ς

1 2.000000000 – 0.3550
2 1.50000000 -11.97559627 0.9622
3 1.66666667 -3.52143336 1.1234
4 1.75000000 -1.64223131 1.2438
5 2.20000000 -0.67160691 1.0967
6 2.16666667 -0.29397721 1.2026
7 2.42857143 -0.02372752 1.1401
8 2.37500000 0.15823572 1.2253
9 2.55555556 0.28103411 1.1875
10 2.90000000 0.34455333 1.0849
15 3.13333333 0.61388557 1.1410
20 3.55000000 0.69814204 1.0928
30 3.76666667 0.84277500 1.1438
40 4.32500000 0.83858348 1.0666
50 4.58000000 0.86478913 1.0587
100 5.41000000 0.91153109 1.0318
150 5.75333333 0.95013674 1.0448
200 6.11500000 0.95432174 1.0328
500 7.14200000 0.97590997 1.0200
103 7.91900000 0.98468935 1.0126
104 10.47290000 0.99678386 0.9982
105 12.99709000 0.99916230 0.9918
106 15.48586300 0.99968550 0.9897
107 17.94246730 1.00000099 0.9900
108 20.38074743 1.00000190 0.9911
109 22.80176349 1.00000846 0.9927
1010 25.20978006 1.00000585 0.9945
1011 27.60727303 1.00000464 0.9964
1012 29.99622428 1.00000312 0.9982
1013 32.37805089 1.00000211 1.0001
1014 34.75385759 1.00000145 1.0018
1015 37.12450805 1.00000101 1.0034
1016 39.49069139 1.00000071 1.0050
1017 41.85296581 1.00000051 1.0065
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For n > 1166 the approximation ϱ is more accurate than the approximation µ. Anyway, the
important conclusion is that pn is much larger than n for large n. For instance, pn/n ≃ 20 for
odd n ≃ 108. So, for odd ni ≃ 108 the next iterate is ni+1 = pni↑ni and the next to next iterate
ni+2 is smaller than ni only if pni↑ni is divisible by 25 or a higher power of 2. The probability
for pni↑ni to be divisible by 25 is small. Even if ni+2 happens to be smaller than ni, than ni+2

is most probably still large enough to be followed by a growth. For this reason a cycle with
elements larger than 108 is not very likely. Although very unlikely, it is not impossible. We are
therefore left with the question whether or not (1) and (211, 1086, 543, 3376, 1688, 844, 422)

are the only cycles of the M function.

8.5 The W function

A variation of the M function can be created by changing the minus sign into a plus sign.

nk+1 =






pnk + nk if nk is odd ,

nk

2
if nk is even ,

(8.7)

where pn is the n-th prime. To distinguish it from the M function we will call it the W
function:

nk+1 = W(nk) , (8.8)

where

W(n) =






pn + n if n is odd ,

n

2
if n is even .

(8.9)

For instance, for n0 = 7 we have n1 = p7 + 7 = 17 + 7 = 24, n2 = 24/2 = 12, n3 = 12/2 = 6,
n4 = 6/2 = 3, n5 = p3 +3 = 5+ 3 = 8, and so on. The orbit is 7, 24, 12, 6, 3, 8, 4, 2, , 1, 3, 8, ....

8.6 Cycles of the W function

For starting values n0 ⇒ 108 the iteration nk+1 = W(nk) contains
one period 5 cycle: c1 = (1, 3, 8, 4, 2),
one period 8 cycle: c2 = (235, 1718, 859, 7520, 3760, 1880, 940, 470),
one period 10 cycle: c3 = (15, 62, 31, 158, 79, 480, 240, 120, 60, 30),
two period 18 cycles:

c4 = (21, 94, 47, 258, 129, 856, 428, 214, 107, 694, 347, 2688, 1344, 672, 336, 168, 84, 42),
c5 = (51, 284, 142, 71, 424, 212, 106, 53, 294, 147, 1000, 500, 250, 125, 816, 408, 204, 102).

Also here not all orbits end in periodic cycles. Instead, some orbit seems to grow to infinity.
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The growth is more or less irregular. The smallest n0 which seems to exhibit a growth to infin-
ity is 13. The orbit goes as 13, 54, 27, 130, 65, 378, 189, 1318, 659, 5592, 2796, 1398, 699, 5972,
2986, 1493, 13 996, ... After 80 steps the orbit is arrived at n80 = 1977 693 361 846 020 549.
The next n0 which seems to exhibit a growth to infinity is 17. The orbit goes as: 17, 76, 38,
19, 86, 43, 234, 117, 760, 380, 190, 95, 594, 297, 2248, ... After 83 steps the orbit is arrived at
n83 = 445 705 128 169 301 879.

8.7 Statistics of cycle arrivals

For n0 ⇒ 108 the fractions of starting numbers for which the orbit arrives in one of the cycles
or grows to infinity are plotted in the next figure.
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Figure 8.3: The fractions of starting numbers of which the orbit arrives in c1 (blue), c2 (green),
c3 (orange), c4 (red), c5 (brown) or grows to ⇑ (black).

Each fraction approaches a limit value for n0 ↘ ⇑. The limit values of the fractions of
starting numbers for which the orbit ends in c1, c2, c3, c4, c5 and ⇑ are 0, 0, 0, 0, 0 and 1
respectively.

The question arises whether or not c1, c2, c3, c4 and c5 are the only cycles of the W function.



Chapter 9

Reversal of digits

9.1 Introduction

From an arbitrary number we can create a second number by reversing the order of digits.
Subtraction of the smallest from the largest of the two numbers leads to a new number. We
give some examples:
From 962 we obtain 962↑ 269 = 693.
From 8374 we obtain 8374↑ 4738 = 3636.
In this chapter we will consider the iteration

nk+1 = max(nk, rk)↑min(nk, rk) , (9.1)

where rk is the digit reversal of nk. We will call it the digit reversal iteration. If we work
for instance with 4-digit numbers, than numbers smaller than 1000 are preceded by zero’s to
make them 4-digit numbers: 123 ↘ 0123, 64 ↘ 0064, 7 ↘ 0007, etc.

For instance, for the 4-digit number n0 = 3447 we obtain r0 = 7443 and
n1 = 7443↑ 3447 = 3996. Repeating the iteration we obtain
n2 = 6993↑ 3996 = 2997. n3 = 7992↑ 2997 = 4995, n4 = 5994↑ 4995 = 0999,
n5 = 9990↑ 0999 = 8991, n6 = 8991↑ 1998 = 6993, n7 = 6993↑ 3996 = 2997.
That is, n7 = n2 = 2997. So, (0999, 8991, 6993, 2997, 4995) is a period 5 cycle. It can also be
written as 999 · (1, 9, 7, 3, 5).

When the iteration is applied to n0 = 4086 we successively obtain
n1 = 6804↑ 4086 = 2718, n2 = 8172↑ 2718 = 5454, n3 = 5454↑ 4545 = 0909,
n4 = 9090↑ 0909 = 8181, n5 = 8181↑ 1818 = 6363, n6 = 6363↑ 3636 = 2727,
n7 = 7272↑ 2727 = 4545, n8 = 5454↑ 4545 = 0909.
That is, n8 = n3 = 0909. So, (0909, 8181, 6363, 2727, 4545) is a period 5 cycle. It can also be
written as 909 · (1, 9, 7, 3, 5).

81
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When the iteration is applied to n0 = 0025 we successively obtain
n1 = 5200↑ 0025 = 5175, n2 = 5715↑ 5175 = 0540, n3 = 0540↑ 0450 = 0090,
n4 = 0900↑ 0090 = 0810, n5 = 0810↑ 0180 = 0630, n6 = 0630↑ 0360 = 0270,
n7 = 0720↑ 0270 = 0450, n8 = 0540↑ 0450 = 0090.
We see (0090, 0810, 0630, 0270, 0450) = 90 · (1, 9, 7, 3, 5) is a period 5 cycle.

When the iteration is applied to n0 = 0176 we successively obtain
n1 = 6710↑ 0176 = 6534, n2 = 6534↑ 4356 = 2178, n3 = 8712↑ 2178 = 6534.
That is, n3 = n1. So, (2178, 6534) is a period 2 cycle. It can also be written as 2 ·32 ·112 ·(1, 3).

It turns out that the orbit for almost all 4-digit numbers ends at one of the four forego-
ing periodic cycles. The only exceptions are the 100 palindrome numbers 0000, 0110, 0220,
..., 0990, 1001, 1111, 1221, ..., 1991, 2002, 2112, 2222, ......, 9889, 9999. These 100 numbers
are mapped on the trivial fixed point (0000).

As before we let the distance be the number of steps required to reach a periodic cycle. For
4-digit numbers it is the number of steps required to arrive at either one of the cycles (0000),
(0999, 8991, 6993, 2997, 4995), (0909, 8181, 6363, 2727, 4545), (0090, 0810, 0630, 0270, 0450) or
(2178, 6534). For the numbers 0 through 9999 the frequency of distances is shown in the table
below.

distance 0 1 2 3 4 5 6 7 8 9 10 11 12

# n0 18 1572 1170 1416 1376 724 728 604 656 704 564 172 296

There are two ways to generalize the iteration. The first way is by considering numbers with
other than 4 digits. The second way is by considering numbers in other bases. We start with
considering numbers with m digits in base 10.

9.2 Reversal of digits for m-digit numbers

For m = 1 there is one fixed point: (0). The numbers 1, 2, ..., 9 are mapped on the fixed point.

For m = 2 there is one fixed point: (00), and one period 5 cycle: (09, 81, 63, 27, 45).
The numbers 11, 22, ..., 99 are mapped to the fixed point (00). For all other 2-digit num-
bers the orbit arrives at the cycle (09, 81, 63, 27, 45). To see this we let d1 and d0 be the
digits of a 2-digit number n0 = 10d1 + d0. If d1 = d0 then n1 = 00. If d1 ↔= d0 then
n1 = 10

d1 ↑ d0
+

d0 ↑ d1
 = 9

d1 ↑ d0
. The latter is either an even multiple of 9 or a mem-

ber of the cycle (09, 81, 63, 27, 45). The even multiples of 9 arrive after one step at the cycle
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(09, 81, 63, 27, 45) since 18, 36, 54, 72 and 90 are mapped on 63, 27, 09, 45 and 81 respectively.
The distance frequencies for 2-digit numbers can be explained as follows. The fixed point 00
and the cycle elements 09, 81, 63, 27, 45 are 6 cases with distance 0. From n1 = 9

d1↑ d0
 we

see that for the 9 cases where d1 = d0 ↔= 0, that is for n0 ↙ {11, 22, 33, 44, 55, 66, 77, 88, 99},
we have n1 = 00. That are 9 cases with distance 1. For the 45 cases where

d1 ↑ d0
 is odd

and n0 /↙ (09, 81, 63, 27, 45) the successor n1 is a member of the cycle (09, 81, 63, 27, 45). That
are 45 cases with distance 1. In total we have 45 + 9 = 54 cases with distance 1. For the 40
cases where

d1 ↑ d0
 is even and d1 ↔= d0, the successor n1 is an even multiple of 9 and n2 is

a member of the cycle (09, 81, 63, 27, 45). That are 40 cases with distance 2. Presented in a
distance table:

distance 0 1 2 3 4 5 6 7 8 9

# n0 6 54 40 0 0 0 0 0 0 0

For m = 3 there is one fixed point: (000), and one period 5 cycle: (099, 891, 693, 297, 495).
The palindrome numbers for which the last digit equals the first digit, are mapped to the fixed
point (000). For all other 3-digit numbers the orbit arrives at the period 5 cycle (099, 891, 693,
297, 495). To see this we let d2, d1 and d0 be the digits of a number n0 = 100d2 + 10d1 + d0.
If d2 = d0 then n1 = 000 else n1 = 100

d2 ↑ d0
+ 10(d1 ↑ d1) +

d0 ↑ d2
 = 99

d2 ↑ d0
. The

latter is either an even multiple of 99 or a member of the cycle (099, 891, 693, 297, 495). The
even multiples of 99 arrive after one step at the cycle (099, 891, 693, 297, 495) since 198, 396,
594, 792 and 990 are mapped on 693, 297, 099, 495 and 891 respectively.

The distance frequencies for 3-digit numbers can be explained as follows. The fixed point
000 and the cycle elements 099, 891, 693, 297, 495 are 6 cases with distance 0. From
n1 = 99

d2 ↑ d0
 we see that for the 99 cases where d2 = d0 and n0 ↔= 000 we have

n1 = 000. That are 99 cases with distance 1. For the 495 cases where
d2 ↑ d0

 is odd and
n0 /↙ (099, 891, 693, 297, 495) the successor n1 is a member of the cycle (099, 891, 693, 297, 495).
That are 495 cases with distance 1. In total we have 495 + 99 = 594 cases with distance 1.
For the 400 cases where

d2 ↑ d0
 is even and d2 ↔= d0 the successor n1 is an even multiple of

99 and n2 is a member of the cycle (099, 891, 693, 297, 495). That are 400 cases with distance
2. For 3-digit numbers the distance table is:

distance 0 1 2 3 4 5 6 7 8 9

# n0 6 594 400 0 0 0 0 0 0 0

The distance frequencies for 3-digit numbers are related to the distance frequencies for 2-digit
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numbers. Since the digit d1 is not present in the equation n1 = 99
d2↑d0

 for 3-digit numbers
the arithmetic is determined by the first and the last digit comparable with the situation for
2-digit numbers. For the 40 2-digit numbers with distance 2 we can plug in an arbitrary digit
between d1 and d0 to obtain the 400 3-digit numbers with distance 2. We cannot simply plug
in an arbitrary digit between d1 and d0 of a 2-digit member of a cycle in order to create a
3-digit cycle member. For example, if we take the 2-digit cycle member 81 and plug in the 0
through 9 in between the 8 and the 1, we obtain 801, 811, 821, ..., 891. They are all mapped
on 693 which is part of the cycle (099, 891, 693, 297, 495). That is, the number of cycle mem-
bers for 3-digit numbers is the same as for 2-digit numbers. The number 891 in the example
has distance 0, while the numbers 801, 801, 811, 821, ..., 881 have distance 1. Therefore the
frequency of 3-digit numbers with distance 1 is 10 times the frequency of 2-digit numbers with
distance 1 added with 9 times the frequency of 2-digit numbers with distance 0.
Let us denote the frequency of m-digit numbers with distance D as fm(D) then the relation
can be summarized as f3(2) = 10f2(2), f3(1) = 10f2(1) + 9f2(0) and f3(0) = f2(0).

For m = 4 there are
one fixed point: (0000),
one period 2 cycle: (2178, 6534), and
three period 5 cycles:

(0090, 0810, 0630, 0270, 0450),
(0999, 8991, 6993, 2997, 4995) and
(0909, 8181, 6363, 2727, 4545).

