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Preface

Iterations form a large subject of discrete mathematics. Some iterations have a practical
mathematical purpose such as numerical methods to find a root of a function. Other itera-
tions seem to have no other purpose than to satisfy our curiosity. Integer iteration can often
be stated in a simple way. For instance, for the Collatz iteration everybody can try some
starting numbers and observe how the orbits eventually arrive at 1. Despite the simplicity of
the Collatz iteration it has not yet been proven that all orbits will arrive at 1. Also other itera-
tions are hard to analyze. Maybe for this reason simple integer iterations trigger our curiosity.
Integer iterations are recreational for being comprehensible and for offering an opportunity to

search for records such as the largest length of an orbit or the largest element of an orbit.

In the present book we describe eleven recreational integer iterations. Chapter 1 is a small
introduction. For historical reasons chapter 2 and 3 are about the divisor sum iteration and
the aliquot divisor sum iteration respectively. Chapter 4 is about a variation of the divisor
sum iteration. It offers a lot of challenges to search for records of orbit lengths and orbit
maximums. A book about recreational integer iterations should certainly contain the Collatz
iteration. It is given attention in Chapter 5. The negative Collatz iteration, which is similar
to the Collatz iteration for negative integers, is covered in chapter 6. Generalized Collatz
versions are briefly considered in chapter 7. In chapter 8 we consider, mostly just for fun, two
iterations which to our best knowledge have not been considered in the literature. Chapter 9,
10, 11 and 12 are about the digit reversal iteration, the Kaprekar iteration, the squared digit
sum iteration and the digits factorial sum iteration. Since these four iteration are all applied
to integers with a limited number of digits, the orbit lengths are limited. As a consequence,
all orbits arrive at a cycle. For this reason they do not offer us a never ending challenge to
search for records. In the final chapter we will consider an integer iteration based on Pillai’s

arithmetic function. It offers a rich cycle structure and challenges for numerical research.

As for all our books, the present book is intended for interested high school students, un-
dergraduate Mathematics students and anybody else interested in recreational mathematics.
It therefore is written in an informal way. A proof of a theorem will therefore not have the
rigidity as in scientific publications. We accept a loose line of argument for the benefit of
clarity and simplicity. Citations will not be given for well known concepts such as Euler’s
totient function. The reader is advised to consult the internet if more information on such

topics is desired. Only recent publications and relevant websites will be cited.

February 2025, Hans Montanus, Ron Westdijk
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Chapter 1

Introduction

An iteration is the repetition of a process in order to generate a sequence of successive numbers:
the orbit. The first number or first numbers of a sequence are prescribed: the initial condition.

A first example of an iteration is

ng =nip_1+k. (1.1)

With initial condition ng = 0 it leads to the sequence 0,1, 3, 6,10, 15,21, 28, 36, .... The orbit

for starting value 0 is also generated without iterations by a closed-form expression:
1
ny = ik(k +1). (1.2)
A second example of an iteration is
Nk = Ng—1 + Nk—2 . (1.3)

With initial condition ng = 0 and nq = 1 it leads to the Fibonacci sequence: 0,1,1,2,3,5,8,13,
21,34,55,89, .... Also this orbit can be generated by a closed-form expression:

k k
ng = \}5 <1 +2\/5> — (1 _2\/5> . (1.4)

The latter is known as Binet’s formula.

A third example of an iteration is

1
3nk2+ if np, =1 mod?2
Ng+1 = (1.5)

% if ny, 20 mod 2

where nj is a positive integer. If we start with ng = 1 then ny = 2, no = 1, ng = 2 and
so on. The period two cycle (1,2) is called the trivial cycle. If we start with ng = 3 then

ny =5, ng = 8, ng =4, ng = 2, and so on. That is, for starting value ng = 3 the orbit

7
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arrives after 4 steps at the (1,2) cycle. To date it has been verified by computer that for each
starting values up to about 10%! that the orbit arrives at the trivial cycle (1,2). It therefore
is conjectured that for every starting value larger than 0 the orbit will arrive at the trivial
cycle. It is known as the Collatz conjecture. The reason for the Collatz conjecture not being
proven yet is probably the absence of a suitable closed-form expression for the generation of
the sequences. Without a closed-form expression it is notorious difficult to investigate prop-
erties in an analytical way. Instead, one investigates properties of Collatz sequences with the

aid of the computer. These efforts lead to all kinds of record tables, see [1] and citations therein.

The aim of this book is to investigate properties of integer sequences generated by itera-
tions for which there is no suitable closed-form alternative. For historical reasons we start
with the divisor sum iteration and aliquot divisor sum iteration. We try to pay attention also

to less known iterations. An example of a less known iteration is

o(ng)

ged (ng, o(ng))’ (1.6)

Ng+1 =

where o(z) is the divisor-sum of x and where ged(z,y) is the greatest common divisor of z

and y. For brevity we will call the underlying function S:

__ an
S(n) = zed (o) (1.7)

Another less known iteration is

P(ny)
ged (ng, P(ng))’

N1 = (1.8)
where P(x) is the ged-sum function also known as Pillai’s arithmetical function. For brevity

we will call the underlying function P:

P(n)

P = ed(n, )

(1.9)

Some properties of iterations will be analyzed algebraically if the analysis is simple and ap-
propriate. For most properties we resort to numerical research. Writing computer code for
the investigation of iterations is often considered a recreational effort. It can be performed by

amateurs as well as by professionals.



Chapter 2

Divisor sum

2.1 Introduction

A single step iteration based on the sum of divisors is
Ni+1 = U(nz) s (2.1)

where o(n) is the sum of the divisors of n:

o(n)=> d, (2.2)

dn

where d runs over all divisors of n including n itself. For instance, for n = 2, n = 3, n = 4,
n==6andn=12wehave 0(2) =14+2=3,03)=14+3=4,04)=14+2+4=7,0(6) =
142+3=6=12and 0(12) =14+2+3+4+6+ 12 = 28. We see, 0(12) = o(4) - 0(3), while
0(12) # 0(2)-0(6). In general, if ny and ny are relative prime, then o(ny-ng) = o(ny) - o(n2).

If we write the prime factorization of n as

n= H PR, (2.3)

pin

k

where oy, > 1 is the largest power of prime py, for which pi* is a divisor of n, then

o(n) = H o (pp*) - (2.4)
prln
By means of the identity
m+1 1
1+p+p2+... +pm—pp_1 (2.5)
we can write 1
(e%
O — 2:6)
k : :
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and thus
pgk—kl 1

pr— 1

prin
Forn =1,2,3,4,5,6,7,8,9,... the o values are 1,3,4,7,6,12,8,15,13,.... The latter is the
sequence A000203 of the OEIS [2].

o(n) = (2.7)

Since o(1) = 1 the number 1 is a fixed point. Since o(n) > n for n > 1, the orbits are
sequences of increasing numbers for n > 1. For instance, the orbit for 2 is 2,3,4,7,8,15, ...
and the orbit for 5 is 5, 6, 12, 28, 56, ..., see the sequences A007497 and A051572 of the OEIS [2].

There exist no integer m such that o(m) = 2: the number 2 is ‘untouchable’ or ‘unreach-
able’. The sequence of untouchable numbers for the map n — o(n) is 2, 5, 9, 10, 11, 16, 17,
19, 21, 22, 23, 25, 26, ..., see sequence A007369 of the OEIS.

2.2 Perfect numbers

If o(n) = 2n then n is a perfect number. The first four perfect numbers are

2122 -1) = &6,

22(2% —1) = 28,

24(2° —1) = 496,

262" —1) = 8128. (2.8)

A number of the type 2m_1(2m —1) is perfect if and only if 2™ — 1 is prime. For 2™ — 1 to be
prime, m has to be prime. Prime numbers of the form 2™ — 1 are known as Mersenne primes.
Primality of m does not guarantee primality of 2™ — 1. For instance, 2! — 1 = 23 - 89 is not
prime. For the next prime p = 13 the number 2!3 — 1 is prime. So, 2'2(2'3 — 1) = 33550336

is perfect. It is still an open question whether an odd perfect number exists.

If o(n) = k- n, with k integer, then n is a k-perfect number. If £k = 2 then n is perfect
and if £ > 3 then n is multi-perfect.

Up to 10? there are four 3-perfect numbers:

23.3.5 = 120,
25.3.7 = 672,
29.3.11-31 = 523776,
28.5.7-19-37-73 = 459818240. (2.9)
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Up to 10 there are six 4-perfect numbers:

2°.3%.5.7 = 30240,
23.32.5.7-13 = 32760,
22.32.5.72.13-19 = 2178540,
29.3%.5.11-31 = 23569920,
27.33.52.17-31 = 45532800,
29.32.7.11-13-31 = 142990848. (2.10)

The smallest 5-perfect number is larger then 10°:
27.34.5.7-112-17-19 = 14182439040. (2.11)

Up to 10? there are no 6-perfect numbers.