A general 4-digit starting number is given by n0 = 1000d3 + 100d2 + 10d1 + d0, where d0

through d3 are the four digits. In the palindrome case d0 = d3 and d1 = d2 the n0 is mapped
to the fixed point (0000). In case d3 = d0 and d2 ↔= d1 the first and last digit of n1 is zero.
The two digits in between behave as m = 2 numbers. So, in case d3 = d0 and d2 ↔= d1, the
orbit arrives at (0090, 0810, 0630, 0270, 0450). For 4-digit numbers the distance table is:

distance 0 1 2 3 4 5 6 7 8 9

# n0 18 1572 117 1416 1376 724 728 604 656 704

distance 10 11 12 13 14 15 16 17 18 19

# n0 564 172 296 0 0 0 0 0 0 0

For m = 5 there are
one fixed point: (00000),
one period 2 cycle: (21978, 65934), and
three period 5 cycles:
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(09999, 89991, 69993, 29997, 49995),
(00990, 08910, 06930, 02970, 04950) and
(09009, 81081, 63063, 27027, 45045).

For 5-digit numbers the distance table is:

distance 0 1 2 3 4 5 6 7 8 9

# n0 18 15882 1170 14160 13760 7240 7280 6040 6560 7040

distance 10 11 12 13 14 15 16 17 18 19

# n0 5640 1720 2960 0 0 0 0 0 0 0

As for 3-digit and 2-digit numbers the distance frequencies for 5-digit and 4-digit numbers
are related. The relation is f5(0) = f4(0), f5(1) = 10f4(1) + 9f4(0) and f5(D) = 10f4(D) for
D ↗ 2.

For m = 6 there are
one fixed point: (000000),
two period 2 cycles:

(219978, 659934) and
(021780, 065340),

seven period 5 cycles:
(099999, 899991, 699993, 299997, 499995),
(009990, 089910, 069930, 029970, 049950),
(090009, 810081, 630063, 270027, 450045),
(000900, 008100, 006300, 002700, 004500),
(009090, 081810, 063630, 027270, 045450),
(099099, 891891, 693693, 297297, 495495) and
(090909, 818181, 636363, 272727, 454545),

one period 9 cycle: (010989, 978021, 057142, 615384, 131868, 736263, 373626, 252747,
494505),

and one period 18 cycle: ( 043659, 912681, 726462, 461835, 076329, 847341, 703593, 308286,
374517, 340956, 318087, 462726, 164538, 670923, 341847, 406296, 286308, 517374).

For 6-digit numbers the distance frequencies are plotted in a diagram, see next figure.
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Figure 9.1: Distribution of distances for 6-digit numbers for the digit reversal iteration.

For m = 7 there are: one fixed point: (0000000),
two period 2 cycles:

(0219780, 0659340) and
(2199978, 6599934),

seven period 5 cycles:
(0999999, 8999991, 6999993, 2999997, 4999995),
(0099990, 0899910, 0699930, 0299970, 0499950),
(0900009, 8100081, 6300063, 2700027, 4500045),
(0009900, 0089100, 0069300, 0029700, 0049500),
(0090090, 0810810, 0630630, 0270270, 0450450),
(0990099, 8910891, 6930693, 2970297, 4950495),
(0909909, 8189181, 6369363, 2729727, 4549545),

one period 9 cycle: (0109989, 9789021, 8579142, 6159384, 1319868, 7369263, 3739626, 2529747,
4949505) and

one period 18 cycle (0439659, 9129681, 7260462, 4619835, 0769329, 8470341, 7039593, 3080286,
3740517, 3409956, 3189087, 4620726, 1649538, 6709923, 3410847, 4069296, 2860308,
5170374).

For 7-digit numbers the distance frequencies are plotted in the next diagram.
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Figure 9.2: Distribution of distances for 7-digit numbers for the digit reversal iteration.

The relation between the distance frequencies of 7-digit numbers and 6-digit numbers is
f7(0) = f6(0), f7(1) = 10f6(1) + 9f6(0) and f7(D) = 10f6(D) for D ↗ 2.

In summary, in base 10 the relation between distance frequencies of 2k + 1 digit and 2k

digit numbers is

f2k+1(D) =






f2k(D) if D = 0

10f2k(D) + 9f2k(0) if D = 1

10f2k(D) if D ↗ 2 .

(9.2)

These equations satisfy the requirement

↓∑

D=0

f2k+1(D) = 10
↓∑

D=0

f2k(D) . (9.3)

For 8-digit numbers we have one fixed point: (00000000),
four period 2 cycles:

(21999978, 65999934),
(02199780, 06599340),
(00217800, 00653400),
(21782178, 65346534),

fifteen period 5 cycles:
(09999999, 89999991, 69999993, 29999997, 49999995),
(00999990, 08999910, 06999930, 02999970, 04999950),
(09000009, 81000081, 63000063, 27000027, 45000045),
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(00099900, 00899100, 00699300, 00299700, 00499500),
(00900090, 08100810, 06300630, 02700270, 04500450),
(00009000, 00081000, 00063000, 00027000, 00045000),
(00090900, 00818100, 00636300, 00272700, 00454500),
(09090909, 81818181, 63636363, 27272727, 45454545),
(09990999, 89918991, 69936993, 29972997, 49954995),
(09099909, 81899181, 63699363, 27299727, 45499545),
(09900099, 89100891, 69300693, 29700297, 49500495),
(09009009, 81081081, 63063063, 27027027, 45045045),
(00990990, 08918910, 06936930, 02972970, 04954950),
(00909090, 08181810, 06363630, 02727270, 04545450),
(09909099, 89181891, 69363693, 29727297, 49545495),

two period 9 cycles:
(01099989, 97899021, 85799142, 61599384, 13199868, 73699263, ..., 25299747, 49499505),
(00109890, 09780210, 08571420, 06153840, 01318680, 07362630, ..., 02527470, 04945050),

one period 10 cycle:
(07781229, 84437541, 69864093, 30817197, 48354606, 12290778, ..., 28026918, 53935164),

one period 14 cycle:
(11436678, 76226733, 42464466, 23981958, 61936974, 13973058, ..., 48737106),

and two period 18 cycles:
(04399659, 91299681, 72600462, 46199835, 07699329, ..., 28600308, 51700374), and
(00436590, 09126810, 07264620, 04618350, 00763290, ..., 02863080, 05173740).

9.3 Digit reversal iteration in base 2

In the previous section we considered 1- through 8-digit numbers in base 10. Here we will
consider 1 through 9-digit numbers in base 2.

For 1-digit numbers in base 2 we have two orbits: 0 ↘ 0 and 1 ↘ 0. That is, (0) is the
single fixed point.

For 2-digit numbers in base 2 we have four di!erent starting values with orbits: 00 ↘ 00,
01 ↘ 01, 10 ↘ 01 and 11 ↘ 00. That is, (00) and (01) are fixed points. The numbers 10 and
11 both have distance 1. The numbers 10 and 11 in base 2 are written as 2 and 3 in base 10.
Sometimes one writes 102 = 210 and 112 = 310 or shortly 10 = 210 and 11 = 310 if the left
side base is clear.

For 3-digit numbers in base 2 we have: 000 ↘ 000, 001 ↘ 011, 010 ↘ 000, 011 ↘ 011,
100 ↘ 011, 101 ↘ 000, 110 ↘ 011, 111 ↘ 000. That is, (000) = (010) and (011) = (310) are
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two fixed points. The 6 other numbers have distance 1 to these fixed points.

For 4-digit numbers in base 2 we have 4 fixed points: (0000), (0010) = (210), (0101) = (510)

and (0111) = (710). It can be seen as follows: for a fixed point x = 8d3 + 4d2 + 2d1 + d0 with
digits d3, d2, d1, d0 the digit reversal should deliver a twice as large number. That is,

8d0 + 4d1 + 2d2 + d3 = 2 (8d3 + 4d2 + 2d1 + d0) . (9.4)

It is reduced to
16d3 + 6d2 = 6d0 . (9.5)

The solution is d3 = 0, d2 = d0 and d1 may be either 0 or 1. Indeed for d2 = d0 = 0 and
d1 = 0 we have x = 0000, for d2 = d0 = 0 and d1 = 1 we have x = 0010, for d2 = d0 = 1 and
d1 = 0 we have x = 0101 and for d2 = d0 = 1 and d1 = 1 we have x = 0111. Among the 12
other 4-digit numbers there are 10 numbers with distance 1 and 2 numbers with distance 2.

For 5-digit numbers in base 2 we have 4 fixed points: (00000), (00110) = (610), (01001) = (910)

and (01111) = (1510). It can be seen as follows: for a fixed point x = 16d4+8d3+4d2+2d1+d0

with digits d4, d3, d2, d1, d0 the digit reversal should deliver a twice as large number:

16d0 + 8d1 + 4d2 + 2d3 + d4 = 2 (16d4 + 8d3 + 4d2 + 2d1 + d0) . (9.6)

This condition is reduced to

31d4 + 14d3 + 4d2 = 4d1 + 14d0 . (9.7)

The solution is d4 = 0, d3 = d0 and d2 = d1 may be either 0 or 1. Indeed for d3 = d0 = 0 and
d2 = d1 = 0 we have x = 00000, for d3 = d0 = 0 and d2 = d1 = 1 we have x = 00110, for
d3 = d0 = 1 and d2 = d1 = 0 we have x = 01001 and for d3 = d0 = 1 and d2 = d1 = 1 we
have x = 01111. Among the 28 other 4-digit numbers there are 24 numbers with distance 1
and 4 numbers with distance 2.

For 6-digit numbers in base 2 we have 8 fixed points. In base 10 notation the fixed points are
(010), (410), (1010), (1410), (1710), (2110), (2710) and (3110). Among the 56 other numbers
there are 38 numbers with distance 1 and 18 numbers with distance 2.

For 7-digit numbers in base 2 we have 8 fixed points: (010), (1210), (1810), (3010), (3310),
(4510), (5110) and (6310). Among the 120 other numbers there are 84 numbers with distance
1 and 36 numbers with distance 2.

For 8-digit numbers in base 2 we have 16 fixed points: (010), (810), (2010), (2810), (3410), (4210),
(5410), (6210), (6510), (7310), (8510), (9310), (9910), (10710), (11910) and (12710). Among the
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240 other numbers there are 130 numbers with distance 1, 94 numbers with distance 2, 14
numbers with distance 3 and 2 numbers with distance 4.

For 9-digit numbers in base 2 we have 16 fixed points: (010), (2410), (3610), (6010), (6610),
(9010), (10210), (12610), (12910), (15310), (16510), (18910), (19510), (21910), (23110) and
(25510). Among the 496 other numbers there are 276 numbers with distance 1, 188 num-
bers with distance 2, 28 numbers with distance 3 and 4 numbers with distance 4.

Similar to the situation in base 10 we recognize in base 2 a similarity between a (2k)-digit
number and a (2k + 1)-digit number. Also in base 2 we denote the frequency of m-digit
numbers with distance D as fm(D). Then the similarity can be expressed as

f2k+1(D) =






f2k(D) if D = 0

2f2k(D) + f2k(0) if D = 1

2f2k(D) if D ↗ 2 .

(9.8)

and
↓∑

D=0

f2k+1(D) = 2
↓∑

D=0

f2k(D) . (9.9)

9.4 Digit reversal iteration in base 3

For 1-digit numbers in base 3 we have 3 orbits 0 ↘ 0, 1 ↘ 0 and 2 ↘ 0. So, (0) is the single
fixed point.

For 2-digit numbers in base 3 we have 9 orbits: 00 ↘ 00, 01 ↘ 02 ↘ 11 ↘ 00, 02 ↘ 11 ↘ 00,
10 ↘ 02 ↘ 11 ↘ 00 and 11 ↘ 00, 12 ↘ 02 ↘ 11 ↘ 00, 20 ↘ 11 ↘ 00, 21 ↘ 02 ↘ 11 ↘ 00,
22 ↘ 00. Presented in base 10 it reads 010 ↘ 010, 110 ↘ 210 ↘ 410 ↘ 010, 210 ↘ 410 ↘ 010,
310 ↘ 210 ↘ 410 ↘ 010 and 410 ↘ 010, 510 ↘ 210 ↘ 410 ↘ 010, 610 ↘ 410 ↘ 010,
710 ↘ 210 ↘ 410 ↘ 010, 810 ↘ 010. So, (010) is a single fixed point.
For 2-digit numbers in base 3 the distance table is

distance 0 1 2 3 4 5 6 7 8 9

# n0 1 2 2 4 0 0 0 0 0 0

Hereafter we will solely present the cycles and the distances. The distances will be presented
in a distance table.
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For 3-digit numbers in base 3 we have 1 fixed point: (010). The distance table is

distance 0 1 2 3 4 5 6 7 8 9

# n0 1 8 6 12 0 0 0 0 0 0

For 4-digit numbers in base 3 we have 2 fixed points: (010) and (3210). The distance table is

distance 0 1 2 3 4 5 6 7 8 9

# n0 2 15 16 40 8 0 0 0 0 0

For 5-digit numbers in base 3 we have 2 fixed points: (010) and (10410). The distance table is

distance 0 1 2 3 4 5 6 7 8 9

# n0 2 49 48 120 24 0 0 0 0 0

For 6-digit numbers in base 3 we have 3 fixed point: (010), (9610), (32010), and 1 period 2
cycle: (10410, 52010). The distance table is

distance 0 1 2 3 4 5 6 7 8 9

# n0 5 84 114 354 116 24 32 0 0 0

For 7-digit numbers in base 3 we have 3 fixed points: (010), (31210) and (96810), and one
period 2 cycle: (32010, 160010). The distance table is

distance 0 1 2 3 4 5 6 7 8 9

# n0 5 262 342 1062 348 72 96 0 0 0

For 8-digit numbers in base 3 we have
5 fixed points: (010), (28810), (96010), (262410) and (291210),
2 period 2 cycles: (31210, 156010) and (96810, 484010), and
1 period 4 cycle: (32010, 544010, 224010, 416010).
The distance table is
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distance 0 1 2 3 4 5 6 7 8 9

# n0 13 496 760 2824 1176 476 488 128 88 16

distance 10 11 12 13 14 15 16 17 18 19

# n0 16 80 0 0 0 0 0 0 0 0

For 9-digit numbers in base 3 we have
5 fixed points: (010), (93610), (290410), (780810) and (874410),
2 period 2 cycles: (96010, 480010) and (291210, 1456010), and
1 period 4 cycle: (96810, 1645610, 677610, 1258410).
The distance table is

distance 0 1 2 3 4 5 6 7 8 9

# n0 13 1514 2280 8472 3528 1428 1464 384 264 48

distance 10 11 12 13 14 15 16 17 18 19

# n0 48 240 0 0 0 0 0 0 0 0

In base 3 the relation between distance frequencies of 2k + 1 digit and 2k digit numbers is

f2k+1(D) =






f2k(D) if D = 0

3f2k(D) + 2f2k(0) if D = 1

3f2k(D) if D ↗ 2

(9.10)

and
↓∑

D=0

f2k+1(D) = 3
↓∑

D=0

f2k(D) . (9.11)

9.5 Digit reversal iteration in base b

In any base b the relation between distance frequencies of 2k+1 digit and 2k digit numbers is

f2k+1(D) =






f2k(D) if D = 0

bf2k(D) + (b↑ 1)f2k(0) if D = 1

bf2k(D) if D ↗ 2

(9.12)

and
↓∑

D=0

f2k+1(D) = b
↓∑

D=0

f2k(D) . (9.13)
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For the remainder of the chapter we confine to the cycles.

9.6 Digit reversal iteration in base 4 through 9

For 1-digit numbers in base 4 we have a single fixed point: (0).
For 2-digit numbers in base 4 we have

1 fixed point: (0) and
1 period 2 cycle: (310, 910).

For 3-digit numbers in base 4 we have
1 fixed point: (0) and
1 period 2 cycle: (1510, 4510).

For 4-digit numbers in base 4 we have
1 fixed point: (0) and
3 period 2 cycles: (1210, 3610), (5110, 15310) and (6310, 18910).

For 5-digit numbers in base 4 we have
1 fixed point: (0) and
3 period 2 cycles: (6010, 18010), (19510, 58510) and (25510, 76510).

For 6-digit numbers in base 4 we have
1 fixed point: (0),
7 period 2 cycles: (4810, 14410), (20410, 61210), (25210, 75610), (77110, 231310),

(81910, 245710), (97510, 292510) and (102310, 306910),
1 period 3 cycle: (31510, 346510, 189010) and
1 period 6 cycle: (61510, 286510, 163510, 159010, 91510, 226510).

For 7-digit numbers in base 4 we have
1 fixed point: (0),
7 period 2 cycles: (24010, 72010), (78010, 234010), (102010, 306010), (307510, 922510),

(331510, 994510), (385510, 1156510) and (409510, 1228510),
1 period 3 cycle: (127510, 1402510, 765010) and
1 period 6 cycle:(253510, 1150510, 643510, 639010, 379510, 898510).

For 8-digit numbers in base 4 we have
1 fixed point: (0),
15 period 2 cycles: (19210, 57610), (81610, 244810), (100810, 302410), (308410, 925210),

(327610, 982810), (390010, 1170010), (409210, 1227610), (1248310, 3744910),
(1329910, 3989710), (1537510, 4612510), (1638310, 4914910),(1229110, 3687310),
(1310710, 3932110), (1556710, 4670110) and (1619110, 4857310),

2 period 3 cycles: (126010, 1386010, 756010) and (511510, 5626510, 3069010),
1 period 5 cycle: (637510, 4972510, 1785010, 2677510, 2805010),
2 period 6 cycles: (246010, 1146010, 654010, 636010, 366010, 906010) and
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(1021510, 4606510, 2563510, 2559010, 1531510, 3586510).
For 9-digit numbers in base 4 we have

1 fixed point: (0),
15 period 2 cycles: (96010, 288010), (312010, 936010), (408010, 1224010),

(1230010, 3690010), (1326010, 3978010), (1542010, 4626010), (1638010, 4914010),
(4915510, 14746510), (5011510, 15034510), (5227510, 15682510), (5323510, 15970510),
(6145510, 18436510), (6241510, 18724510), (6457510, 19372510) and (6553510, 19660510),

2 period 3 cycles: (510010, 5610010, 3060010) and (2047510, 22522510, 12285010),
1 period 5 cycle: (2557510, 19948510, 7161010, 10741510, 11253010),
2 period 6 cycles: (1014010, 4602010, 2574010, 2556010, 1518010, 3594010) and

(4093510, 18430510, 10243510, 10239010, 6139510, 14338510).

For 1-digit numbers in base 5 we have 1 fixed point: (0).
For 2-digit numbers in base 5 we have 2 fixed points: (0) and (810).
For 3-digit numbers in base 5 we have 2 fixed points: (0) and (4810).
For 4-digit numbers in base 5 we have

4 fixed points: (0), (4010), (20810) and (24810), and
1 period 2 cycle: (144, 432).

For 5-digit numbers in base 5 we have
4 fixed points: (0), (24010), (100810), (124810), and
1 period 2 cycle: (744, 2232).

For 6-digit numbers in base 5 we have
8 fixed points: (0), (20010), (104010), (124010), (500810), (520810), (604810) and

(624810),
2 period 2 cycles: (72010, 216010) and (374410, 1123210), and
1 period 3 cycle: (74410, 1413610, 967210).

For 7-digit numbers in base 5 we have
8 fixed points: (0), (120010), (504010), (624010), (2500810), (2620810),

(3004810) and (3124810), and
2 period 2 cycles: (372010, 1116010) and (1874410, 5623210), and
1 period 3 cycle: (374410, 713610, 4867210).

For 8-digit numbers in base 5 we have
16 fixed points: (0), (100010), (520010), (620010), (2504010), (2604010), (3024010),

(3124010), (12500810), (12600810), (13020810), (13120810), (15004810), (15104810),
(15524810) and (15624810), and

4 period 2 cycles: (360010, 1080010), (1872010, 5616010), (9014410, 27043210) and
(9374410, 28123210), and

3 period 3 cycles: (372010, 7068010, 4836010), (4118410, 29577610, 21340810) and
(1874410, 35613610, 24367210).
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For 9-digit numbers in base 5 we have
16 fixed points: (0), (600010), (2520010), (3120010), (12504010), (13104010),

(15024010), (15624010), (62500810), (63100810), (65020810), (65620810),
(75004810), (75604810), (77524810) and (78124810), and

4 period 2 cycles: (1860010, 5580010), (9372010, 28116010), (45014410, 135043210) and
(46874410, 140623210), and

3 period 3 cycles: (1872010, 35568010, 24336010), (20618410, 148077610, 106840810) and
(9374410, 178113610, 121867210).

For both 10-digit and 11-digit numbers in base 5 we have 32 fixed points, 7 period 2 cycles, 5
period 3 cycles and 1 period 11 cycle.

For 1-digit numbers in base 6 we have 1 fixed point: (0).
For 2-digit numbers in base 6 we have 1 fixed point: (0) and 1 period 3 cycle: (510, 2510, 1510).
For 3-digit numbers in base 6 we have

1 fixed point: (0) and 1 period 3 cycle: (3510, 17510, 10510).
For 4-digit numbers in base 6 we have

2 fixed points: (0) and (49010), and
3 period 3 cycles: (3010, 15010, 9010), (21510, 107510, 64510) and (18510, 92510, 55510).

For 5-digit numbers in base 6 we have
2 fixed points: (0) and (301010), and
3 period 3 cycles: (21010, 105010, 63010), (129510, 647510, 388510), (108510, 542510, 325510).

For 6-digit and 7-digit numbers in base 6 we have 3 fixed points, 7 period 3 cycles,
1 period 5 cycle and 1 period 12 cycle.

For 8-digit and 9-digit numbers in base 6 we have 5 fixed points, 15 period 3 cycles,
2 period 5 cycles, 1 period 6 cycle and 2 period 12 cycles.

For 1-digit numbers in base 7 we have 1 fixed point: (0).
For 2-digit numbers in base 7 we have 1 fixed point: (0).
For 3-digit numbers in base 7 we have 1 fixed point: (0).
For 4-digit numbers in base 7 we have

1 fixed point: (0) and
1 period 3 cycle: (38410, 192010, 115210).

For 5-digit numbers in base 7 we have
1 fixed point: (0) and
1 period 3 cycle: (273610, 1368010, 820810).

For 6-digit numbers in base 7 we have
1 fixed point: (0) and
2 period 3 cycles: (268810, 1344010, 806410) and (1920010, 9600010, 5760010) and
1 period 6 cycle: (273610, 11217610, 9028810, 4651210, 2462410, 6840010).
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For 7-digit numbers in base 7 we have
1 fixed point: (0) and
2 period 3 cycles: (1915210, 9576010, 5745610) and (13444810, 67224010, 40334410) and
1 period 6 cycle: (1920010, 78720010, 63360010, 32640010, 17280010, 48000010).

For 8-digit and 9-digit numbers in base 7 we have 1 fixed point, 4 period 3 cycles and
2 period 6 cycles.

For 1-digit numbers in base 8 we have 1 fixed point: (0).
For 2-digit numbers in base 8 we have

2 fixed points: (0) and (2110), and
1 period 3 cycle: (710, 4910, 3510).

For 3-digit numbers in base 8 we have
2 fixed points: (0) and (18910), and
1 period 3 cycle: (6310, 44110, 31510).

For 4-digit numbers in base 8 we have
4 fixed points: (0), (16810), (136510) and (153310) and
3 period 3 cycles: (5610, 39210, 28010), (45510, 318510, 227510) and (51110, 357710, 255510).

For 5-digit numbers in base 8 we have
4 fixed points: (0), (151210), (1077310), (1228510) and
3 period 3 cycles: (409510, 2866510, 2047510), (50410, 352810, 252010) and

(359110, 2513710, 1795510).
For 6-digit and 7-digit numbers in base 8 we have 8 fixed points, 1 period 2 cycle,

7 period 3 cycles, 1 period 4 cycle and 7 period 8 cycles.
For 8-digit and 9-digit numbers in base 8 we have 16 fixed points, 2 period 2 cycle,

15 period 3 cycles, 2 period 4 cycles, 5 period 7 cycles, 14 period 8 cycles and 2 period 14
cycles.

For 1-digit numbers in base 9 we have 1 fixed point: (0).
For 2-digit numbers in base 9 we have

1 fixed point: (0), and
1 period 2 cycle: (1610, 4810).

For 3-digit numbers in base 9 we have
1 fixed point: (0), and
1 period 2 cycle: (16010, 48010).

For 4-digit numbers in base 9 we have
2 fixed points: (0) and (240010), and
3 period 2 cycles: (14410, 43210), (1312, 393610) and (145610, 436810), and
1 period 3 cycle: (80010, 560010, 400010), and
1 period 4 cycle: (22410, 611210, 502410, 348810).
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For 5-digit numbers in base 9 we have
2 fixed points: (0) and (2184010), and
3 period 2 cycles: (144010, 432010), (1168010, 3504010) and (1312010, 3936010), and
1 period 3 cycle: (728010, 5096010, 3640010), and
1 period 4 cycle: (152010, 5536010, 4520010, 3200010).

For 6-digit and 7-digit numbers in base 9 we have 3 fixed points, 7 period 2 cycle,
2 period 3 cycles, 4 period 4 cycle and 2 period 8 cycles.

For 8-digit and 9-digit numbers in base 9 we have 5 fixed points, 15 period 2 cycle,
5 period 3 cycles, 8 period 4 cycle, 4 period 6 cycles and 4 period 8 cycles.

9.7 Periodic cycles

For instance for 9-digit numbers in base 3 we found 5 fixed points and 2 period 2 cycle and 1
period 4 cycle. It will be denote briefly as 15, 22, 4. With this notation the fixed points and
period cycles for 1- through 10-digit numbers in base 2 through 10 are tabulated below.

digits

base
2 3 4 5 6 7

1 1 1 1 1 1 1

2 12 1 1, 2 12 1, 3 1

3 12 1 1, 2 12 1, 3 1

4 14 12 1, 23 14, 2 12, 33 1, 3

5 14 12 1, 23 14, 2 12, 33 1, 3

6 18 13, 2 1, 27, 3, 6 18, 22, 3 13, 37, 5, 12 1, 32, 6

7 18 13, 2 1, 27, 3, 6 18, 22, 3 13, 37, 5, 12 1, 32, 6

8 116 15, 22, 4 1, 215, 32, 5, 62 116, 24, 33 15, 315, 52, 122 1, 34, 62

9 116 15, 22, 4 1, 215, 32, 5, 62 116, 24, 33 15, 315, 52, 122 1, 34, 62
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digits

base
8 9 10

1 1 1 1

2 12, 3 1, 2 1, 5

3 12, 3 1, 2 1, 5

4 14, 33 12, 23, 3, 4 1, 2, 53

5 14, 33 12, 23, 3, 4 1, 2, 53

6 18, 37, 4, 87 13, 27, 32, 44, 82 1, 22, 57, 9, 18

7 18, 37, 4, 87 13, 27, 32, 44, 82 1, 22, 57, 9, 18

8 116, 22, 315, 42, 75, 814, 142 15, 215, 35, 48, 64, 84 1, 24, 515, 92, 14, 182

9 116, 22, 315, 42, 75, 814, 142 15, 215, 35, 48, 64, 84 1, 24, 515, 92, 14, 182



Chapter 10

Kaprekar

10.1 Kaprekar’s constant

For 4-digit numbers we consider the following iteration:

nk+1 = ϑ(nk)↑ ε(nk) , (10.1)

where ϑ(nk) is created by sorting the 4 digits of nk in descending order and ε(nk) is created
by sorting the 4 digits of nk in ascending order. For the algorithm numbers smaller than 1000
are preceded by zero’s to make them 4-digit numbers: 123 ↘ 0123, 64 ↘ 0064, 7 ↘ 0007, etc.
For the 4-digit number n0 = 9271 we obtain ϑ(9271) = 9721, ε(9271) = 1279 and
n1 = 9721↑ 1279 = 8442. Repeating the iteration we obtain
n2 = 8442↑ 2448 = 5994,
n3 = 9954↑ 4599 = 5355,
n4 = 5553↑ 3555 = 1998,
n5 = 9981↑ 1899 = 8082,
n6 = 8820↑ 0288 = 8532,
n7 = 8532↑ 2358 = 6174,
n8 = 7641↑ 1467 = 6174.
That is, 6174 is a fixed point.

When applied to n0 = 0123 we successively obtain
n1 = 3210↑ 0123 = 3087,
n2 = 8730↑ 0378 = 8352,
n3 = 8532↑ 2358 = 6174

n4 = 7641↑ 1467 = 6174.
It turns out that the orbit for almost all 4-digit numbers ends in the fixed point (6174). The
only exceptions are the 10 numbers 0000, 1111, 2222, ..., 9999 which are mapped to the fixed
point (0000).

99
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The number 6174 is known as Kaprekar’s constant.

As before we let the distance be the number of steps required to reach a period cycle. For
4-digit numbers the distance is the number of steps required to arrive at one of the fixed points
(0000) and (6174). The distance table is

distance 0 1 2 3 4 5 6 7 8 9

# n0 2 392 576 2400 1272 1518 1656 2184 0 0

Since we did not recognize a relation between distance tables, the distance tables will be left
in the remainder of this chapter.