2.3 Superperfect numbers
A two-step iteration of n based on the sum of divisors is 0 (n) = o(c(n)). Also

nivo = o (ny). (2.12)
A number n is superperfect if it satisfies the equation

c@Pm)=2-n. (2.13)

Up to 10? there are seven superperfect numbers:

ol = 2|

2 = 4,

2t = 16,

26 = 64,

212 — 4096,

216 — 65536,

218 = 262144. (2.14)

The next superperfect number is 23° = 1073 741 824. Each superperfect number above is half
times the sum of a Mersenne number and 1. This can be understood as follows: if n = 2P~!
then o(n) = 2P — 1. And if 2P — 1 is a prime, then o(o(n)) = o(2P — 1) = 2P = 2n. It is not

known if there exists an odd superperfect number.

More general a number n is (2,k)-perfect if it satisfies the equation

cPm)=k-n. (2.15)
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Examples of (2,3)-perfect numbers are

23 = 8,
3-7 = 21,
2 = 512. (2.16)

We see that (2,3)-perfect numbers can be odd.

Examples of (2,4)-perfect numbers are

3-5 = 15,
3-11-31 = 1023,
3-7-19-73 = 29127,
33.19-31-2731-8191 = 355744082763. (2.17)

These four (2,4)-perfect numbers are all odd.
To date it is an open question if a (2,5)-perfect number exists.

Examples of (2,6)-perfect numbers are

2.3.7 = 42,
22.3.7 = 84,
25.5 = 160,
24.3.7 = 336,
20.3.7 = 1344,
212.3.7 = 86016,

3-5-7-132-31 = 550095,
216.3.7 = 1376256,
218.3.7 = 5505024,
230.3.7 = 22548578304. (2.18)

Except for 160 and 550095 the (2,6)-perfect numbers above are of the type n = 2P~1.3.7
where 2P — 1 is a Mersenne prime. For these n it follows that o(n) = (2P — 1) - 2° and
o(o(n)) =o(2P —1)-0(2% =2°-3%2-7 = 6n.

The odd number, 550095 = 3 -5-7- 132 - 31 is a little bit of interest. If an odd number n is
perfect, then n is a (2,6)-perfect number: o(n) = 2n and o (o(n)) = 0(2n) = o(2)-0(n) = 6n.

Although 550095 is (2,6)-perfect, it is not perfect: (550095) = 1124 352, while 2 - 550095 =

. ... 1124352 — 1100190
1100190. The relative deviation is 1100190 ~ 0.021961.
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2.4 Approximate perfect numbers

A number is close to perfect if o(n) — 2n is small but not zero. The smallest deviation occurs

for ||o(n) — 2n|| = 1. The next to smallest deviation occurs for ||o(n) — 2n|| = 2, etc.

Numbers for which o(n) —2n = 1 are called quasiperfect numbers. Until today numbers

for which o(n) — 2n = 1 have not been found.

Numbers for which o(n) — 2n = —1 are called almost perfect numbers. The only known
almost perfect numbers are powers of 2. Indeed, if n = 2* then o(n) = 2F*! — 1 and
o(n) —2n =21 —1-2.2F = _1. Until today it is not known if almost perfect odd num-

bers do exist. It even is not known if an almost perfect number n exist which is not a power of 2.

For numbers of the type
n=2m"1(2m 1 -2k), (2.19)

with 2™ — 1 — 2k a prime, we obtain
on)—2n=2"-1)(2™ —2k) - 2™ (2™ — 1 — 2k) = 2k. (2.20)

For k = 0 it is reduced to the perfect numbers: n = 2m~1 (2™ — 1) with 2™ — 1 a prime.

For k = 1 we have n = 2™~ 1 (2™ —3). If 2™ — 3 is a prime then o(n) — 2n = 2. For
instance, for m = 3 we have n = 20 and 0(20) = 42. For m < 1000 the factor 2™ — 3 is a
prime if m = 3, 4, 5, 6, 9, 10, 12, 14, 20, 22, 24, 29, 94, 116, 122, 150, 174, 213, 221, 233, 266,
336, 452, 545, 689, 694 and 850. For n < 10° there are 9 numbers for which o(n) — 2n = 2.
Among them there are 8 of the type n = 2™~ (2™ — 3) . Namely for m = 3, 4, 5, 6, 9, 10, 12
and 14. The exception is the number 650.

For k = —1 we have n = 2™~} (2™ 4+ 1). If 2™ + 1 is a prime then o(n) — 2n = —2. For
instance, for m = 1 we have n = 3 and 0(3) = 4. For m < 1000 the factor 2™ + 1 is a prime
if m =1, 2, 4, 8 and 16. For n < 10 there are 4 numbers for which o(n) — 2n = —2. All 4 of
them are of the type n = 271 (2™ 4+ 1) . Namely for m =1, 2, 4 and 8.

For k = 2 we have n = 2™~ 1 (2™ —5). If 2™ — 5 is a prime then o(n) — 2n = 4. For
instance, for m = 3 we have n = 12 and ¢(12) = 28. For m < 1000 the factor 2™ — 5 is a
prime if m = 3, 4, 6, 8, 10, 12, 18, 20, 26, 32, 36, 56, 66, 118, 130, 150, 166, 206, 226, 550, 706
and 810. For n < 107 there are 10 numbers for which o(n) — 2n = 4. Among them there are
6 of the type n = 2™~ 1 (2™ —5) . Namely for m = 3, 4, 6, 8, 10 and 12. The four exceptions
are 70, 4030, 5830 and 1848 964.
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For k = —2 we have n = 271 (2™ 4+ 3). If 2™ + 3 is a prime then o(n) — 2n = —4.
For instance, for m = 1 we have n = 5 and ¢(5) = 6. For m < 1000 the factor 2™ + 3 is
a prime if m = 1, 2, 3, 4, 6, 7, 12, 15, 16, 18, 28, 30, 55, 67, 84, 228, 390 and 784. For
n < 10° there are 14 numbers for which o(n) —2n = —4. Among them there are 8 of the type
n = 2m~1(2m 4+ 3). Namely for m = 1, 2, 3, 4, 6, 7, 12 and 15. The 6 exceptions are 110,
884, 18632, 116 624, 15370304, 73995 392.

For k = 3 we have n = 271 (2™ — 7). If 2™ —7 is a prime then o(n)—2n = 6. For instance, for

m = 39 we have n = 151 115 727 449 904 501 489 664 and o (n) = 302 231 454 899 809 002 979 334.
For m < 1000 the factor 2" — 7 is a prime if m = 39 and 715. For n < 10? there are 3 num-

bers for which o(n) — 2n = 6: 8925, 32445 and 442 365. None of them there are of the type

n =2m-t(m 7).

For k = —3 we have n = 2™~} (2™ 4+ 5). If 2™ + 5 is a prime then o(n) — 2n = —6. For
instance, for m = 1 we have n = 7 and o(7) = 8. For m < 1000 the factor 2™ + 5 is a prime
if m =1, 3,5, 11, 47, 53, 141, 143, 191, 273 and 341. For n < 10? there are 8 numbers for
which o(n) — 2n = —6. Among them there are 4 of the type n = 2™~ (2 + 5) . Namely for
m =1, 3, 5 and 11. The other 4 are 15, 315, 1155, 815634 429.

For our purpose we will also give the results for k = 6, £ = 28 and k = 496.

For k = 6 we have n = 2™~ 1 (2™ — 13). If 2™ — 13 is a prime then o(n) — 2n = 12. For
instance, for m = 4 we have n = 24 and o(n) = 60. For m < 20 the factor 2" — 13 is a
prime if m = 4, 5, 9, 13, and 17. The corresponding n = 2™~! (2™ — 13) are 24, 304, 127 744,
33501184 and 8 589 082 624 respectively.

For k = 28 we have n = 2m~1 (2™ —57). If 2™ — 57 is a prime then o(n) — 2n = 56.
For instance, for m = 6 we have n = 224 and o(n) = 504. For m < 20 the factor 2™ — 57 is
a prime if m = 6, 7, 8, 10, 16 and 19. The corresponding n = 2™~ (2™ — 57) are 224, 4544,
25472, 495104, 2145615872 and 137424011 264 respectively.

For k = 496 we have n = 2m~1 (2™ — 993). If 2™ — 993 is a prime then o(n) — 2n = 992. For
instance, for m = 10 we have n = 15872 and o(n) = 32736. For m < 20 the factor 2™ — 993 is
a prime if m = 10, 14 and 17. The corresponding n = 2™~ (2™ — 993) are 15872, 126 083 072
and 8524 857 344 respectively.

The reason for the latter three k values is that for k a perfect number the relation o(n) —2n =

2k can also be achieved by numbers which are a product of a perfect number k£ and a prime
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which is co-prime to k. That is, if
n=2""12m"-1)p, (2.21)
with 2™ — 1 a prime and p a prime, we obtain
on) —2n=2"2" - 1)(p+1)—2-2"1 2" —1)p=2.2""1 (2™ 1) . (2.22)
Indeed, for k = 2™m~1 (2™ — 1) we have o(n) — 2n = 2k.

In the next chapter we will further investigate this type of numbers.

For now, it is sufficient to see that all foregoing approximate perfect n in the series n = 2%,
n=2m"1(2m —1—2k) or n =2""1(2™ — 1) p are all even.

2.5 Approximate perfect odd numbers

Odd numbers n for which o(n) is close to 2n are approximately perfect. The relative deviation

_ llo(n) = 2n]|

5(n) o (2.23)

is used as a measure for the accuracy of the approximate perfection. The relative deviation is
also called the relative abundance. For increasing odd n the first 40 records of approximate

perfection are shown in the next table.

# |n 2n o(n) | o(n)—2n d(n)

1|1 2 1 -1 5.0000 - 107!
2 |3 6 4 -2 3.3333-107!
3 19 18 13 -5 2.7778 - 107!
4 |15 30 24 -6 2.0000 - 1071
5 |45 90 78 -12 1.3333 - 1071
6 | 105 210 192 -18 8.5714 - 1072
7 | 315 630 624 -6 9.5238 - 1073
8 | 1155 | 2310 | 2304 -6 2.5974 - 1073
9 | 7425 | 14850 | 14880 30 2.0202 - 1073
10 | 8415 | 16830 | 16848 18 1.0695 - 1073
11 | 8925 | 17850 | 17856 6 3.3613 - 1074
12 | 31815 | 63630 | 63648 18 2.8289 - 10*
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#In 2n o(n) o(n) —2n o(n)

13 | 32445 64890 64896 6 9.2464 - 107°
14 | 351351 702702 702720 18 2.5615-107°
15 | 442365 884730 884736 6 6.7817-1076
16 | 13800465 27600930 27600768 -162 5.8694 - 1076
17 | 14571585 29143170 29143296 126 4.3235-1076
18 | 16286445 32572890 32572800 -90 2.7630 - 1076
19 | 20355825 40711650 40711680 30 7.3689 - 1077
20 | 20487159 40974318 40974336 18 4.3930 - 1077
21 | 78524145 157048290 157048320 30 1.9102 - 1077
22 | 132701205 265402410 265402368 -42 1.5825 - 1077
23 | 159030135 318060270 318060288 18 5.6593 - 108
24 | 815634435 1631268870 1631268864 -6 3.6781-107°
25 | 2586415095 5172830190 5172830208 18 3.4797-107°
26 | 29169504045 | 58339008090 58339008000 -90 1.5427 - 1079
27 | 40833636525 | 81667273050 81667272960 -90 1.1020 - 107?
28 | 125208115065 | 250416230130 | 250416230400 270 1.0782-107Y
29 | 127595519865 | 255191039730 | 255191040000 270 1.0580 - 107?
30 | 154063853475 | 308127706950 | 308127707136 186 6.0365 - 1010
31 | 295612416135 | 591224832270 | 591224832000 270 | 4.5668 - 10710
32 | 394247024535 | 788494049070 | 788494049280 210 2.6633 - 10710
33 | 636988686495 | 1273977372990 | 1273977372672 -318 2.4961 - 1010
34 | 660733931655 | 1321467863310 | 1321467863040 -270 2.0432 - 10710
35 | 724387847085 | 1448775694170 | 1448775694080 -90 6.2121- 101!
36 | 740099543085 | 1480199086170 | 1480199086080 -90 6.0803 - 10~ 11
37 | 1707894294975 | 3415788589950 | 3415788589824 -126 3.6888 - 10711
38 | 3521313695835 | 7042627391670 | 7042627391904 234 3.3226 - 10711
39 | 4439852974095 | 8879705948190 | 8879705948160 -30 3.3785 - 10712
40 | 7454198513685 | 14908397027370 | 14908397027328 -42 2.8172 - 10712

The numbers in the second column form the sequence A171929 of the OEIS [2].




2.5. APPROXIMATE PERFECT ODD NUMBERS

17

If n is an odd perfect number, then o(n) should be divisible by 2 but not divisible by 4.

If we impose the condition of o(n) not to be a multiple of 4 in addition to the condition of n

to be odd, then the approximate perfection records are as shown in the next table.

# |In 2n o(n) o(n) —2n d(n)

1 10 6 -4 4.0000 - 10~ !
2 |45 90 78 -12 1.3333-107!
3 | 405 810 726 -84 1.0370- 107!
4 | 2205 4410 4446 36 8.1633 - 103
5 | 26325 52650 52514 -136 2.5831-1073
6 | 236925 473850 474362 512 1.0805- 1073
7 | 1380825 2761650 2763774 2124 7.6911-10~*
8 | 1660725 3321450 3323138 1688 5.0821 - 104
9 | 35698725 71397450 71396534 -916 1.2830-107°
10 | 3138290325 6276580650 6276530754 49896 | 7.9496- 1076
11 | 29891138805 | 59782277610 | 59782371990 94380 1.5787-1076
12 | 73846750725 | 147693501450 | 147693652470 | 151020 | 1.0225-107°
13 | 194401220013 | 388802440026 | 388802820042 | 380016 | 9.7740-107"7
14 | 194509436121 | 389018872242 | 389019242430 | 370188 | 9.5159- 107"
15 | 194581580193 | 389163160386 | 389163524022 | 363636 | 9.3440- 1077
16 | 194689796301 | 389379592602 | 389379946410 | 353808 | 9.0865- 1077
17 | 194798012409 | 389596024818 | 389596368798 | 343980 | 8.8291-10~"
18 | 194906228517 | 389812457034 | 389812791186 | 334152 | 8.5721-107"
19 | 194942300553 | 389884601106 | 389884931982 | 330876 | 8.4865- 1077
20 | 195230876841 | 390461753682 | 390462058350 | 304668 | 7.8028 - 1077
21 | 195339092949 | 390678185898 | 390678480738 | 294840 | 7.5469 - 1077
22 | 195447309057 | 390894618114 | 390894903126 | 285012 | 7.2913-10~7
23 | 195699813309 | 391399626618 | 391399888698 | 262080 | 6.6960 - 10~7
24 | 195808029417 | 391616058834 | 391616311086 | 252252 | 6.4413-1077
25 | 196024461633 | 392048923266 | 392049155862 | 232596 | 5.9328-10~7
26 | 196204821813 | 392409643626 | 392409859842 | 216216 | 5.5100-10~7
27 | 196349109957 | 392698219914 | 392698423026 | 203112 | 5.1722-1077
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# n o(n) o(n) —2n o(n)

28 196745902353 393491971782 167076 4.2460 - 1077
29 196781974389 393564112578 163800 4.1620- 1077
30 196962334569 393924816558 147420 3.7423 - 1077
31 197323054929 394646224518 114660 2.9054 - 1077
32 197431271037 394862646906 104832 2.6549 - 1077
33 197755919361 395511914070 75348 1.9051 - 107
34 197828063433 395656195662 68796 1.7388 - 1077
35 198044495649 396089040438 49140 1.2406 - 10~7
36 198188783793 396377603622 36036 9.0913- 1078
37 198369143973 396738307602 19656 4.9544 - 1078
38 198513432117 397026870786 6552 1.6503 - 108
39 283665529390725 567331057322850 -729300 1.2855 - 107
40 3116918388785625 6233836778008186 218448 3.5042 - 10~
41 | 12466503476482989375 | 24933006952944735762 | -10621494 | 4.2599 - 10~ 13

The numbers 45, 405, 2205, 26325, ...
OEIS.

in the second column form the sequence A228059 of the

In practice the condition that the divisor sum of a number n should be divisible by 2 but
not divisible by 4 means that n is of the form p**! .2 where r? is the square part of n and
where p is a prime of the form 4k + 1 with j and k£ non-negative integers. For an impression

the first nine numbers in the second column and factorized in the form p*+1 .2, see below.

5 = 5! (1)?
45 = 5! (31)2
405 = 5! (32)?
2205 = 5! (3L.7hH2
26325 = 13! . (3%2.51)2
236925 = 13! (3% . 51)2
1380825 = 17! (3L -51.191)2
1660725 = 61! (31 .51 1112
35698725 = 61! (32511712



Chapter 3

Aliquot divisor sum

3.1 Introduction

Aliquot divisors of an integer n are divisors of n except n itself. For instance, the aliquot
divisors of 12 are 1, 2, 3, 4 and 6. The sum of aliquot divisors of n is denoted as s(n). It is

just the divisor sum of n minus n:
s(n) =o(n) —n, (3.1)

where o(n) is the usual divisor sum of n as we already have met before.