There are two ways to generalize the iteration. The first way is by considering numbers
with other than 4 digits. The second way is by considering numbers in other bases. We start
with considering numbers with m digits in base 10.

10.2 Kaprekar for m-digit numbers

For m-digit numbers the Kaprekar iteration is given by

nk+1 = ϑ(nk)↑ ε(nk) , (10.2)

where ϑ(nk) is created by sorting the m digits of nk in descending order and ε(nk) is created
by sorting the m digits of nk in ascending order. Numbers smaller than 10m are preceded by
zero’s to make them m-digit numbers.

For 1-digit numbers and 2-digit numbers the Kaprekar iteration is identical to the digit rever-
sal iteration.

The 3-digit numbers 000, 111, 222, ..., 999 are mapped to the fixed point (000). For all other 3-
digit numbers the orbit arrives at the fixed point (495). In order to see this we let d2 ↗ d1 ↗ d0

be the digits of a descending ordered number n0. That is, ϑ(n0) = 100d2+10d1+d0. If d2 = d0

then n1 = 000 else n1 = 100(d2 ↑ d0) + 10(d1 ↑ d1) + (d0 ↑ d2) = 99(d2 ↑ d0). In the latter
case the nine possibilities for the successive orbits are
99 · 1 = 099 ↘ 891 ↘ 792 ↘ 693 ↘ 594 ↘ 495 ,
99 · 2 = 198 ↘ 792 ↘ 693 ↘ 594 ↘ 495 ,
99 · 3 = 297 ↘ 693 ↘ 594 ↘ 495 ,
99 · 4 = 396 ↘ 594 ↘ 495 ,
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99 · 5 = 495 ↘ 495 ,
99 · 6 = 594 ↘ 495 ,
99 · 7 = 693 ↘ 594 ↘ 495 ,
99 · 8 = 792 ↘ 693 ↘ 594 ↘ 495 ,
99 · 9 = 891 ↘ 792 ↘ 693 ↘ 594 ↘ 495 . That is, for 3-digit numbers the orbit arrives at
the fixed point (000) or the fixed point (495) in 5 or less steps.

For m = 4 there are two fixed points: (0000) and (6174). For 4-digit numbers the orbit
arrives at the fixed point (0000) or the fixed point (6174) in 7 or less steps.

For m = 5 we have
one fixed point: (00000),
one period 2 cycle: (53955, 59994), and
two period 4 cycles: (61974, 82962, 75933, 63954) and (62964, 71973, 83952, 74943).

For m = 6 we have
three fixed points: (000000), (549945), (631764), and
one period 7 cycle: (420876, 851742, 750843, 840852, 860832, 862632, 642654).

For m = 7 we have
one fixed point: (0000000), and
one period 8 cycle: (7509843, 9529641, 8719722, 8649432, 7519743, 8429652, 7619733,

8439552).

For m = 8 we have
three fixed points: (00000000), (63317664), (97508421),
one period 3 cycle: (64308654, 83208762, 86526432), and
one period 7 cycle: (43208766, 85317642, 75308643, 84308652, 86308632, 86326632,

64326654).

For m = 9 we have
three fixed points: (000000000), (554999445), (864197532), and
one period 14 cycle: (753098643, 954197541, 883098612, 976494321, 874197522,

865296432, 763197633, 844296552, 762098733, 964395531, 863098632, 965296431,
873197622, 865395432).

For m = 10 we have
four fixed points: (0000000000), (6333176664), (9753086421), (9975084201),
four period 3 cycles:
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(6431088654, 8732087622, 8655264432),
(6433086654, 8332087662, 8653266432),
(6543086544, 8321088762, 8765264322),
(9751088421, 9775084221, 9755084421), and

one period 7 cycle: (4332087666, 8533176642, 7533086643, 8433086652, 8633086632,
8633266632, 6433266654).

For m = 11 we have
two fixed points: (00000000000), (86431976532),
one period 5 cycle: (86420987532, 96641975331, 88431976512, 87641975322,

86541975432), and
one period 8 cycle: (76320987633, 96442965531, 87320987622, 96653954331,

86330986632, 96532966431, 87331976622, 86542965432).

For m = 12 we have
eight fixed points: (000000000000), (555499994445), (633331766664),

(975330866421), (977750842221), (997530864201), (997750842201), (999750842001),
eight period 3 cycles:

(643110888654, 877320876222, 865552644432),
(643310886654, 873320876622, 865532664432),
(643330866654, 833320876662, 865332666432),
(654310886544, 873210887622, 876552644322),
(654330866544, 833210887662, 876532664322),
(655430865444, 832110888762, 877652643222),
(975310886421, 977530864221, 975530864421)
(975510884421, 977510884221, 977550844221), and

one period 7 cycle: (433320876666, 853331766642, 753330866643,
843330866652, 863330866632, 863332666632, 643332666654).

10.3 Kaprekar in base 2

For 1-digit numbers in base 2 we have two orbits: 0 ↘ 0 and 1 ↘ 0. That is, (0) is the single
fixed point.

For 2-digit numbers in base 2 we have four di!erent starting values with orbits: 00 ↘ 00,
01 ↘ 01, 10 ↘ 01 and 11 ↘ 00. That is, (00) and (01) are fixed points. The numbers 10 and
11 both have distance 1.

For 3-digit numbers in base 2 we have: 000 ↘ 000, 001 ↘ 011, 010 ↘ 000, 011 ↘ 011,
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100 ↘ 011, 101 ↘ 000, 110 ↘ 011, 111 ↘ 000. That is, (000) and (011) = (310) are fixed
points. The 6 other numbers have distance 1.

For 4-digit numbers in base 2 we have 3 fixed points: (0000), (0111) = (710) and (1001) = (910).
The 13 other numbers have distance 1.

For 5-digit numbers in base 2 we have 3 fixed points: (00000), (01111) = (1510) and (10101) =

(2110). The 29 other numbers have distance 1.

For 6-digit numbers in base 2 we have 4 fixed points: (000000), (011111) = (3110), (101101) =
(4510) and (110001) = (4910). The 60 other numbers have distance 1.

For 7-digit numbers in base 2 we have 4 fixed points: (0000000), (0111111) = (6310),
(1011101) = (9310) and (1101001) = (10510). The 124 other numbers have distance 1.

For 8-digit numbers in base 2 we have 5 fixed points: (00000000), (01111111) = (12710),
(10111101) = (18910), (11011001) = (21710) and (11100001) = (22510). The 251 other num-
bers have distance 1.

For 9-digit numbers in base 2 we have 5 fixed points: (000000000), (011111111) = (25510),
(101111101) = (38110), (110111001) = (44110) and (111010001) = (46510). The 507 other
numbers have distance 1.

For 10-digit numbers in base 2 we have 6 fixed points: (0000000000), (0111111111) =
(51110), (1011111101) = (76510), (1101111001) = (88910), (1110110001) = (94510) and
(1111000001) = (96110). The 1018 other numbers have distance 1.

For 11-digit numbers in base 2 we have 6 fixed points: (0000000000), (01111111111) =

(102310), (10111111101) = (153310), (11011111001) = (178510), (11101110001) = (190510)

and (11110100001) = (195310). The 2042 other numbers have distance 1.

For 12-digit numbers in base 2 we have 7 fixed points: (0000000000), (011111111111) =

(204710), (101111111101) = (306910), (110111111001) = (357710), (111011110001) =
(382510), (111101100001) = (393710) and (111110000001) = (396910). The 4089 other num-
bers have distance 1.

We recognize a pattern: for m-digit numbers the values of the fixed points are 2m↑2m→k↑2k+1

where k is an integer, 0 ⇒ k ⇒ ⇓m/2⇔. This can be understood as follows. Let a m-digit num-
ber n0 in base 2 have k digits equal to 0 and m↑k digits equal to 1. Therefore, ϑ(n0) = 2m↑2k
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is in base 2 a number with m↑ k one’s to the left and k zero’s to the right. Explicitely,

1 1 ... 1 1 0 0 ... 0 0 0

m↑ 1 m↑ 2 ... k + 1 k k ↑ 1 k ↑ 2 ... 2 1 0

Subtraction of ε(n0) = 2m→k ↑ 1 from ϑ(n0) gives n1 = ϑ(n0)↑ ε(n0) = 2m ↑ 2k ↑ 2m→k + 1.
For 0 ⇒ k ⇒ ⇓m/2⇔ the subtraction of 2m→k from 2m ↑ 2k just changes a 1 into a 0, while the
addition by 1 changes the last digit from 0 to 1. As a net result, n1 = 2m↑ 2k ↑ 2m→k +1 will
have as many one’s as 2m ↑ 2k and thus as n0. As a consequence, n2 = n1 and thus is n1 is a
fixed point.

10.4 Kaprekar in base 3 through 9

For 1-digit numbers in base 3 we have three orbits 0 ↘ 0, 1 ↘ 0 and 2 ↘ 0. So, (0) is the
single fixed point.
For 2-digit numbers in base 3 we have nine orbits: 00 ↘ 00, 01 ↘ 02 ↘ 11 ↘ 00,
02 ↘ 11 ↘ 00, 10 ↘ 02 ↘ 11 ↘ 00 and 11 ↘ 00, 12 ↘ 02 ↘ 11 ↘ 00, 20 ↘ 11 ↘ 00,
21 ↘ 02 ↘ 11 ↘ 00, 22 ↘ 00. That is, (00) is the single fixed point.
For 3-digit numbers in base 3 we have

one fixed point: (000) and
one period 2 cycle: (022, 121) = (810, 1610).

For 4-digit numbers in base 3 we have
one fixed point: (010) and
one period 2 cycle: (3210, 5210).

For 5-digit numbers in base 3 we have two fixed points: (010), (18410).
For 6-digit numbers in base 3 we have

one fixed point: (010) and
one period 3 cycle: (32010, 58010, 48410).

For 7-digit numbers in base 3 we have
two fixed points: (010), (200810) and
one period 2 cycle: (169610, 176810).

For 8-digit numbers in base 3 we have two fixed points: (010) and (533210).
For 9-digit numbers in base 3 we have

two fixed points: (010), (1914410),
one period 2 cycle: (1820810, 1842410) and
one period 3 cycle: (1530410, 1602410, 1624010).

For 10-digit numbers in base 3 we have
two fixed points: (010), (5536010) and
one period 4 cycle: (2624010, 4810010, 4896410, 3936410).

For 11-digit numbers in base 3 we have
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three fixed points: (010), (14648810), (17552810),
one period 2 cycle: (17272010, 17336810), and
two period 3 cycles: (13777610, 14432810, 14713610), (16400810, 16616810, 16681610).

For 12-digit numbers in base 3 we have
two fixed points: (010), (52037210) and
one period 2 cycle: (43301210, 44165210).

For base 4 through 9 we will not give the values of the cycle members, except for the fixed
points.

For 1-digit numbers in base 4 we have 1 fixed point: (010).
For 2-digit numbers in base 4 we have 1 fixed point: (010), and 1 period 2 cycle.
For 3-digit numbers in base 4 we have 2 fixed points: (010) and (3010).
For 4-digit numbers in base 4 we have 2 fixed points: (010) and (20110), and 1 period 2 cycle.
For 5-digit numbers in base 4 we have 1 fixed point: (010), and 1 period 2 cycle.
For 6-digit numbers in base 4 we have 4 fixed points: (010), (255010), (336910) and (387310).
For 7-digit numbers in base 4 we have 2 fixed points: (010) and (1456510).
For 8-digit numbers in base 4 we have 4 fixed points: (010), (5444110), (6262510) and (6464110),
and 1 period 3 cycle.
For 9-digit numbers in base 4 we have 4 fixed points: (010), (23440510), (17199010) and
(25486510).
For 10-digit numbers in base 4 we have 6 fixed points: (010), (87312910), (95426110),
(100419310), (103692910) and (104499310), and 1 period 2 cycle.
For 11-digit numbers in base 4 we have 4 fixed points: (010), (375568510), (408334510) and
(416518510), and 1 period 3 cycle.
For 12-digit numbers in base 4 we have 9 fixed points: (010), (1114095010), (1397828110),
(1528590910), (1607542510), (1639995310), (1659968110), (1673062510), (1676288110).

For 1-digit numbers in base 5 we have 1 fixed point: (010).
For 2-digit numbers in base 5 we have 2 fixed points: (010) and (810).
For 3-digit numbers in base 5 we have 1 fixed point: (010), and 1 period 2 cycle.
For 4-digit numbers in base 5 we have 2 fixed points: (010) and (39210).
For 5-digit numbers in base 5 we have 1 fixed point: (010), and 1 period 4 cycle.
For 6-digit numbers in base 5 we have 1 fixed point: (010), and 1 period 5 cycle.
For 7-digit numbers in base 5 we have 1 fixed point: (010), and 1 period 4 cycle.
For 8-digit numbers in base 5 we have 1 fixed point: (010), and 1 period 6 cycle.
For 9-digit numbers in base 5 we have 2 fixed points: (010) and (183105610).
For 10-digit numbers in base 5 we have 1 fixed point: (010), and 1 period 4 cycle.
For 11-digit numbers in base 5 we have 2 fixed points: (010) and (4821777610), and 1 period
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3 cycle.
For 12-digit numbers in base 5 we have 1 fixed point: (010), and 1 period 8 cycle.

For 1-digit numbers in base 6 we have 1 fixed point: (010).
For 2-digit numbers in base 6 we have 1 fixed point: (010), and 1 period 3 cycle.
For 3-digit numbers in base 6 we have 2 fixed points: (010) and (10510).
For 4-digit numbers in base 6 we have 1 fixed point: (010), and 1 period 6 cycle.
For 5-digit numbers in base 6 we have 2 fixed points: (010) and (560010), and 1 period 2 cycle.
For 6-digit numbers in base 6 we have 4 fixed points: (010), (2719510), (3386010) and (4292510),
and 1 period 3 cycle.
For 7-digit numbers in base 6 we have 1 fixed point: (010), and 1 period 2 cycle.
For 8-digit numbers in base 6 we have 3 fixed points: (010), (127517010) and (165722510), and
2 period 2 cycles and 1 period 7 cycle.
For 9-digit numbers in base 6 we have 2 fixed points: (010) and (601849510), and 1 period 2
cycle.
For 10-digit numbers in base 6 we have 5 fixed points: (010), (4596233010), (4768190010),
(5631992510) and (60331825), and 3 period 2 cycles.
For 11-digit numbers in base 6 we have 3 fixed points: (010), (27769595010) and (34828517510),
and 1 period 2 cycle.
For 12-digit numbers in base 6 we have 4 fixed points: (010), (130506085510), (215190482510)
and (217597622510), and 6 period 2 cycles.

For 1-digit numbers in base 7 we have 1 fixed point: (010).
For 2-digit numbers in base 7 we have 1 fixed point: (010).
For 3-digit numbers in base 7 we have 1 fixed point: (010), and 1 period 2 cycle.
For 4-digit numbers in base 7 we have 1 fixed point: (010), and 1 period 3 cycle.
For 5-digit numbers in base 7 we have 1 fixed point: (010), and 1 period 5 cycle.
For 6-digit numbers in base 7 we have 1 fixed point: (010), and 1 period 6 cycle.
For 7-digit numbers in base 7 we have 1 fixed point: (010), and 1 period 6 cycle.
For 8-digit numbers in base 7 we have 1 fixed point: (010), and 1 period 6 cycle.
For 9-digit numbers in base 7 we have 1 fixed point: (010), and 1 period 11 cycle.
For 10-digit numbers in base 7 we have 1 fixed point: (010), and 3 period 2 cycles.
For 11-digit numbers in base 7 we have 2 fixed points: (010) and (192226334410).
For 12-digit numbers in base 7 we have 2 fixed points: (010) and (1115076655210), and 1 period
5 cycle.

For 1-digit numbers in base 8 we have 1 fixed point: (010).
For 2-digit numbers in base 8 we have 2 fixed points: (010) and (2110), and 1 period 3 cycle.
For 3-digit numbers in base 8 we have 2 fixed points: (010) and (25210).



10.4. KAPREKAR IN BASE 3 THROUGH 9 107

For 4-digit numbers in base 8 we have 1 fixed point: (010), and 1 period 3 cycle and 1 period
5 cycle.
For 5-digit numbers in base 8 we have 1 fixed point: (010), and 1 period 2 cycle and 1 period
4 cycle.
For 6-digit numbers in base 8 we have 3 fixed points: (010), (14742010) and (21340210), and 1
period 3 cycle.
For 7-digit numbers in base 8 we have 2 fixed points: (010) and (171196210), and 1 period 4
cycle and 1 period 7 cycle.
For 8-digit numbers in base 8 we have 2 fixed points: (010) and (1609243310), and 2 period 3
cycles.
For 9-digit numbers in base 8 we have 2 fixed points: (010) and (7654575610), 1 period 4 cycle,
and 2 period 5 cycles.
For 10-digit numbers in base 8 we have 2 fixed points: (010) and (106826355310), and 4 period
3 cycles.
For 11-digit numbers in base 8 we have 1 fixed point: (010), and 1 period 2 cycle, 1 period 4
cycle and 1 period 6 cycle.
For 12-digit numbers in base 8 we have 5 fixed points: (010), (3925868310010),
(5749783982610), (5857344532210) and (6867565056110), and 1 period 2 cycle, 7 period 3 cy-
cles and 1 period 4 cycle.

For 1-digit numbers in base 9 we have 1 fixed point: (010).
For 2-digit numbers in base 9 we have 1 fixed point: (010), and 1 period 2 cycle.
For 3-digit numbers in base 9 we have 1 fixed point: (010), and 1 period 2 cycle.
For 4-digit numbers in base 9 we have 1 fixed point: (010), and 2 period 3 cycles.
For 5-digit numbers in base 9 we have 2 fixed points: (010), (4152010), and 1 period 5 cycle.
For 6-digit numbers in base 9 we have 1 fixed point: (010), and 1 period 14 cycle.
For 7-digit numbers in base 9 we have 1 fixed point: (010), and 1 period 2 cycle: (3496800,
3916640).
For 8-digit numbers in base 9 we have 2 fixed points: (010) and (3153187210), and 1 period 4
cycle.
For 9-digit numbers in base 9 we have 2 fixed points: (010) and (32695256010), and 1 period
12 cycle.
For 10-digit numbers in base 9 we have 2 fixed points: (010) and (259874400010), 1 period 4
cycle and 1 period 5 cycle.
For 11-digit numbers in base 9 we have 2 fixed points: (010) and (2308738872010), and 1 period
6 cycle.
For 12-digit numbers in base 9 we have 1 fixed point: (010), and 2 period 2 cycles and 1 period
6 cycle.
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10.5 Periodic cycles

For instance for 11-digit numbers in base 3 we found 3 fixed points and 1 period 2 cycle and
2 period 3 cycles. It will be denote briefly as 13, 2, 32. The fixed points and period cycles for
1- through 12-digit numbers in base 2 through 10 are tabulated below.

digits

base
2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1

2 12 1 1, 2 12 1, 3 1 12, 3 1, 2 1, 5

3 12 1, 2 12 1, 2 12 1, 2 12 1, 2 12

4 13 1, 2 12, 2 12 1, 6 1, 3 1, 3, 5 1, 32 12

5 13 12 1, 2 1, 4 12, 2 1, 5 1, 2, 4 12, 5 1, 2, 42

6 14 1, 3 14 1, 5 14, 3 1, 6 13, 3 1, 14 13, 7

7 14 12, 2 12 1, 4 1, 2 1, 6 12, 4, 7 1, 2 1, 8

8 15 12 14, 3 1, 6 13, 22, 7 1, 6 12, 32 12, 4 13, 3, 7

9 15 12, 2, 3 14 12 12, 2 1, 11 12, 4, 52 12, 12 13, 14

10 16 12, 4 16, 2 1, 4 15, 23 1, 23 12, 34 12, 4, 5 14, 34, 7

11 16 13, 2, 32 14, 3 12, 3 13, 2 12 1, 2, 4, 6 12, 6 12, 5, 8

12 17 12, 2 19 1, 8 14, 26 12, 5 15, 2, 37, 4 1, 22, 6 18, 38, 7



Chapter 11

Squared digit sum

11.1 Introduction

Well known is the iteration of an integer number to the sum of the squares of its digits. That
is, if dj are the digits of a positive integer number,

nk =
↓∑

j=0

dj10
j , (11.1)

then

nk+1 =
↓∑

j=0

d2j . (11.2)

For n0 = 1 the successor is n1 = 12 = 1. That is, 1 is a fixed point. For n0 = 2 the repeated
iteration leads to the following orbit:

n1 = 22 = 4, n2 = 42 = 16, n3 = 12 + 62 = 37,

n4 = 32 + 72 = 58, n5 = 52 + 82 = 89, n6 = 82 + 92 = 145,

n7 = 12 + 42 + 52 = 42, n8 = 42 + 22 = 20, n9 = 22 + 02 = 4.

That is, (4, 16, 37, 58, 89, 145, 42, 20) is a period 8 cycle.

It turns out there are no other cycles. This can be seen as follows. By numerical inspec-
tion it is quickly found that the orbit of n0 arrives in either the fixed point 1 or the cycle
(4, 16, 37, 58, 89, 145, 42, 20) if 0 < n0 ⇒ 99. If n0 is a m-digit number then 10m→1 ⇒ n0 < 10m.
The largest m-digit number is 10m ↑ 1. Its successor is m · 92 = 81m. For a m-digit number
10m→1 ⇒ n0 < 10m the successor n1 is smaller than 81m+1. Therefore n1 is certainly smaller
than n0 if 81m + 1 < 10m→1. The latter inequality is satisfied if m ↗ 4. So, numbers larger
than or equal to 1000 have a smaller successor.

109



110 CHAPTER 11. SQUARED DIGIT SUM

A 3-digit number is given by n0 = 100d2 + 10d1 + d0 and its successor is n1 = d22 + d21 + d20,
where 1 ⇒ d2 ⇒ 9, 0 ⇒ d1 ⇒ 9 and 0 ⇒ d0 ⇒ 9.
If 3 ⇒ d2 ⇒ 9 and thus 300 ⇒ n0 < 1000 then n1 ⇒ 243 = 92 + 92 + 92. So, n0 > n1 if
3 ⇒ d2 ⇒ 9.
If d2 = 2 and thus 200 ⇒ n0 < 300 then n1 ⇒ 166 = 22 + 92 + 92. So, n0 > n1 if d2 = 2.
If d2 = 1 then n0 = 100+10d1+d0 and n1 = 1+d21+d20. Since 10d1 > d21 and 100+d0 > 1+d20
we have n0 > n1 if d2 = 1.
We therefore can conclude that 3-digit numbers always have a smaller successor.
In summary, numbers with 3 or more digits will have a smaller successor. As a consequence,
the orbit of numbers with 3 or more digits will always arrive below 100.
For numbers smaller than 100 we know from numerical inspection that the orbit will arrive
at either 1 or (4, 16, 37, 58, 89, 145, 42, 20). Hence, the orbit of all positive integers arrive at
either 1 or (4, 16, 37, 58, 89, 145, 42, 20). In the next diagram the n1 are plotted against n0 for
0 < n0 ⇒ 250.
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Figure 11.1: The black dots are the n1 against n0 for 0 < n0 ⇒ 250. The diagonal n1 = n0 is
shown dashed. The period 8 cycle (4, 16, 37, 58, 89, 145, 42, 20) is orange.

As shown in the diagram n0 = 99 is the largest n0 for which n1 = 162 is larger than n0.
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11.2 Statistics of cycle arrivals

We will denote the fixed point as c1 and the period 8 cycle as c2. Thus c1 = (1) and c2 =

(4, 16, 37, 58, 89, 145, 42, 20). For n0 ⇒ 10k with k = 1, 2, 3, 4, 5, 6, the number of starting
values for which the orbit ends in c1 or c2 are shown in the next table.

cycle n0 ⇒ 101 n0 ⇒ 102 n0 ⇒ 103 n0 ⇒ 104 n0 ⇒ 105 n0 ⇒ 106

c1 3 20 143 1442 14377 143071

c2 7 80 857 8558 85623 856929

The figures in the table suggest the fraction of n0 ⇒ n for which the orbit ends in the fixed
point 1 converges smoothly to approximately 0.143. This is, however, not the case. The curve
of the fraction of n0 ⇒ n for which the orbit ends in the fixed point 1 is bumpy, see next figure.
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Figure 11.2: The fraction of n0 ⇒ n for which the orbits arrives at 1.

11.3 Statistics of untouchables

If we start with n0 = 2, then the orbit is 2, 4, 16, 37, 58, 89, 145, 42, 20, 4, ... So, if we start
with numbers smaller than 3, the number 2 is untouchable. Since 2 is 12 +12 we have to wait
until starting number n0 = 11 before 2 becomes touchable. As before, we keep track of the
smallest starting number tn for which a number n is no longer untouchable.
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If we start with numbers smaller than 103, the first part of the list of tn is:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14. 15 16 17 18 19 20 21 22 23 24 25 26

tn 1 11 111 2 12 112 ? 22 3 7 78 222 23 123 ? 2 6 33 133 2 124 233 ? 224 5 15

The question marks show that for starting numbers smaller than 103 the numbers 7, 15, 23,
... are untouchable. Since

n∑

k=1

12 = n (11.3)

any number consisting of solely n digits 1 will make n touchable. The question mark will
therefore sooner or later disappear. For instance, if n0 = 1111111 gives n1 = 7. Of course,
n0 = 1112 also gives n1 = 7.

For starting numbers smaller than 104 the first part of the list of tn is as follows:

1, 11, 111, 2, 12, 112, 1112, 22, 3, 7, 78, 222, 23, 123, 1123, 2, 6, 33, 133, 2, 124, 233,
1233, 224, 5, 15, 115, 1115, 5, 125, 1125, 44, 144, 27, 135, 6, 2, 116, 1116, 15, 6, 2, 335, 226, 6,
136, 1136, 444, 7, 6, 69, 8, 27, 127, 1127, 246, 227, 2, 137, 1137, 3, 156, 1156, 8, 3, 118, 337,
19, 88, 356, 1356, 66, 38, 57, 157, 266, 238, 257, 1257, 48, 3, 19, 119, 248, 5, 129, 1129, 466, 2,
39, 139, 1139, 258, 239, 1239, 448, 7, 77, 177, 19, 168, 277, 1277, 268, 458, 59, 159, 666, 368,
259, 1259, 2666, 78, 178, 359, 468, 69, 169, 1169, 2468, 269, 378, 577, 1577, 568, 369, 1369,
88, 188, 7, 179, 288, 469, 279, 1279, 668, 388, 578, 379, 1379, 2388, 569, 1569, 488, 2, 189,
777, 1777, 289, 1289, 2777, 4668, 588, 389, 579, 1579, 2588, 2389, 2579, 4488, 489, 99, 199,
688, 1688, 299, 1299, 2688, 4588, 589, 399, 1399, 3688, 2589, 2399, ?, 788,...
Now the first question mark is for n = 176.

For starting numbers smaller than 105 the first question mark is for n = 286.

For starting numbers smaller than 106 the first question mark is for n = 367.

If we only start with numbers from the set {1, 2}, then 2 is the only element of the set
{1, 2} which is untouchable. The ratio of the number of untouchables and set length is 1/2. If
we only start with numbers from the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then 2, 3, 5, 6, 7 and 8 are
the untouchable elements. The ratio of the number of untouchables and set length is 6/10.
As before, we let un be the number of elements which are untouchable if we only start with
numbers from the set {1, 2, 3, ...,n}. For n up to 106 the ratio un/n is plotted against n in
the next figure.
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Figure 11.3: The ratio un/n for the digits factorial sum.

The latter diagram suggest lim
n↑↓

un
n

= 1 for the squared digit sum iteration.

11.4 Statistics of distances

Since nk+1 < nk for nk ↗ 100 orbits will fast descend to below 100 and arrive at the fixed
point c1 or the period 8 cycle c2. Therefore the distances are limited. The distribution of
distances for the squared digit sum iteration in base 10 is shown in the next figure.

0 2 4 6 8 10 12 14
100

101

102

103

104

105

106

distance D

fr
eq

ue
nc

y

Figure 11.4: Base 10 distribution of distances for starting numbers smaller than or equal to:
103 (orange), 104 (red), 105 (green), 106 (blue), 107 (black).
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11.5 Other bases

The squared digit sum iteration can be generalized to an arbitrary base b. That is, if dj are
the digits of an integer number in base b,

nk =
↓∑

j=0

djb
j , (11.4)

then

nk+1 =
↓∑

j=0

d2j . (11.5)

If n0 is a m-digit number in base b then bm→1 ⇒ n0 < bm. The largest m-digit number is bm↑1.
Its successor is m · (b↑ 1)2. For a m-digit number bm→1 ⇒ n0 < bm the successor n1 is smaller
than m(b↑1)2+1. Therefore n1 is certainly smaller than n0 if m(b↑1)2+1 < bm→1. The lat-
ter inequality is satisfied if m ↗ 4. So, numbers with 4 or more digits have a smaller successor.