An iteration based on the sum of aliquot divisors is
np+1 = s(ng) . (3.2)

With initial condition ng = 1 it leads to the sequence 1,0. The sequence is terminated when it
arrives at 0 since s(0) is undefined. The initial condition ng = 2 leads to the sequence 2,1, 0.
The initial condition ng = 3 leads to the sequence 3,1,0. The initial condition ng = 4 leads
to the sequence 4, 3,1,0. The initial condition ng = 5 leads to the sequence 5, 1,0. The initial
condition ng = 6 leads to the sequence 6,6,6, ...... That is, 6 is a fixed point. In general,
n is a fixed point if s(n) = n. The perfect number property s(n) = n is equivalent to the
property o(n) = 2n. So, the fixed points of the iteration ngy; = s(ng) are perfect numbers.
The property s(n) = (k — 1) - n is equivalent to the property o(n) = k- n and it defines a

multi-perfect number for & > 2.

Sometimes an orbit seems to be infinitely long in the sense that it seems to arrive neither
at a periodic cycle nor at 0. For instance for 276 the orbit goes as

276, 396, 696, 1104, 1872, 3770, 3790, 3050, 2716, 2772, 5964, 10164, 19628,...

After 800 steps the orbit of 276 is at the 81 digit number
359365395338503080287901208213182053967105084900064321775191103706183295245088746.

19
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The first 800 numbers of the orbit of 276 are even.

Other numbers for which the orbit seems to have infinite length are 306, 396, 552, 564, 660,
696, 780, 828, 888, 966, 1074, 1086, 1098, 1104, 1134, 1218, 1302, 1314, 1320, 1338, ... , see
sequence A131884 of the OEIS [2].

Some numbers cannot be the sum of aliquot divisors; they are untouchable. The list of
untouchables for s(n) is 2, 5, 52, 88, 96, 120, 124, 146, 162, 188, 206, 210, 216, ..., see sequence
A005114 of the OEIS. It is an open question whether 5 is the only odd untouchable for s(n).

3.2 Arithmetic sequences in orbits

Let n be a product of a perfect number and a prime which is co-prime to the perfect number.
That is, let
n=2m"12m_1).p, (3.3)

where 2™ — 1 is prime and where p is a prime satisfying ged (2m_1 (2™ —1) ,p) =1

As already shown in the previous chapter, for such n there holds
on)=oc(2™ ) - 02" —1)-0(p) = (2™ - 1)2" - (p+1). (3.4)
As a consequence

s(n) = on)—n=2m-1)2""12p+2)-2""12" -1).p (3.5)
= 2" lom _1)(p+2) =n+2m@2" - 1).

That is, the successor of n is twice a perfect number larger than n. If p+ 2 also is a prime and
co-prime to the perfect number, we can repeat the procedure and we obtain that the successor
of s(n) is twice the perfect number larger than s(n). We then have an arithmetic sequence of

three successive orbit numbers with twice the perfect number as constant difference.

The first example is for m = 2. Since p cannot be 2 or 3, we start with p = 5. Then
n==6-5= 30, s(30) = 30 + 12 = 42. Since 5+ 2 = 7 is a prime and co-prime to 6, we
have 5(2)(30) = 5(s(30)) = s(42) = 42 + 12 = 54. The next prime co-prime to 6 is 11. So,
5(66) = 6- (11 +2) = 78. Since 11 +2 = 13 is a prime, we have s(2(66) = 5(s(66)) = s(78) =
78412 = 90. The full orbit of 30 goes as: 30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 15, 9, 4, 3, 1,
0. Since s(54) happens to be 66 we have in the orbit starting with 30 an arithmetic sequence
of six numbers: 30, 42, 54, 66, 78 and 90.

The second example is for m = 3. Since p cannot be 2 or 7, we start with p = 3. Then
n =283 =84, s(84) = 84 + 56 = 140. Since 3 + 2 = 5 is a prime and co-prime to 28, we
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have s(2)(84) = s(s(84)) = 5(140) = 140 + 56 = 196. Since 5+ 2 = 7 is not co-prime to 28, we
cannot repeat the procedure. And since s(196) = 203 is not 56 larger than 196, the arithmetic
sequence in the orbit 84, 140, 196, 203, 37, 1 consists of the three numbers 84, 140 and 196.
Next we try p = 11. Then n = 28 - 11 = 308, s(308) = 308 + 56 = 364. Since 11 +2 =13 is
a prime co-prime to 28, we have s(2)(308) = s(s5(308)) = s(364) = 364 + 56 = 420. Since 420
does not happen to be 56 larger than 420, the arithmetic sequence consists of three numbers:
308, 364 and 420.

The next example is for m = 5. Since p cannot be 2 or 31, we start with p = 3. Then
n =496 - 3 = 1488, s(1488) = 1488 4+ 992 = 2480. Since 3 +2 =5 is a prime and co-prime to
496, we have 5(2)(1488) = 5(2480) = 2480+992 = 3472. Since 5+2 = 7 is a prime and co-prime
to 496, we have s(3)(1488) = s(3472) = 3472 4+ 992 = 4464. Since 5(4464) = 8432 is not 992
larger than 4464, the arithmetic sequence consists of four numbers: 1488, 2480, 3472 and 4464.

Of course, by taking other perfect numbers and or other primes we can create many ex-

amples of arithmetic triples in orbits for the aliquot divisor sum.

Numerical inspection of orbits starting with n < 10° delivers no arithmetic sequence longer
than 5 numbers other than the sequence 30, 42, 54, 66, 78, 90. So, for the aliquot divisor sum
iteration the sequence 30, 42, 54, 66, 78, 90 probably is the largest arithmetic sequence.

In the previous chapter we saw that numbers of the type n = 2™~ ! (2™ — 1 — 2k) with k
a perfect number and 2™ — 1 — 2k a prime, also does satisfy o(n) — 2n = 2k and thus
s(n) —n = 2k.

3.3 Some statistics

Among the numbers 1 through 10° there are 9327005 numbers whose successor is 12 larger.
There are 9327002 primes p such that 6p < 10°. Since the primes 2 and 3 are not allowed
for p there are 9327000 numbers of the type 6p below 10°. There are 4 numbers of the type
2m=1(2m _ 13): 24, 304, 127744 and 33501 184. The remaining number is 54.

Among the numbers 1 through 10° there are 2187839 numbers whose successor is 56 larger.
There are 2187829 primes p such that 28p < 10%. Since the primes 2 and 7 are not allowed
for p there are 2187827 numbers of the type 28p below 10°. Of the remaining 12 numbers
there are 4 numbers of the type 2771 (2™ — 57): 224, 4544, 25472 and 495104. The other 8
numbers are 1372, 9272, 14 552, 74992, 6 019 264, 15317696, 35019 968 and 53 032 832.

Among the numbers 1 through 10 there are 150093 numbers whose successor is 992 larger.
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There are 150 065 primes p such that 496p < 10°. Since the primes 2 and 31 are not allowed for
p there are 150063 numbers of the type 496p below 10°. Of the remaining 30 numbers there
are 2 numbers of the type 2™~1(2™ —993): 15872 and 126 083 072. The other 28 numbers are
2892, 6104, 170612, ..., 524187 392.

Among the numbers 1 through 10? there are 11 582 numbers whose successor is 16 256 larger.
There are 11 567 primes p such that 8128p < 10°. Since the primes 2 and 127 are not allowed
for p there are 11565 numbers of the type 8128p below 10°. Of the remaining 17 numbers
there is one number of the type 2™~1(2™ — 16257): 1040384. The other 16 numbers are
48684, 112952, 353672, 396112, ....855935072.

Among the numbers 1 through 10° there are 9 numbers whose successor is 67 100 672 larger.
There are 10 primes p such that 33550336p < 10°. The primes 2 and 8191 are not allowed
for p, however 8191 already is lower than 10°/33550336. As a net result there are 9 numbers
below 10° whose successor is 67 100672 larger, which are all of the type 33550336p.

Hereafter, we will denote the number of n < z for which s(n) = n 4+ 12 as aja(z), and
the number of n < x for which s(n) = n 4 56 as ase(x), etc. As we saw, the contributions
to aja(z) by numbers not of the type 6p are practically negligible. Hence, a12(z) is approx-
imately given by the number of primes < x/6. A sufficiently good approximation for the

number of primes < z is

wu(x) = & <1 + lnlx> . (3.6)
All together, we get )
z/6 1
ar2(w) ~ In(x/6) (1 * ln(w/6)> ' (3.7)

For z = 10° we have

. 10%/6 1
a12(109) ~ 111(109/6) <1 + ln(109/6)

It deviates less than 1% from the actual value 9237 005.

A similar calculation leads to the following approximations:

> ~ 9.27 - 10°. (3.8)

109/28 1
107) ~ 1 A~ 2.17-10° .
ass(10°) ~ {705 28 ( + 1n(109/28)> 7107, (8:9)

which deviates less than 1% from the actual value 2 187 839.

10°/496
10%) ~
a992(10°) ~ 11350 7196) ( * 1n(109/296)

) ~ 1.485 - 10°, (3.10)
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which deviates 1.1% from the actual value 150 093.

10°/8128 1
109y~ JO°/8128 L L N L e 3.11
a16256(107) In(109/8128) ( + ln(109/8128)> . 1

which deviates 1.6% from the actual value 11 582.