Again, for 3-digit numbers we let d2, d1 and d0 be the digits. Then a 3-digit number in base b

is given by n0 = b2d2 + bd1 + d0 and its successor is n1 = d22 + d21 + d20, where 1 ⇒ d2 ⇒ b↑ 1,
0 ⇒ d1 ⇒ b↑ 1 and 0 ⇒ d0 ⇒ b↑ 1.
If d2 = 1 then n0 = b2 + bd1 + d0 and n1 = 1 + d21 + d20. Since b2 + d0 > 1 + d20 and bd1 > d21
we have n0 > n1 if d2 = 1.
If d2 = 2 and thus b ↗ 3 and n0 = 2b2 + bd1 + d0 ↗ 2b2, then n1 = 4 + d21 + d20 ⇒
4 + (b↑ 1)2 + (b↑ 1)2 < 2b2. So, n0 > n1 if d2 = 2

If 3 ⇒ d2 ⇒ b↑ 1 then n0 = b2d2 + bd1 + d0 ↗ 3b2 while n1 = d22 + d21 + d20 ⇒ 3(b↑ 1)2 < 3b2.
So, n0 > n1 if d2 ↗ 3

We therefore can conclude that for 3-digit numbers in base b there always holds n1 < n0.
In summary, in any base b numbers with 3 or more digits will have a smaller successor. As a
consequence, in any base b the orbit of numbers with 3 or more digits will always arrive below
b2.
For numbers smaller than b2 the cycles are determined by numerical inspection.

For base 9 we found in this way three fixed points: 19 = 110, 459 = 4110 and 559 = 5010, one
period 2 cycle: (759, 829) =(6810, 7410), and one period 3 cycle: (589, 1089, 729) =(5310, 8910,
6510). In the next diagram the n1 are plotted against n0 for 0 ⇒ n0 ⇒ 200.
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Figure 11.5: The n1 against n0 for 0 < n0 < 200 for the case where the iteration is performed
in base 9. The diagonal n1 = n0 is dashed. The period 2 and period 3 cycle are orange.

The distribution of distances is shown in the next figure.
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Figure 11.6: Base 9 distribution of distances for starting numbers smaller than or equal to:
103 (orange), 104 (red), 105 (green), 106 (blue), 107 (black).
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In base 8 there are three fixed points: 18 = 110, 248 = 2010 and 648 = 5210, two period 2 cycles:
(48, 208) =(410, 1610) and (328, 158) =(2610, 1310), and one period 3 cycle: (58, 318, 128) =(510,
2510, 1010). The distribution of distances is
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Figure 11.7: Base 8 distribution of distances for starting numbers smaller than or equal to:
103 (orange), 104 (red), 105 (green), 106 (blue), 107 (black).

In base 7 there exist five fixed points: 17 = 110, 137 = 1010, 347 = 2510, 447 = 3210 and 637 =

4510, and two period 4 cycles: (27, 47, 227, 117) =(210, 410, 1610, 810) and (237, 167, 527, 417) =

(1710, 1310, 3710, 2910). The distribution of distances is
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Figure 11.8: Base 7 distribution of distances for starting numbers smaller than or equal to:
103 (orange), 104 (red), 105 (green), 106 (blue), 107 (black).
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In base 6 there exist one fixed point: 16 = 110, and one period 8 cycle:
(326, 216, 56, 416, 256, 456, 1056, 426) = (2010, 1310, 510, 2510, 1710, 2910, 4110, 2610).
The distribution of distances is

0 1 2 3 4 5 6 7 8 9
100

101

102

103

104

105

106

distance D

fr
eq

ue
nc

y

Figure 11.9: Base 6 distribution of distances for starting numbers smaller than or equal to:
103 (orange), 104 (red), 105 (green), 106 (blue), 107 (black).

In base 5 there exist three fixed points: 15 = 110, 235 = 1310 and 335 = 1810, and one period
3 cycle: (45, 315, 205) = (410, 1610, 1010). The distribution of distances is
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Figure 11.10: Base 5 distribution of distances for starting numbers smaller than or equal to:
103 (orange), 104 (red), 105 (green), 106 (blue), 107 (black).
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In base 4 there exists only one fixed point: 14 = 110. The distribution of distances is
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Figure 11.11: Base 4 distribution of distances for starting numbers smaller than or equal to:
103 (orange), 104 (red), 105 (green), 106 (blue), 107 (black).

In base 3 there exist 3 fixed points: 13 = 110, 123 = 510 and 223 = 810, and one period 2 cycle:
(23, 113) = (210, 410). The distribution of distances is
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Figure 11.12: Base 3 distribution of distances for starting numbers smaller than or equal to:
103 (orange), 104 (red), 105 (green), 106 (blue), 107 (black).
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In base 2 there exists only one fixed point: 12 = 110. The distribution of distances is
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Figure 11.13: Base 2 distribution of distances for starting numbers smaller than or equal to:
103 (orange), 104 (red), 105 (green), 106 (blue), 107 (black).

For the square digit sum iteration in base 8 we found 3 fixed points and 2 period 2 cycles and
1 period 3 cycle. The cycle periods p will be denote briefly as 13, 22, 3. The p for the square
digit sum iteration in base 2 through 10 are tabulated below.

base 2 3 4 5 6 7 8 9 10

p 1 13, 2 1 13, 3 1, 8 15, 42 13, 22, 3 13, 2, 3 1, 8

11.6 Happy numbers

For the squared digit sum iteration in base b a positive integer whose orbit arrives at 1 is
called a happy number. In base 10, for example, 7 is a happy number since its orbit goes as
7, 49, 97, 130, 10, 1. In base 10 the first view happy numbers are 1, 7, 10, 13, 19, 23, 28, 31,
32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100, ... The latter sequence is known as the A007770
sequence of the OEIS [2]. In base 6, as another example, 1126 = 4410 is a happy number since
its orbit goes as 1126, 106, 16. Presented in base 10 the latter orbit is 44, 6, 1. Presented in
base 10 the first view happy numbers in base 6 are 1, 6, 36, 44, 49, 79, 100, 160, 170, 216,
224, 229, 254, 264, 275, 285, 289, 294, 335, 347, 355, 357, 388, ...

In base 2 and base 4 there exists no other periodic cycles than the single fixed point 12 = 110
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and 14 = 110 respectively. As a consequence, in base 2 all orbits will arrive at 1 and in base 4
all orbits will arrive at 1. That is, in base 2 all numbers are happy and in base 4 all numbers
are happy. For this reason base 2 and base 4 are called happy bases. The only happy bases
less than 5 ·108 are base 2 and base 4. It is still an unsolved problem whether base 2 and base
4 are the only happy bases.

In any base b the fraction of starting values for which the orbit ends in 1 is called the density

of happy numbers.
For n0 ⇒ 106 the density of happy numbers in base 10 is approximately 0.143.
For n0 ⇒ 106 the density of happy numbers in base 9 is approximately 0.0733.
For n0 ⇒ 106 the density of happy numbers in base 8 is approximately 0.0571.
For n0 ⇒ 106 the density of happy numbers in base 7 is approximately 0.0154.
For n0 ⇒ 106 the density of happy numbers in base 6 is approximately 0.0557.
For n0 ⇒ 106 the density of happy numbers in base 5 is approximately 0.206.
For n0 ⇒ 106 the density of happy numbers in base 4 is exactly 1.
For n0 ⇒ 106 the density of happy numbers in base 3 is approximately 0.267.
For n0 ⇒ 106 the density of happy numbers in base 2 is exactly 1.

In each of the above bases the curve of the density against n is rather wobbly. We saw
that already for the density curve in base 10. To illustrate it once more we show the density
curve in base 6 for 105 ⇒ n ⇒ 106.
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Figure 11.14: The density of happy numbers n0 ⇒ n in base 6 for 105 ⇒ n ⇒ 106.

Because of the descending trend of the density curve it is not clear if the density converges to
a limit value in the limit n ↘ ⇑.
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Digits factorial sum

12.1 Introduction

Another way to play with the digits of a numbers is by taking the sum of the factorials of
the digits [5]. For instance, if we start with the number 147, then the sum of the factorials
of the digits is 1! + 4! + 7! = 1 + 24 + 5040 = 5065. Repeating the process gives 5! +

0! + 6! + 5! = 120 + 1 + 720 + 120 = 961, 9! + 6! + 1! = 362880 + 720 + 1 = 363601,
3!+6!+3!+6!+0!+1! = 6+720+6+720+1+1 = 1454, 1!+4!+5!+4! = 1+24+120+24 = 169,
1! + 6! + 9! = 1 + 720 + 362880 = 363601. That is, the sequence ends at the period 3 cycle
(169, 363601, 1454). Formally, let {dm, dm→1, ...d2, d1, d0}, with dm > 0, be the m+1 digits of
n. Thus n =

m
j=0 dj10

j . Then the digits factorial sum F is defined as

F(n) =
m∑

j=0

dj ! . (12.1)

The largest number n with m + 1 digits is
m∑

j=0

9 · 10j . After one iteration we obtain F(n) =

(m+1) ·9! = 362880(m+1). The largest number with 7 digits is 9999999. After one iteration
we obtain F(9999999) = 7 · 9! = 2540160. Since 2540160 is smaller than 9999999, we know
for sure that a sequence of numbers generated by the digits factorial process eventually will
be smaller than or equal to 2540160: F(n) ⇒ 2540160 for n ⇒ 9999999. For n ⇒ 2540160

the largest number F(n) is 2177281. It only occurs for n = 1999999: F(1999999) = 2177281.
Since F(2177281) = 50406, which is much smaller than 2177281, it is of interest to see for the
largest number after two iterations starting with numbers smaller than or equal to 2540160.
Or even better, to see for the largest number after i iterations starting with numbers smaller
than or equal to 2540160. The results are shown in the next table.
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i maximum number i maximum number i maximum number

0 2540160 13 726493 26 404670

1 2177281 14 726493 27 404670

2 1094406 15 726493 28 404670

3 766106 16 443520 29 404670

4 766106 17 443520 30 404670

5 730800 18 443520 31 404670

6 726608 19 443520 32 404670

7 726608 20 443520 33 404670

8 726608 21 443520 34 404670

9 726608 22 443520 35 404670

10 726493 23 443520 36 404670

11 726493 24 443520 37 363601

12 726493 25 443520 38 363601

The maximum number will never descend below 363601 since 363601 is an element of the cycle
(169, 363601, 1454).

12.2 Cycles of the F function

A numerical inspection of numbers smaller than 363601 delivers the following periodic cycles:
four fixed points: (1), (2), (145), (40585),
two period 2 cycles: (871, 45361), (872, 45362) and
one period 3 cycle (169, 363601, 1454).

We will denote the periodic cycles as follows:
c1 = (1), c2 = (2), c3 = (145), c4 = (40585),
c5 = (871, 45361), c6 = (872, 45362) and
c7 = (169, 363601, 1454).

The cycles c5 and c6 are known as A214285 of the OEIS and the cycle c7 is known as A308259
of the OEIS [2].
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12.3 Statistics of cycle arrivals

For n0 ⇒ 10k with k = 1, 2, 3, 4, 5, 6, 7, the number of starting values for which the orbit ends
in c1, c2, c3, c4, c5, c6 or c7 are shown in the next table.

cycle n ⇒ 101 n ⇒ 102 n ⇒ 103 n ⇒ 104 n ⇒ 105 n ⇒ 106 n ⇒ 107

c1 1 1 1 1 1 1 1

c2 2 3 12 138 2679 25789 251822

c3 0 0 10 10 318 7454 63931

c4 0 0 0 0 108 504 14627

c5 0 2 12 76 666 6261 83873

c6 0 0 12 96 558 6679 40089

c7 7 94 953 9679 95670 953312 9545657

We see approximately 95.5% of the orbits ends at the (169, 363601, 1454) cycle and approxi-
mately 2.5% ends at the fixed point (2).

12.4 Statistics of untouchables

If we start with n0 = 3, then the orbit is 3, 6, 720, 5043, 151, 122, 5, 120, 4, 24, 26, 722, 5044,
169, 363601, 1454, 169, ... . So, if we start with numbers smaller than 4, the numbers 1, 2,
4, 5 and 6 are touchable, while the numbers 3, 7, 8, 9, etc. are untouchable. If we start with
n0 = 8, then the orbit is 8, 40320, 34, 30, 7, and so on until it arrives at the period 3 cycle
c7. That is, if we start with numbers smaller than 9, the number 7 is no longer untouchable.
Also here we keep track of the smallest starting number tn for which a number n is no longer
untouchable.

If we start with numbers smaller than 103, the first part of the list of tn is:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14. 15 16 17 18 19 20 21 22 23 24 25 26 27 28

tn 1 2 12 3 3 3 8 23 45 223 569 33 133 233 ? ? ? 333 ? ? ? ? ? 3 14 3 55 37

We see t7 = 8 as mentioned before. The question marks show that for starting numbers
smaller than 1000 the numbers 15, 16, 17, 19, 20, 21,22,23, ... are untouchable. Question
marks may disappear by taking larger starting numbers.
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For starting numbers smaller than 107 the first part of the list of tn is as follows:
1, 2, 12, 3, 3, 3, 8, 23, 45, 223, 569, 33, 133, 233, 1233, 2233, 12233, 333, 1333, 2333, 12333,
22333, 122333, 3, 14, 3, 55, 37, 1224, 8, 134, 234, 1234, 8, 28, 246, 1334, 2238, 128, 499, 2589,
3334, 1338, 23334, 12589, 223334, 1223334, 44, 45, 66, 68, 268, 12244, 344, 1266, 377, 7, 1299,
489, 3344, 2338, 23344, 1229, 223344, 1223344, 33344, 133344, 233344, 1233344, 2233344, ?,
444, 1444, 58, 9, 22444, 122444, 3444, 36, 5589, 25589, 223444, 1223444, 33444, 4589, 233444,
1233444, 2233444, ?, 333444, 1333444, 2333444, ?, ?, ?, 4444, 9,...
Now the first question mark is for n = 71.

It raises the question whether or not all numbers eventually become touchable if large enough
starting numbers are used or do there exist truly untouchable numbers in the sense that they
stay untouchable even if infinitely large starting numbers are used.

If we only start with numbers from the set {1, 2, 3}, then 3 is the only element of the set
{1, 2, 3} which is untouchable. The ratio of the number of untouchables and set length is 1/3.
If we only start with numbers from the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then 3, 8, 9 and 10 are
the only untouchable elements. The ratio of the number of untouchables and set length is
4/10. As before, we let un be the number of elements which are untouchable if we only start
with numbers from the set {1, 2, 3, ...,n}. For numbers up to 107 the ratio un/n is plotted
against n in the next figure.
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Figure 12.1: The ratio un/n for the digits factorial sum.

The latter diagram suggest lim
n↑↓

un
n

= 1 for the digits factorial sum.
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12.5 Statistics of distances

For instance, the orbit 4, 24, 26, 722, 5044, 169 implies D(4) = 5. There are more starting
values for which the distance is 5. The distribution of distances is shown in the next figure.
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Figure 12.2: Distribution of distances for starting numbers smaller than or equal to: 104

(orange), 105 (red), 106 (green), 107 (blue), 108 (black).

12.6 Records of distances

Since 1 and 2 are fixed points, we have D(1) = D(2) = 0. From the orbit 3, 6, 720, 5043, 151,
122, 5, 120, 4, 24, 26, 722, 5044, 169, 363601, 1454, 169 ... we see that for starting value 3 it
takes 13 steps to arrive at a cycle. Thus D(3) = 13, which is a distance record. The distance
records are tabulated for n0 ⇒ 109.

# 1 2 3 4 5 6 7 8 9 10

n0 3 7 8 23 36 45 229 1479 1 233 466 246 779 999

D record 13 29 33 34 45 51 52 57 58 59

It raises the following question: for which n0 > 109 will show up a distance record larger than
59?
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12.7 Records of maximums

As we saw before, starting number 3 has orbit 3, 6, 720, 5043, 151, 122, 5, 120, 4, 24,
26, 722, 5044, 169, 363601, 1454, 169, ... The maximum value of the orbit is 363601, thus
M(3) = 363601. As follows from the orbit of 3, M(4) = M(5) = M(6) = 363601. Starting
number 7 has orbit 7, 5040, 146, 745, 5184, 40465, 889, 443520, 177, 10081, 40324, 57, 5160,
842, 40346, 775, 10200, 6, 720, 5043, 151, 122, 5, 120, 4, 24, 26, 722, 5044, 169, ... That is,
M(7) = 443520, which is a new maximum record. Continuing the search we find the next
maximum record for n = 45: M(45)=726493. The maximum records are tabulated below for
n ⇒ 2177286.

# n M record

1 3 363 601

2 7 443 520

3 45 726 493

4 799 730 800

5 899 766 080

6 999 1 088 640

7 1999 1 088 641

8 2999 1 088 642

9 3999 1 088 646

10 4999 1 088 664

11 5999 1 088 760

12 6999 1 089 360

# n M record

13 7999 1 093 680

14 8999 1 128 960

15 9999 1 451 520

16 19 999 1 451 521

17 29 999 1 451 522

18 39 999 1 451 526

19 49 999 1 451 544

20 59 999 1 451 640

21 69 999 1 452 240

22 79 999 1 456 560

23 89 999 1 491 840

24 99 999 1 814 400

# n M record

25 199 999 1 814 401

26 299 999 1 814 402

27 399 999 1 814 406

28 499 999 1 814 424

29 599 999 1 814 520

30 699 999 1 815 120

31 799 999 1 819 440

32 899 999 1 854 720

33 999 999 2 177 280

34 1 999 999 2 177 281

35 2 177 282 2 177 282

36 2 177 283 2 177 283

For n ↗ 2177282 the maximum record equals the starting value of the orbit. So, for the digits
factorial sum it is not interesting to look for maximum records other than the ones shown in
the table above.



Chapter 13

P function

13.1 Pillai’s function

For a number n Pillai’s arithmetical function P (n) is defined as follows

P (n) =
n∑

j=1

gcd(j,n) , (13.1)

where gcd(j,n) is the greatest common divisor of j and n. An equivalent expression for Pillai’s
arithmetical function is

P (n) =
∑

d|n

dφ(n/d) . (13.2)

The summation is over all divisors d of n. Euler’s totient function φ(n) counts the positive
integers up to a number n that are relatively prime to n. Another equivalent expression is

P (n) =
∑

d|n

d ↼(d)µ(n/d) , (13.3)

where ↼ is the divisor function and µ is the Möbius function. The divisor function ↼(n) counts
the number of divisors of n. The Möbius function is defined as follows:

µ(n) =






+1 if n is a square-free positive integer with an even number of prime factors ,
↑1 if n is a square-free positive integer with an odd number of prime factors ,
0 if n has a squared prime factor .

(13.4)
For n = 6, for instance, we will obtain P (6) = 15 with any of the above three functions:
P (6) = gcd(1, 6) + gcd(2, 6) + ... + gcd(6, 6) = 1 + 2 + 3 + 2 + 1 + 6 = 15.
P (6) = 1 · φ(6) + 2φ(3) + 3φ(2) + 6φ(1) = 1 · 2 + 2 · 2 + 3 · 1 + 6 · 1 = 2 + 4 + 3 + 6 = 15.
P (6) = 1 · ↼(1)µ(6) + 2↼(2)µ(3) + 3↼(3)µ(2) + 6↼(6)µ(1) = 1 · 1 · 1↑ 2 · 2 · 1↑ ·3 · 2 · 1+ 6 · 4 · 1

= 1↑ 4↑ 6 + 24 = 15.
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The set {gcd(1, 6), gcd(2, 6), gcd(3, 6), gcd(4, 6), gcd(5, 6), gcd(6, 6)} = {1, 2, 3, 2, 1, 6} contain
the same numbers as the product of {1, 2} and {1, 1, 3}: {1, 2} ∝ {1, 1, 3} = {1, 1, 3, 2, 2, 6}.
That is, the set {gcd(k, 6)}, k = 1, 2, 3, 4, 5, 6, equals the set {gcd(k, 2)}, k = 1, 2, times the
set {gcd(k, 3)}, k = 1, 2, 3. As a consequence, P (6) = P (2) ·P (3). In general, if gcd(v,w) = 1

then P (vw) = P (v) ·P (w). Pillai’s function being multiplicative is a consequence of the Euler
totient function being multiplicative. Indeed for n = vw and gcd(v,w) = 1 we have

P (n) = P (vw) =
∑

d|vw

dφ(vw/d) =
∑

dv |v

∑

dw|w

dvdwφ(vw/dv/dw) . (13.5)

Since φ(vw/dv/dw) = φ(v/dv)φ(w/dw) the latter can be elaborated to

P (vw) =
∑

dv |v

dvφ(v/dv)
∑

dw|w

dwφ(w/dw) = P (v) · P (w) . (13.6)

Let us write the prime factorization of n as

n =
∏

pj |n

p
ωj

j , (13.7)

where εj ↗ 1 is the largest power of prime pj for which p
ωj

j is a divisor of n. Then the
multiplicative nature of Pillau’s function allows us to write

P (n) =
∏

pj |n

P

p
ωj

j


. (13.8)

To obtain Pillau’s function for a prime power we first take a look at P (5) = 1+1+1+1+5 and
P
(
52
)
= 1+1+1+1+5+1+1+1+1+5+1+1+1+1+5+1+1+1+1+5+1+1+1+1+25.

It follows that P
(
52
)
= 5P (5) + 52 ↑ 5. Similarly, P

(
53
)
= 5P

(
52
)
+ 53 ↑ 52. The rule in

these examples holds for any prime: P
(
pω+1

)
= p · P (pω) + pω+1 ↑ pω . The latter implies

P (pω) = (ε+ 1)pω ↑ εpω→1 . (13.9)

It can be proven by induction: For ε = 0 we have P
(
p0
)
= P (1) = 1 = (0 + 1)p0 ↑ 0 · p→1

and for ε+ 1 we have

P
(
pω+1

)
= p · P (pω) + pω+1 ↑ pω = (ε+ 1)

(
pω+1

)
↑ εpω + pω+1 ↑ pω

= (ε+ 2)
(
pω+1

)
↑ (ε+ 1)pω . (13.10)

From equations (13.9) and (13.8) it follows

P (n) =
∏

pj |n

(εj + 1)p
ωj

j ↑ εjp
ωj→1
j ′

∏

pj |n

(
εj(pj ↑ 1) + pk

)
p
ωj→1
j . (13.11)

It o!ers a fast way to evaluate the Pillai function. For n = 1, 2, 3, 4, 5, 6, 7, 8, ... the Pillai
values are 1, 3, 5, 8, 9, 15, 13, 20, .... The latter is the sequence A018804 of the OEIS [2].
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According to equation (13.9) P (pω) > pω, and therefore P (n) > n. To avoid orbits running
to infinity, we create by means of Pillai’s function the following iteration:

nk+1 =
P (nk)

gcd (nk,P (nk))
. (13.12)

We will denote the underlying function as the P function:

P(n) =
P (n)

gcd (n,P (n))
. (13.13)

For instance, for n = 6 we obtain

P(6) =
P (6)

gcd (6,P (6))
=

15

gcd(6, 15)
=

15

3
= 5 . (13.14)

13.2 Cycles of the P function.

For starting values n0 ⇒ 109 the iteration nk+1 = P(nk) contains
one fixed point: c1 = (1),
two period 2 cycles: c2 = (13, 25) and

c3 = (2758743, 10327625),
five period 3 cycles: c4 = (21, 65, 45),

c5 = (31, 61, 121),
c6 = (651, 3965, 5445),
c7 = (1281, 7865, 1395) and
c8 = (2015, 2745, 2541),

two period 4 cycles: c9 = (377, 1425, 481, 1825) and
c10 = (70737, 295075, 1135953, 134125),

two period 6 cycles: c11 = (403, 1525, 1573, 775, 793, 3025) and
c12 = (498945, 761463, 4544155, 15091947, 24544875, 2853059),

one period 12 cycle: c13 = (11687, 86925, 58201, 56575, 22997, 172425, 14911, 111325,

45617, 44175, 29341, 220825) and
one period 14 cycle: c14 = (12483, 37555, 486837, 402375, 23579, 177045, 262143,

209235, 312075, 97643, 104025, 69745, 187245, 28971).

The elements of the cycles are all odd. An odd n implies all pj |n are odd, which implies
all the εj(pj ↑ 1)+ pj in equation (13.11) are odd, which on its turn implies all n’s successors
P(n), P(P(n)), etc., are odd. So, if an element of a cycle is odd, then all elements of the cycle
have to be odd. As a consequence, if an element of a cycle is even then all the elements have
to be even. To investigate the latter possibility we consider the situation for even n. An even
n will contain a factor 2ω1 . For a possible even factor in P (n) we only have to consider the
factor pω1→1

1 (ε1(p1 ↑ 1) + p1) = 2ω1→1(ε1 + 2).
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Now we distinguish two cases: ε1 is odd and ε1 is even.
If ε1 is odd, then ε1 + 2 is odd and the even factor in Pillai’s function is 2ω1→1. As a conse-
quence gcd (n,P (n)) = 2ω1→1 and P(n) will be odd.
If ε1 is even, then ε1 + 2 is even and the even factor in Pillai’s function is at least 2ω1 . As
a consequence gcd (n,P (n)) = 2ω1 and there will only be an even factor in P(n) if

ε1 + 2

2
is

even. Since
ε1 + 2

2
< 2ω1 for ε1 ↗ 2, the even factor of P(n) is smaller than the even factor

of n. Each generated even number will therefore never equal one of its predecessors.
As a result we can conclude that a cycle with an even element is impossible.

13.3 Cycle combinations

The first element of cycle c9 is 377 = 13 ∞ 29. We notate it as c9(1) = 377. The first element
of cycle c5 is 31. We notate it as c5(1) = 31. The product of 377 and 31 is 11687, which is
the first element of cycle c13. We therefore have c9(1) · c5(1) = c13(1).
Since 1425 is the second element of cycle c9, and 61 is the second element of cycle c5 and
1425 · 61 = 86925 is the second element of cycle c13, we have c9(2) · c5(2) = c13(2).
In total we obtain:

c9(1) · c5(1) = c13(1) ,

c9(2) · c5(2) = c13(2) ,

c9(3) · c5(3) = c13(3) ,

c9(4) · c5(1) = c13(4) ,

c9(1) · c5(2) = c13(5) ,

c9(2) · c5(3) = c13(6) ,

c9(3) · c5(1) = c13(7) ,

c9(4) · c5(2) = c13(8) ,

c9(1) · c5(3) = c13(9) ,

c9(2) · c5(1) = c13(10) ,

c9(3) · c5(2) = c13(11) ,

c9(4) · c5(3) = c13(12) . (13.15)

That is, the period 12 cycle c13 is a combination of period 4 cycle c9 and period 3 cycle c5.

There are other combinations of cycles.
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The period 3 cycle c6 is a combination of period 3 cycle c4 and period 3 cycle c5:

c4(1) · c5(1) = c6(1) ,

c4(2) · c5(2) = c6(2) ,

c4(3) · c5(3) = c6(3) . (13.16)

The period 3 cycle c7 is a combination of period 3 cycle c4 and period 3 cycle c5:

c4(1) · c5(2) = c7(1) ,

c4(2) · c5(3) = c7(2) ,

c4(3) · c5(1) = c7(3) . (13.17)

The period 3 cycle c8 is a combination of period 3 cycle c4 and period 3 cycle c5:

c4(1) · c5(3) = c8(3) ,

c4(2) · c5(1) = c8(1) ,

c4(3) · c5(2) = c8(2) . (13.18)

The period 6 cycle c11 is a combination of period 2 cycle c2 and period 3 cycle c5:

c2(1) · c5(1) = c11(1) ,

c2(2) · c5(2) = c11(2) ,

c2(1) · c5(3) = c11(3) ,

c2(2) · c5(1) = c11(4) ,

c2(1) · c5(2) = c11(5) ,

c2(2) · c5(3) = c11(6) . (13.19)

Ignoring that cycle dimensions do not allow c12 as a combination of c14 and c5, we obtain
the following:

c14(1) · c5(2) = c12(2) ,

c14(2) · c5(3) = c12(3) ,

c14(3) · c5(1) = c12(4) ,

c14(4) · c5(2) = c12(5) ,

c14(5) · c5(3) = c12(6) ,

c14(6) · c5(1) = 11 · c12(1) ,

c14(7) · c5(2) = 3 · 7 · c12(2) ,

c14(8) · c5(3) =
3 · 13
7

· c12(3) ,
... (13.20)
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The first five equalities seem hopeful for some sort of combination, but then things break down.

Anyway, the union of all prime power factors of all elements of all cycles is the set
{3, 32, 33, 5, 52, 53, 7, 11, 112, 13, 17, 19, 29, 31, 37, 61, 73}.