For the ratios we get
a12(10%) 9327005

as6(109) — 2187839

as6(10%) 2187839
Qo2(109) 150093

ag92(10%) 150093
a16256(10%) 11582

4.263, (3.12)

~ 1458, (3.13)

~ 12.96 (3.14)

By means of the approximate prime counting function we would have got

a12(10%) _ p(10°/6)
as6(109) ~ p(109/28)

~ 4.268, (3.15)

as6(10)  p(10°/28)
ago2(109)  (10°/496)

04992(109) ~ ,LL(109/496)

~ 14.63, (3.16)

~ ~ 13.03 3.17
a16256(10%)  1(109/8128) ’ (3.17)
In the limit where £ — oo we obtain
aia(x) . op(x/6) 28

li ~ 1 =—~4 1
M aso() T e a2~ 6 T o

aso(w) _ . p(z/28) 496

I ~ lim 20 TR 771 3.19
lim 099208) oy, S@/496)  BI28 g (3.20)

z—00 aypepe(T) oo pu(r/8128) 496

Between 10° and oo the ratio aa/asg slightly increases from 4.26 to 4.67, the ratio asg/cgg2
slightly increases from 14.6 to 17.7, and the ratio agga/a16256 slightly increases from 13.0 to
16.4,. The ratios being more or less independent of x makes them useful as indicators for
the randomness of the occurrences of properties s(n) = n + 12, s(n) = n + 56, etc. If these
properties occur more or less random, then one might expect the ratios will be reflected in the
numbers of a lengthy orbit. As we will see in the next section the statistics in lengthy orbits

are remarkably different.
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3.4 Lengthy orbits

For the investigation of lengthy orbits we will confine to orbits which do not merge with a
lengthy orbit with smaller starting number or are part of another orbit. Of course, for as far
as we can inspect. To be specific, the orbit of 306 merges with the orbit of 276, the orbit of
396 is part of the orbit of 276, the orbit of 696 merges with the orbit of 276, the orbit of 780
is part of the orbit of 564, the orbit of 828 merges with the orbit of 660, the orbit of 888 is
part of the orbit of 552, the orbits of 1086 and 1098 are part of the orbit of 1074, the orbit of
1104 is part of the orbit of 276, the orbits of 1218 and 1302 merge with the orbit of 1134, the
orbit of 1314 merges with the orbit of 564, the orbit of 1320 is part of the orbit of 1074, the
orbits of 1338 and 1350 are part of the orbit of 966, the orbit of 1356 is part of the orbit of
660, the orbit of 1392 is part of the orbit of 552 and the orbit of 1410 merges with the orbit
of 966. As a consequence, the first eight lengthy orbits suited for investigation are 276, 552,
564, 660, 966, 1074, 1134 and 1464.

In the orbit of 276 there are numbers whose successor is 56 larger. As an example, if ng = 276
then ng = 2716 and its successor is ng = 2772. For k < 800 the ny for which ng1q = ng + 56

are given in the next table.

7y

8 2716

12 119628

19 |54 628

23 1465 668

24 1465724

42 14946 860 492

44 19344070652

49 27410152084

67 5641400009252

68 5641400009 308

79 2556 878 765995 204

94 113780400058 385 352 252

96 |14 272557426 581 383 244

129|553 006 807 242 922 594 628 276

139|1 590495621 615121 371 199 252

157|1 825 045 749 999 763 720 560 245 492
770[15519053469409445075122600866343140070463822047551313401831800906126348266868
788|1458489890858162966848272193721941844164128303706788715232527676570255647679924
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All the eighteen ny in the table are of the type 28p. Since mog and ng4 are successive orbit
numbers and ngy and ngg are successive orbit numbers , the orbit contains two triples with
constant difference 56: (465668, 465724, 465780) and (5641400009252, 5641400009 308,
5641400009 364). For k < 800 there are no numbers of the type 6p or 496p. Hereafter we wil

not mention absent type of orbit numbers.

In the orbit of 552 there are for k < 728 eleven numbers whose successor is 56 larger. They

are all of the type 28p.

In the orbit of 564 there is for £ < 1000 only one orbit number whose successor is 56 larger. It
is of the type 28p. For k < 1000 there are eleven numbers in the orbit of 564 whose successor
is 12 larger. They are all of the type 6p. In the orbit of 660 there are for & < 364 two numbers
whose successor is 12 larger. Both are of the type 6p. For & < 364 there are two numbers in

the orbit of 660 whose successor is 56 larger. Both are of the type 28p.

In the orbit of 966 there are for £ < 380 five numbers whose successor is 12 larger. They
are of the type 6p. Two of them, nig and njg, are successive orbit numbers. Therefore the
orbit contains a triple with constant difference 12: (82254, 82266, 82278). In the orbit of
966 there are for k < 380 six numbers whose successor is 56 larger. They are all of the type 28p.

In the orbit of 1074 there are for k& < 1000 six numbers whose successor is 12 larger. They are
all of the type 6p. Since ng and n; are successive orbit numbers, the orbit contains a triple
with constant difference 12: (1074, 1086, 1098). For k < 1000 there are eight numbers in the
orbit of 1074 whose successor is 56 larger. They are all of the type 28p. For k& < 1000 there
are four numbers in the orbit of 1074 whose successor is 992 larger. They are all of the type

496p.

In the orbit of 1134 there are for £k < 750 eleven numbers whose successor is 12 larger.

They are all of the type 6p.

In the orbit of 1464 there are for k < 1600 six numbers whose successor is 12 larger. They are
all of the type 6p. For k < 1600 there are ten numbers in the orbit of 1464 whose successor is
56 larger. They are all of the type 28p. For k < 1600 there are five numbers in the orbit of
1464 whose successor is 992 larger. They are all of the type 496p.

3.5 Persistent factors

By inspection of the orbit starting with 276 we found that 255 out of the first 801 orbit

numbers have 22 - 7 as part of their prime factorization. We also found that orbit numbers
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containing a factor 22 - 7 are often succeeded by a number who also contain a factor 22 - 7,
leading to sequences of successive orbit numbers containing a factor 22 - 7. Apparently 22 -7
is to a certain extent a persistent factor. This can be understood as follows. When an orbit
arrives at a number ng = 22-7-r, where r > 1 has not 2 or 7 as a divisor, then nj; also has

22 .7 as a divisor:
g1 = o(ng) —ng =022 o(7)-o(r)—2%-7-r (3.21)
= 7-2.0(r)=22-7T-r=2>.7-20(r) — 7).
Since 20(r) — r is odd, only the presence of 7 as a divisor of (20(r) — r) may cause the next

orbit number not containing 22 - 7 in its prime factorization and the sequence is broken.

There are more persistent factors. To derive them we write an orbit number n as
n=d-r, (3.22)

where the integer d is the persistent factor and the integer r is n/d with ged(d,r) = 1. For its

successor we obtain
s(n)=o(d)-o(r)—d-r=d- <U(dd) co(r) — r) . (3.23)

For d to be a persistent factor we can require o(d)/d to be integer. Now o(r) is odd only if r
is a square. The probability for a number r to be a square is very small for large r. Therefore
almost all o(r) will be even. For even o(r) it is sufficient to require o(d)/d to be half-integer.

All together we require
TH Ty, (3.24)

s(n)zd-( <%—|—1>-a(r)—r > . (3.25)

n. (3.26)

In particular for » = 1 we have

s(d) = %d. (3.27)
The multiplication factor p is defined as the ratio of s(n) and n:
s(n) = un. (3.28)

If r =1 then

(3.29)

_m
=7
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is the multiplication factor of a persistent factor. For instance, if d is a perfect number, then
o(d) = 2d and p = 1. If d is a 3-perfect number, o(d) = 3d, then p = 2. If r > 1 then

> m/2. Its value depends on r.

The requirement (3.24) leads to 14 persistent factors smaller than 10°, see next table.

d p
2 1/2
6=2-3 1
24=2%.3 3/2
28 =22.7 1
120=12%.3.5 2
496 = 2% .31 1
672 =25.3-7 2
4320 =2°-3%-5 5/2
4680 = 23-32.5-13 5/2
8128 = 26 . 127 1
26208 =2°-3%2.7-13 5/2
30240 =2°-3%3.5.7 3
32760 =2%-32.5.7-13 | 3
523776 =2%-.3-11-31 2

Notice that if 6 is a persistent factor, then also 2 is a persistent factor. The same holds for
120 and 24, for 30240 and 4320, and for 32760 and 4680. In these cases the largest one is

taken as the persistent factor.