13.4 Statistics of cycle arrivals

For n0 ⇒ 10k with k = 3, 4, 5, 6, 7, 8, the number of starting values for which the orbit ends in
a cycle are shown in the next table.

cycle n0 ⇒ 103 n0 ⇒ 104 n0 ⇒ 105 n0 ⇒ 106 n0 ⇒ 107 n0 ⇒ 108

c1 1 1 1 1 1 1

c2 300 2189 16 387 127 175 1 029 420 8 757 731

c3 0 0 2 110 2415 38 261

c4 43 226 1364 9842 78 086 647 030

c5 4 41 433 4388 40 243 359 671

c6 6 57 374 3324 31 183 314 522

c7 4 50 357 2783 24 750 228 999

c8 2 27 290 3000 29 728 296 019

c9 450 4688 45 824 439 902 4 241 676 41 039 799

c10 0 37 957 15374 210 249 2 619 968

c11 96 831 7695 70 411 652 854 6 131 639

c12 0 1 151 3583 63 376 919 061

c13 15 522 7628 94 458 1 042 165 11 047 228

c14 79 1330 18 537 225 649 2 553 854 27 600 071

13.5 Statistics of untouchables

If we start with n0 = 2, then the orbit is 2, 3, 5, 9, 7, 13, ... So, if we start with numbers
smaller than 4, the numbers 1, 3, 5, and 7 are touchable, while the numbers 2, 4, 6, 8, etc. are
untouchable. For n0 = 4 the orbit is 4, 2, 3, 5, 9, 7, 13, ... That is, for starting number 4 the
number 2 is no longer untouchable. As usual, we keep track of the smallest starting number
tn for which a number n is no longer untouchable.
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If we start with numbers smaller than 103, the first part of the list of tn is:
1, 4, 2, 64, 2, 60, 2, ?, 2, 12, 41, 960, 2, 36, 120, ?, 14, 20, 34, 192, 11, 324, ?, ?, 13, 28, 10,
576, 711, ?, 121, ?, 14, 500, 14, 320, 14, 196, 14, ?, ?, 44, ?, ?, 23, ?, ?, ?, 34, 52, ...
From s4 = 64 we see that 4 becomes untouchable for the first time if the starting value is 64.
The question marks show that for starting numbers smaller than 1000 the numbers 8, 16, 23,
24, 30, 32, 40, 41, 43, 44, 46, 47, 48 ... are untouchable. Question marks may disappear by
taking larger starting numbers.

For starting numbers smaller than 107 the first part of the list of tn is as follows:
1, 4, 2, 64, 2, 60, 2, 16384, 2, 12, 41, 960, 2, 36, 120, ?, 14, 20, 34, 192, 11, 324, 59049, 245760,
13, 28, 10, 576, 711, 16380, 121, ?, 14, 500, 14, 320, 14, 196, 14, 49152, 1271, 44, 20434, 5184,
23, 236196, ?, ?, 34, 52,...
Several question marks have disappeared. The first question mark now is for n = 16.

If we only start with numbers from the set {1, 2, 3, 4}, then 4 is the only untouchable ele-
ment. The ratio of the number of untouchables and set length is 1/4. Let un be the number
of elements of the set {1, 2, 3, ...,n} which are untouchable if we only start with numbers from
the set {1, 2, 3, ...,n}. The ratio of untouchables and set length is un/n. For numbers up to
107 the ratio un/n is plotted against n in the next figure.
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Figure 13.1: The ratio un/n for the P function.

The question arises: What will be the value of lim
n↑↓

un
n

?
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13.6 Statistics of distances

For instance, the orbit 2, 3, 5, 9, 7, 13 implies D(2) = 5. The distribution of distances is
shown in the next figure.
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Figure 13.2: Distribution of distances for starting numbers smaller than or equal to: 104

(orange), 105 (red), 106 (green), 107 (blue), 108 (black).

13.7 Records of maximums

For starting number 2 we have the orbit 2, 3, 5, 9, 7, 13, 25, 13, ... Since the orbit never leaves
the cycle c2 = (13, 25), the maximum value of the orbit is 25: M(2) = 25. It is a maximum
record since M(1) = 1. It turns out that M(n) = 25 for n = 3, 4, 5, 6, 7, 8 and 9. For starting
number 10 we have the orbit 10, 27, 3, 5, 9, 7, 13, 25, 13, ... That is, M(10) = 27, which is a
new maximum record. Continuing the search we find the next maximum record for n = 11:
M(11) = 65, and so on. The maximum records are tabulated below for n ⇒ 109.
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# n M record

1 1 1

2 2 25

3 10 27

4 11 65

5 14 1825

6 29 13 797

7 74 486 837

8 331 802 845

9 662 1 271 875

10 2297 2 429 973

11 3062 4 673 025

12 3959 58 907 277

13 9599 110 653 125

# n M record

14 19 198 602 248 075

15 45 691 959 109 375

16 84 467 5 182 970 625

17 126 691 9 212 646 375

18 137 073 17 583 671 875

19 186 437 23 220 390 625

20 253 382 25 694 585 917

21 380 073 49 412 665 225

22 451 153 72 872 017 075

23 868 129 324 498 671 875

24 1 330 257 1 013 947 890 417

25 2 604 387 1 529 779 453 125

26 3 927 422 3 014 172 578 725

# n M record

27 5 070 331 4 129 546 655 637

28 7 470 479 5 107 319 823 177

29 8 424 961 8 449 565 753 475

30 11 022 962 10 788 553 771 875

31 11 116 562 18 216 757 288 125

32 13 807 831 19 402 011 657 909

33 21 242 577 23 541 461 598 375

34 21 894 478 69 900 648 191 649

35 36 091 262 135 348 136 171 875

36 41 934 721 1 586 828 448 502 605

37 285 435 047 4 340 378 636 015 625

38 760 800 842 37 474 339 083 671 875

39

The records of orbit maximums have been plotted against the starting numbers n ⇒ 109 in
the next figure.
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Figure 13.3: The records of orbit maximums M plotted against starting value n.

For starting value 2 the orbit is 2, 3, 5, 9, 7, 13, 25, 13, ... Its maximum, 25, is a maximum
record which occurs on the seventh position of the orbit. In the next figure the position of a
maximum record in an orbit is plotted against the starting value of the orbit.
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Figure 13.4: The mth position of a maximum record in an orbit against the starting value of
the orbit.

The position of a maximum record in an orbit seems to be quite independent of the starting
value of the orbit; the correlation is approximately ↑0.067.
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13.8 Records of distances

For n = 2 the orbit is 2, 3, 5, 9, 7, 13, 25, 13, ... Thus the distance is 5: D(2) = 5. For
n = 3 the distance is 4. For n = 4 the orbit is 4, 2, 3, etc. That is, D(4) = 6, which is a new
distance record. The distance records are tabulated below for n ⇒ 109.

# n D record

1 2 5

2 4 6

3 12 7

4 14 17

5 36 18

6 51 19

7 87 23

8 198 24

9 454 25

10 947 27

# n D record

11 1009 34

12 1199 35

13 1207 36

14 3967 39

15 5431 43

16 7369 45

17 66 889 48

18 110 218 49

19 381 919 50

20 732 818 51

# n D record

21 1 371 899 52

22 2 057 849 53

23 6 654 391 54

24 14 909 397 55

25 32 514 996 56

26 109 625 669 58

27 862 305 881 59

28

29

30

13.9 Successive even numbers

From second section of this chapter we recall that an even n will contain a factor 2ω1 with ε1

a positive integer and that the contribution to Pillai’s function is 2ω1→1(ε1 + 2). If ε1 is odd
then 2ω1 and 2ω1→1(ε1 + 2) will have 2ω1→1 in common. As a consequence, for odd ε1 there
is no even factor in P(n). We will state it as a rule:

rule 1: If n = 22m+1 then P(n) is odd.

If ε1 is even, then n = 2ω1 and Pillai’s function 2ω1→1(ε1 + 2) will have 2ω1 in common.
The factor in P(n) will be ε1/2 + 1 for as far it is not divided by a divisor of n. Therefore
P(n) will not contain an even factor if ε1/2 is even. We state it as a rule:

rule 2: If n contains a factor 24m then P(n) is odd.
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The remaining possibility, ε1 = 4m+ 2 will be split into ε1 = 8m+ 2 and ε1 = 8m+ 6. For
ε1 = 8m+ 2 we have ε1/2 + 1 = 2(2m+ 1). So, there is a factor 21 in P(n). Because of rule
1 P(P(n)) is odd. As a rule:

rule 3: If n contains a factor 28m+2 then P(n) contains a factor 21 and, because of rule
1, P(P(n)) is odd.

The remaining possibility, ε1 = 8m + 6 will be split into ε1 = 16m + 6 and ε1 = 16m + 14.
For ε1 = 16m+6 we have ε1/2+ 1 = 4(2m+1). So, there is a factor 22 in P(n). Because of
rule 3 P(P(n)) contains a factor 21 and P(P(P(n))) is odd. As a rule:

rule 4: If n contains a factor 216m+6 then P(n) contains a factor 22 and, because of rule
3, P(P(n)) contains a factor 21 and P(P(P(n))) is odd.

The remaining possibility, ε1 = 16m+14 will be split into ε1 = 32m+14 and ε1 = 32m+30.
For ε1 = 32m+ 14 we have ε1/2 + 1 = 8(2m+ 1). So, there is a factor 23 in P(n). Because
of rule 1 P(P(n)) is odd. As a rule:

rule 5: If n contains a factor 232m+14 then P(n) contains a factor 23 and, because of rule 1,
P(P(n)) is odd.

The remaining possibility, ε1 = 32m+30 will be split into ε1 = 64m+30 and ε1 = 64m+62.
For ε1 = 64m+ 30 we have ε1/2 + 1 = 16(2m+ 1). So, there is a factor 24 in P(n). Because
of rule 2 P(P(n)) is odd. As a rule:

rule 6: If n contains a factor 264m+30 then P(n) contains a factor 24 and, because of rule 2,
P(P(n)) is odd.

The remaining possibility, ε1 = 64m + 62 will be split into ε1 = 128m + 62 and ε1 =

128m+ 126. For ε1 = 128m+ 62 we have ε1/2 + 1 = 32(2m+ 1). So, there is a factor 25 in
P(n). Because of rule 1 P(P(n)) is odd. As a rule:

rule 7: If n contains a factor 2128m+62 then P(n) contains a factor 25 and, because of rule 1,
P(P(n)) is odd.

The remaining possibility, ε1 = 128m + 126 will be split into ε1 = 256m + 126 and ε1 =

256m + 254. For ε1 = 256m + 126 we have ε1/2 + 1 = 64(2m + 1). So, there is a factor 26

in P(n). Because of rule 4 P(P(n)) contains a factor 22 and P(P(P(n))) contains a factor 21
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and P(P(P(P(n)))) is odd. As a rule:

rule 8: If n contains a factor 2256m+126 then P(n) contains a factor 26 and, because of
rule 4, P(P(n)) contains a factor 22, P(P(P(n))) contains a factor 21 and P(P(P(P(n)))) is
odd.

Once one comprehends the regularity, the remaining rules can be stated without analysis
and solely by referring to previous rules:

rule 9: If n contains a factor 2512m+254 then P(n) contains a factor 27 and, because of
rule 1, P(P(n)) is odd.

rule 10: If n contains a factor 21024m+510 then P(n) contains a factor 28 and, because of
rule 2, P(P(n)) is odd.

rule 11: If n contains a factor 22048m+1022 then P(n) contains a factor 29 and, because
of rule 1, P(P(n)) is odd.

rule 12: If n contains a factor 24096m+2046 then P(n) contains a factor 210 and, because
of rule 3, P(P(n)) contains a factor 21 and P(P(P(n))) is odd.

rule 13: If n contains a factor 28192m+4094 then P(n) contains a factor 211 and, because
of rule 1, P(P(n)) is odd.

rule 14: If n contains a factor 216324m+8190 then P(n) contains a factor 212 and, because
of rule 2, P(P(n)) is odd.

rule 15: If n contains a factor 232648m+16322 then P(n) contains a factor 213 and, because of
rule 1, P(P(n)) is odd.

The list of rules goes on and on. For even ε1, thus for rules 2 and larger, the regularity
is: If n contains a factor 22

rm+2r→1→2 then P(n) contains a factor 2r→2.

By means of the latter regularity we will search for records of lengths of rows with even
numbers. The smallest starting value n for which P(n) does not contain an even factor is
n = 2. Then P(n) is odd. To obtain the smallest n for which P(n) contains a factor 2 we
substitute r = 3 in 22

rm+2r→1→2. The result is 22
3m+22→2. For m = 0 this is 22

2→2 = 22.
So, for n = 22 = 4 the next iterate is P(n) will contain a factor 2. To obtain the smallest
n for which P(n) contains a factor 22 we substitute r = 4 in 22

rm+2r→1→2. The result is
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22
4m+23→2. For m = 0 this is 22

3→2 = 26. So, for n = 26 = 64 the next iterate is P(n)

will contain a factor 22. To obtain the smallest n for which P(n) contains a factor 26 we
substitute r = 8 in 22

rm+2r→1→2. The result is 22
8m+27→2. For m = 0 this is 22

7→2 = 2126.
So, for n = 2126 = 85070591730234615865843651857942052864 the next iterate is P(n) will
contain a factor 26 . To obtain the smallest n for which P(n) contains a factor 2126 we sub-
stitute r = 128 in 22

rm+2r→1→2. The result is 22
128m+2127→2. For m = 0 this is 22

127→2 =

2170141183460469231731687303715884105726. So, for n = 2170141183460469231731687303715884105726 the
next iterate is P(n) will contain a factor 2126.

In summary, starting with n0 = 2170141183460469231731687303715884105726 the iterate n1 contains a
factor 2126 = 85070591730234615865843651857942052864, the iterate n2 will contain a factor
64, the iterate n3 will contain a factor 4, the iterate n4 will contain a factor 2 and the iterate
n5 will be odd. So, for the first row with 5 successive even numbers we have to start with the
huge number n0 = 2170141183460469231731687303715884105726.

Briefly, if nm = 2, then nm→1 = 22nm→2, nm→2 = 22nm→1→2, nm→3 = 22nm→2→2, nm→4 =

22nm→3→2, and so on. Explicitly, if n4 = 21, then

n3 = 2(2
2→2) , n2 = 2

(
2(2

2→1) ↑ 2
)
, n1 = 2


2
(
2(2

2→1) ↑ 1
)
↑ 2



and

n0 = 2

(
2


2
(
2(2

2→1) ↑ 1
)
↑ 1



↑ 2



.

For the latter case the orbit starting with n0 is:
2170141183460469231731687303715884105726, 2126, 64, 4, 2, 3, 5, 9, 7, 13, 25, 13, ...

For the record:
n = 2 is the smallest number for which the orbit has a row of 1 even number,
n = 4 is the smallest number for which the orbit has a row of 2 even numbers,
n = 64 is the smallest number for which the orbit has a row of 3 even numbers,
n = 2126 is the smallest number for which the orbit has a row of 4 even numbers, and
n = 2170141183460469231731687303715884105726 is the smallest number for which the orbit has a row

of 5 even numbers.
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