3.6 Drivers

Large d with relatively many prime factors are usually not very persistent. So, to select the

d which are persistent and substantially present in orbits one needs a selection criterion. To

this end d, which is even, is written as d = 2%v, where v is odd. As a selection criterion one

requires v to be a divisor of 2¢*1 — 1 and 297! to be a divisor of o(v). Numbers 2% satisfying

these two conditions are called drivers [3]. Let us obtain the drivers for the first ten a. This

can be done by head.
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For a = 1 the conditions read v|3 and 1|o(v). They are satisfied for v = 1 and v = 3.
For v =1 the driver is 2 and for v = 3 the driver is 6.
For a = 2 the conditions read v|7 and 2|o(v). They are satisfied for v = 7. The driver is 28.
For a = 3 the conditions read v|15 = 3-5 and 4|o(v). They are satisfied for v = 3 and v = 15.
For v = 3 the driver is 24 and for v = 15 the driver is 120.
For a = 4 the conditions read v|31 and 8|o(v). They are satisfied for v = 31. The driver is
496.
For a = 5 the conditions read v|63 = 3% - 7 and 16|o(v). They are satisfied for v = 21.
The driver is 672.
For a = 6 the conditions read v|127 and 32|o(v). They are satisfied for v = 127.
The driver is 8128.
For a = 7 the conditions read v|255 = 3 -5 17 and 64|c(v). No v satisfies both conditions.
For a = 8 the conditions read v|511 = 7 - 73 and 128|o(v). No v satisfies both conditions.
For a = 9 the conditions read v|1023 = 3-11-31 and 256|c(v). They are satisfied for v = 1023.
The driver is 523 776.
For a = 10 the conditions read v|2047 = 23 - 89 and 512|c(v). No v satisfies both conditions.

It is proven that for a > 10 there is no v satisfying both conditions, except if v = 2Tt —1is a
Mersenne prime [3|. The first example of the exception is a = 12. Then the conditions v|8191
and 2048|o(v) are satisfied for v = 8191 and the driver is the perfect number 33 550 336.

In conclusion, a driver is a perfect number or a member of {2,24, 120,672,523 776}.

It seems a bit strange that 523 776 has survived as a driver while 4320, 4680, 26 208, 30 240
and 32 760 have not. Alternatively, one could also use the selection criterion that a driver is a
persistent factor smaller than 10 000, or that a persistent factor is smaller than 1000, or that
a persistent factor is smaller than 10000 and has not more than three different prime factors,

or whatever seems suited.

Before we try to find a suitable selection criterion we will first investigate how frequent a
persistent fraction occurs in lengthy orbits, its average multiplication factor and the average
length of the sequence of successive orbit numbers containing the persistent factor. For in-
stance, in the first 801 numbers of the orbit starting with 276 the persistent factors 2, 24 and
28 occurred 60, 26 and 255 times respectively. The mean multiplication factors are 0.664, 1.642
and 1.294 respectively. The mean sequence lengths are 30.00, 8.67 and 8.50 respectively. For
the lengthy orbits starting with 276, 552, 564, 660, 966, 1074, 1134 and 1464 the frequencies
of persistent factors 2, 6, 24, 28, 120, 496, 672, 4320, 4680 and 8128 are shown the next table.

The second column is the investigated length of the orbit.
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ng # 2 6 | 24| 28 | 120 | 496 | 672 | 4320 | 4680 | 8128
276 801 | 60 0 | 26|25 | 0 0 0 0 0 0
552 729 | 30 0 9 | 433 | O 0 0 0 0 0
564 || 1001 | 264 | 406 | 8 3 0 0 0 0 0 0
660 316 | 18 | 24 | 7 3 0 0 159 0 0 0
966 382 9 19 123|124 | 126 | O 0 0 0 0
1074 || 1001 | 236 | 27 |82 | 8 | 10 | 108 | O 0 0 0
1134 || 751 | 225 | 102 | 30 | O 32 0 0 0 0 0
1464 || 1640 | 446 | 189 | 20 | 129 | 6 | 186 | 3 0 0 0

For the same orbits the mean of the observed multiplication factors of persistent factors are

shown the next table. The second row is the theoretical minimum of the multiplication factor.

no 2 6 24 28 120 | 496 | 672 | 4320 | 4680 | 8128
|| 1| 0.500 | 1.000 | 1.500 | 1.000 | 2.000 | 1.000 | 2.000 | 2.500 | 2.500 | 1.000

276 || 0.664 - 1.642 | 1.294 - - - - - -
952 || 0.552 - 1.562 | 1.411 - - - - - -
564 || 1.093 | 1.154 | 1.714 | 1.264 - - - - - -
660 || 1.195 | 1.242 | 1.629 | 1.196 - - 2.228 - - -

966 || 1.573 | 1.227 | 2.260 | 1.450 | 2.163 - - - - -
1074 || 0.644 | 1.157 | 1.628 | 1.378 | 2.185 | 1.431 - - - -
1134 || 0.879 | 1.184 | 1.834 - 2.182 - - - - -
1464 || 0.706 | 1.182 | 1.588 | 1.427 | 2.057 | 1.486 | 2.408 - - -

For the same orbits the mean sequence lengths of persistent factors are shown the next table.
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ng 2 6 24 28 120 496 672 | 4320 | 4680 | 8128
276 || 30.00 - 8.67 | 8.50 - - - - - -
552 || 10.00 - 3.00 | 11.39 - - - - - -
564 || 13.89 | 22.56 | 4.00 | 3.00 - - - - - -
660 || 2.57 | 6.00 | 2.33 | 3.00 - - 11.75 - - -

966 || 4.50 | 9.50 | 2.30 | 13.78 | 15.75 - - - - -
1074 || 15.73 | 6.75 | 6.83 | 10.75 | 3.33 | 27.00 - - - -
1134 || 14.06 | 8.50 | 3.00 - 6.40 - - - - -
1464 || 15.93 | 18.90 | 5.00 | 9.21 | 6.00 | 20.00 | 3.00 - - -

We see that persistent factors larger than 1000 do not occur in the 6620 investigated orbit
numbers ranging from 4 through 99 digits. Hence, a practical selection criterion for driver is:
a persistent factor below 1000. It selects as a driver: 2, 6, 24, 28, 120, 496 and 672.

3.7 Amicable and sociable numbers

If s(ng) = n1 # no and s(n1) = ng, then (ng,n1) is a pair of amicable numbers. The first
amicable pairs are (220,284), (1184, 1210), (2620, 2924), (5020, 5564), (6232,6368), ... There
are 586 amicable pairs with smallest member below 10?. The number of amicable pairs with

smallest member smaller than or equal to k is plotted in the next figure for k < 10°.
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Figure 3.1: Number of amicable pairs with smallest member smaller than or equal to k.
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It still is an open question whether or not there are infinitely many amicable pairs.

For amicable pairs below 10? we observe that both members have equal parity. Among the 586
amicable pairs below 10? there are 432 pairs with both members even and 154 pairs with both

members odd. It is an open question if amicable pairs exist with one odd and one even member.

An amicable pair is considered regular if the non-common part of each member is square
free. Thus if we write a pair (ng,n1) as (¢No, gN1), where g is the greatest common divisor
of ng and nq, g = GCD(ng,ny), then the cycle is regular if Ny and N are both square free.
A pair is irregular if it is not regular. For example, for the pair (220,284) = (22.5-11,22-71)
the common factor is 22 and the non common parts are (5-11,71). Since Ny = 5- 11 and
Ny = 71 are both square free, the pair (220,284) is regular. As another example, for the
pair (1184,1210) = (2°-37,2-5 - 112) the common factor is 2! and the non common parts
as (24 -37,5-112). Since Ny = 2% .37 and N; = 5- 112 are not both square free, the pair
(1184,1210) is irregular. Of the 586 amicable pairs concerned above, 505 are regular and 81

are irregular. That is, approximately 86% of these 586 pairs are regular.

A pair of amicable numbers is in fact a period 2 cycle. One can also look for period m
cycles. The set (ng,ni,ng,...,nm—1) is a period m cycle if s(m) (ng) = ng. The cycle is ele-

mentary if no two members are equal. The elements of such sets are sociable numbers.
Below 10° there are no period 3 cycles.

Below 10Y there are 14 elementary period 4 cycles:
(1264460, 1547860, 1727636, 1305 184),
(2115324,3317740,3 649 556,2 797 612),
(2784580, 3265940, 3707 572,3370604),
(4938136, 5753 864, 5504 056, 5 423 384),
(7169104, 7538 660, 8 292 568, 7 520 432),
(18048 976,20 100 368, 18914 992, 19 252 208),
(18656 380, 20 522 060, 28 630 036, 24 289 964),
(28 158 165, 29902 635, 30 853 845,29 971 755),
(46 722700, 56 833 172, 53 718 220, 59 090 084),
(81128632,91 314968, 96 389 032,91 401 368),
(
(
(
(

© 00 N & Ot = W NN

— =
=)

174277 820,205 718 020, 262 372 988,210 967 684),
209524 210, 246 667 790, 231 439 570, 230 143 790),
)
)

— =
wW N

330003 580, 363 003 980, 399 304 420, 440004 764 ),
498 215416, 506 040 584, 583 014 136, 510137 384).
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We observe that all four members of a period 4 cycle have equal parity. Similar to what
is done for amicable pairs, a period 4 cycle is considered regular if the non-common part of
each member is square free. Thus if we write the members (ng,ni,n2,ng) of a period 4 cy-
cle as (gNy, gN1, gN2, gN3), where g = GCD(ng, n1,n2,n3), then the cycle is regular if Ny,
Ny, Ny and N3 are all square free. Among the 14 period 4 cycles given above the 1-th, 2-
nd, 5-th and 9-th one are not regular. That is, approximately 71% of these 14 pairs are regular.

By considering also starting value larger than 10° one obtains a lot more amicable pairs
and period 4 cycles. At the moment more than a billion amicable pairs and more than five
thousand period 4 cycles are known. For other cycle lengths there are just a few cycles known
now:

1 period 5 cycle: (12496, 14288, 15472,14536, 14264),

5 period 6 cycles:

(21548919 483,23 625 285957, 24 825 443 643, 26 762 383 557, 25 958 284 443,23 816 997 477),
(90 632 826 380, 101 889 891 700, 127 527 369 100, 159 713 440 756, ..., 106 246 338 676),
(1771417411016,1851936384424,2118923 133 656, 2 426 887897 384, ...,2024 477041 144),
(3524434 872392,4483305479608,4017 343 956 392,4 574 630214 808, ..., 3890 837 171 608),
(4773123 705616,5826 394 399 664, 5574 013457 296, 5454 772 780 208, ..., 5091 331 952 624),

4 period 8 cycles:

(1095447 416,1259477224,1 156 962 296, 1330251 784,1221976 136, ...,1 213 138 984).
(1276254 780,2299401 444,3071 310 364, 2 303 482 780, 2 629 903 076, ..., 1 697 298 124),
(7914374573864, 8650 595472 376,10411 746 556 424,9 975 530 282 296, ..., 8 890 420 285 336),
(138344 559911 415,150 752 214 775 305, 156 933 404 745975, ..., 168 479 018 493 705),

1 period 9 cycle:
(805984 760, 1 268 997 640, 1 803 863 720, 2 308 845 400, 3 059 220 620, ..., 1 611 969 514)

and 1 period 28 cycle:

(14 316,19116,31 704,47 616,83 328,177 792, 295 488, 629 072, 589 786, 294 896, 358 336,
418904, 366 556,274 924, 275 444,243 760, 376 736, 381 028, 285 778, 152 990, 122 410, 97 946,
48976,45946,22976,22744,19916, 17 716).



Chapter 4

S function

4.1 Introduction

By means of the sum-of-divisors function ¢ and a greatest common divisor we create the

following iteration:
o (nk)
ged (ng, o(ng))’

where ged (ng, o(ng)) is the greatest common divisor of ny and o(ng). For brevity we will

Nkg+1 = (41)

denote the iteration as

g1 = S(nk) , (4.2)
where the S function is defined as
a(n
= 4.
S0 = e (n, o) -
12
For instance, for n = 6 we obtain S(6) = aod ((76(760(6)) = 2cd(6.12) =5 = 2 and forn =7
. o(7) 8 8
bt = = =- =8
we obtain S(7) = T o)~ ged(7,8) 1

4.2 Cycles of the S function

For n = 1,2,3,4,5,6,7,8,9,... the corresponding S values form the sequence 1,3,4,7,6, 2,
8,15,13,.... The latter is known as the sequence A017665 of the OEIS |2].

If we start with ngp = 1 then n; = 1, ng = 1, and so on. That is, (1) is the trivial pe-
riod 1 cycle or fixed point. We will denote it as ¢g. If we start with ng = 2 then n; = 3,
nge =4, n3 =7, ng =8, ny =15, ng = 8, etc. That is, (8,15) is a period 2 cycle, which we

will denote as c¢;. For starting values smaller than 66, the graph is shown in the next figure.

33
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We see that for starting values smaller than 66 the iteration also shows a period 6 cycle.

For starting values ng < 1010 the iteration nj, 1 = S(ny) contains

one fixed point: ¢y = (1),

three period 2 cycles: ¢; = (8,15), ca = (512,1023), ¢35 = (29127,47360) and
one period 6 cycle: ¢g = (127,128, 255,144,403, 448).

The smallest ng for which the orbit ends in ¢4 is 16. The orbit is 16, 31, 32, 63, 104, 105, 64,
127, ... The smallest ng for which the orbit ends in ¢ is 81. The orbit is 81, 121, 133, 160,
189, 320, 381, 512, ... The smallest ng for which the orbit ends in c3 is 22 521. The orbit is
22521, 30032, 29109, 40192, 40 369, 47360, 29127, ...
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4.3 Statistics of cycle arrivals

For ng < 10® the fractions of starting numbers for which the orbit arrives in ¢1, ca, c3 or ¢4

are plotted in the next figure.
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Figure 4.1: The fractions of starting numbers of which the orbit arrives in ¢; (black), co

(green), c3 (red) or ¢4 (blue).

Each fraction seems to approach a limit value for ng — oc.

For ng < 10® the fractions of starting numbers for which the orbit arrives in ¢1, ¢a, ¢3 or ¢4
are approximately 0.2211, 0.0487, 0.00147 and 0.7287 respectively.

For ng < 10® the fractions of starting numbers for which the orbit arrives in ¢; at 8, in ¢; at
15, in c9 at 512, in co at 1023, in c3 at 29127, in c3 at 47360, in c4 at 127, in ¢4 at 128, in
cq4 at 255, in ¢4 at 144, in ¢4 at 403 or in ¢4 at 448 are approximately 0.1985, 0.0226, 0.0408,
0.0079, 0.00070, 0.00078, 0.4749, 0.2284, 0.0089, 0.0040, 0.0091, 0.0034 respectively.

4.4 Statistics of untouchables

If we start with ng = 2 then ny =3, ng =4, n3 =7, ng =8, n5 = 15, ng =8, ny = 15
and so on. From the orbit 2, 3, 4, 7, 8, 15, 8, ... we see that number 3 has 2 as predecessor
and that 4 has 3 as predecessor and that 7 has 4 as predecessor and so on. However, 2 itself
does not have a predecessor yet. So, if the starting numbers are confined to numbers of the
set {1,2,3,4} then 2 is untouchable. If we start with ng = 5 then ny = 6, no = 2, n3 = 3,
and so on, until it ends in the period 2 cycle (8,15). So, for starting numbers {1,2,3,4,5}

the number 2 is no longer untouchable. Number 5 is the smallest starting number for which
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2 is no longer untouchable. It turns out that 23 is the smallest starting number for which 5
is no longer untouchable. The smallest starting number for which a number n is no longer

untouchable will be denoted as t,.

If we start with numbers smaller than 103, the first part of the list of ¢, is as follows:

t,|1]5]2]2]23|5|2|2|10(979| 7 | 99| 9 |2 [33] 7 |17|485[19|19| 7 | 7 |23|187|45|34|78| 7 |29

From t19 = 979 we see that 10 is an untouchable number if we confine to starting numbers
smaller than 979. The question marks at position 11, 17, 22, 23, 29, ... show that for starting
numbers smaller than 1000 the numbers 11, 17, 22, 23, 29, ... are untouchable. Question

marks may disappear by taking larger starting numbers.

For starting numbers smaller than 10° the first part of the list of ¢, is as follows:

n|6|7(8] 9|10 | 11 |12|13|14|15({16| 17 |18]19 |20|21| 22 |23|24| 25 |26|27|28|29|30

1,15]2|2|10|979|33425| 9 | 9 | 9 | 2 |33|230153|17|485|19|19(1782| 7 |23|187|45(34|78| 7 |29

With respect to the previous situation the question marks for n = 11,17 and 22 have disap-

peared.

By means of numerical inspection it is found that 23 becomes touchable for the first time
if we start with ng = 1404 630689. The orbit is 1404 630 689, 1907 020800, 23, 24, 5, 6, 2,
3,4, 7,8, 15, 8, ... A numerical inspection also learns that 29 is untouchable if the starting

values are smaller than 109.

It raises the question whether a number 29 will become touchable if large enough starting
numbers are used or are they truly untouchable in the sense that they stay untouchable even

if infinitely large starting numbers are used.

If we only start with numbers from the set {1,2,3,4}, then 2 is the only element of the
set {1,2,3,4} which is untouchable. The ratio of untouchables and set length is 1/4. If
we only start with numbers from the set {1,2,3,4,5}, then 5 is the only element of the set
{1,2,3,4,5} which is untouchable. The ratio of untouchables and set length is 1/5. As before,
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we let u,, be the number of elements of the set {1,2,3,...,n} which are untouchable if we only
start with numbers from the set {1,2,3,...,n}. The ratio of untouchables and set length is

un/n. For numbers up to 10% the ratio u, /n is plotted against n in the next figure.
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Figure 4.2: The ratio u,/n, see text.

The question arises: what is the value of the ratio u,/n in the limit n — oo?

4.5 Statistics of distances

Let us denote the number of steps required for a starting number ng to arrive at a periodic
cycle as D(ng): the distance of ng. As a consequence, D(ng) = 0 if ng is an element of one
of the cycles ¢y through ¢4. For example, for the orbit 100, 217, 256, 511, 592, 589, 640, 153,
26, 21, 32, 63, 104, 105, 64, 127,... we have D(100) = 15. For ng < 10® the largest distance is
41. It occurs for ng = 59635801: D(59635801) = 41. The distribution of distances is shown

in the next figure.



CHAPTER 4. § FUNCTION

38
| | |
7 = E
10 £ . oo'°'—./.—.-...“\..& i
N o0 [
6 | AN L
10 ] / .—o_./O-r".“\o—&.. *." g
b ! AAN oa r
]_05 E| ¢ g .-‘.0 \( E
] 41 \.\.\‘ .\ F
> 4 LN » I
O i .-
2 101 4 A L ceemer, e g
A e W
- e \, r
o 1 . e .
8 103 E z’l ‘o.' ' ‘e =
i 1w “o-@ ® Y =
2 | "“ \'o ‘e K |
10 el e | Q\ E
E"I \. \. \\ E
r'y R ]
101 E \ ! E
E \. ‘\ *\ E
] \ \ E
100 E! oo &
- T T T T T T T T -
0 5 10 15 20 25 30 35 40
distance D

Figure 4.3: Distribution of distances for starting numbers smaller than or equal to:

(orange), 10° (red), 105 (green), 107 (blue), 10® (black).

The distribution of distances for numbers smaller than or equal to 10% is shown

scale in the next figure.
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4.6 Even and odd orbit numbers

There are starting numbers for which successive orbit numbers repeatedly change from odd
to even and from even to odd. For instance, for starting number 36 the orbit is 36, 91, 16, 31,
32, 63, 104, 105, 64, 127, ... That is, even, odd, even, odd, even, odd, even, odd, even, odd, ...
Orbits with 2 or more successive even orbit numbers or with 2 or more successive odd orbit

numbers do also occur. We start considering rows of even numbers.

For starting number 5 the orbit is 5, 6, 2, 3, 4, 7, 8, 15, 8, ... The orbit contains a row
with 2 successive even orbit numbers. Moreover, 5 is the smallest starting numbers for which
a row with 2 successive orbit numbers appears. The smallest starting numbers ng for which

the orbit contains a row with k successive even numbers are tabulated below for ng < 108.

no|1|2(5(37]109]370]2061|10 982|124 466|59 341|262 534|3 759878 |13 126 565 |43 439 846

E10j1)12|3] 4|5 ]| 6 7 8 9 10 11 12 13

The next figure shows a plot of the records of the length k of even rows.
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Figure 4.5: The length records of even rows.

For ng < 10® only starting number 43439846 leads to a row with 13 successive even orbit
numbers. The orbit is 43439846, 32579886, 10859964, 2111662, 1810008, 71110, 69 048,
2990, 3024, 620, 336, 62, 48, 31, 32, 63, 104, 105, 64, 127, ... We see the orbit descends from
43439846 to 31.

Next we will look for orbits with two or more successive odd orbit numbers in a row. Among
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the odd numbers only the odd squares have an odd successor. The smallest starting number
for which a row with 2 successive odd orbit numbers occur is 9. The orbit is 9, 13, 14, 12, 7,
8, 15, 8, ... The smallest starting number for which a row with 3 successive odd orbit numbers
occur is 81. The orbit is 81, 121, 133, 160, 189, 320, 381, 512, 1023, 512, ... There are 128
unique rows of 3 successive odd numbers with the first element of the row smaller than 10'6.

To get an impression the first six of them are shown below.

81,121, 133 = 3%, 112, 7-19.

480249, 361, 381 = 3*.72.11%, 192, 3-127.

7935489, 3964081, 4381419 = 3*-313%, 112-181%, 3-7-19-79-139.

9090225, 5697769, 1075419 = 3*.5%.67%, 72-11%2-312, 3%2.192.331.

580858201, 106440489, 18129631 = 72-11%2-313%, 32.192-1812%, 13-79-127 - 139.
849431025, 7958041, 10357983 = 32.5%2.29%2.67%, 72-132.31%2, 33.19-61 - 331.

The 128-th row with 3 successive odd numbers is
9654983 776089729, 14128 780415929, 15008 108 788269 = 982597772, 37588272,
15008108788269 = 36.72.112.1512-313%, 192-181%2-10932, 3%.79-127-139 - 398581.

The arithmetic of 9654 983 776 089 729 is as follows:
o (9654983776089729) = o(3%-72-112-1512-3132%) = 0(3%) - 0(7%) - 0(112) - 0(1512) - 0(3132%) =
1093 - 57 - 133 - 22953 - 98283 = 1093 - (3-19) - (7-19) - (3-7-1093) - (3 - 1812).

Since 0(9654983776089729) has the factors 3% and 72 in common with 9654983776089729,
we have S(9654983776089729) = 19%-1812-1093? = 37588272, which is an odd square. There-
fore §(5(965498377608972900)) is odd, although not a square. As a result there are three

successive odds in a row.

For 4 successive odds in a row the first three elements of the row have to be an odd square.
The probability for a row with four successive odds is very small. To get a rough estimate of
the small probability we consider the 5-107 odd squares smaller than 10'6. Among the 5 - 107
odd successors there are 148 odd squares. The probability for an odd square to have an odd

square successor therefore is ~ 3-1075 The probability for an odd square to have

14
5107
two odd square successors is (3 - 10_6)2 ~ 107!, So, among the 5 - 10® odd square starting
values smaller than 10'® we expect approximately 0.005 rows with 4 successive odd numbers.
No wonder a numerical inspection of odd squares smaller than 10'® did not deliver a row with

4 successive odd elements. For an expectation value of more than one row with 4 successive

odd elements the search domain has to be extended to 102%.
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4.7 Records of maximums

Starting number 2 has orbit {2,3,4,7,8,15,8,...}. The largest value is the element 15 of
cycle ¢;. We will call it the maximum M, thus M(2) = 15. Starting number 5 has orbit
{5,6,2,3,4,7,8,15,8,...}. We thus have M (5) = 15. The maximum M (5) does not supersede
the previous maximum M (2), so it is not a maximum record. We have to wait until starting
number 16 for a maximum record: M (16) = 448. The next maximum record is M (81) = 1023.

The first maximum record which is not an element of a cycle is M (343) = 2160. The maximum

records are tabulated below for ng < 10°.

# |ng M record #ng M record #ng M record
11 1 16/911937 19299763 31/83024 433 (921298059
2 (2 15 17/1972659 |25165 821 32/189498073 1077210372
3 |16 448 182262393 (34713728 33192530767 1320991872
4 181 1023 1912949429 |46 467 543 341119340 783|1487137239
5 |343 2160 20|15 862213 78913536 35/133875301{1610612733
6 (490 4218 2116482116 |89522176 36/191411613|2864 709 632
7 1935 4256 22110200621|115343 360| [37|226 442 331|3 221 225469
8 11029 22528 23|13475300(155 493 536| |38|232943 763|4 294967 295
9 |5061 |65535 24122003 275(158414464| 139|336920101|4 975793 152
10|8661 |73216 25|23110311(268 435455 |40(547 264 135|5141692416
11118049 [602 547 26/31810161(274148352| |41|551895033(6 214 123 520
12139981 1048575 27|32098437(292 563 381| |42|663 592 629(6 341 787 648
131002611 432640 28|35006209(621974 144 |43|676473985(6 214 123 520
141194 913]4 194 303 29151856 928671088640 [44|749816677|6979 321 843
15630436|8 567 136 30163 370587797516 013| |45|786 780633|17 179 869 183

The records of orbit maximums have been plotted against the starting numbers ng < 10% in

the next figure.
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Figure 4.6: Records of orbit maximums M plotted against starting value nyg.

As we saw, for starting value 2 the orbit is 2, 3, 4, 7, 8, 15, 8, ... Its maximum, 15, is
a maximum record which occurs on the sixth position of the orbit. In the next figure the

position of a maximum record in an orbit is plotted against the starting value of the orbit.
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Figure 4.7: The m-th position of a maximum record in an orbit against ng.

The position of a maximum record in an orbit seems to be quite independent of the starting

value of the orbit; the correlation is approximately —0.071.
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4.8 Records of distances

We saw earlier that the distance is 4 when one starts with number 2. That is, D(2) = 4. For
increasing starting numbers we get D(3) = 3, D(4) = 2, D(5) = 6 D(6) = 5 and so on. We

see the distance D(5) does supersede D(2). The next time a new distance record occurs is for

number 16. The distance records D are tabulated below for ng < 101°.

#\ng | D record| |# |ng |D record| |# |ng D record| |# |ng D record
112 4 9 (315 16 1719597 29 25/4934 601 37
215 6 10(328 17 18110964 30 267378 869 39
3 (16 7 11(453 18 19141763 31 27(47424794 40
4119 8 12|977 19 20(129603 32 28159635801 41
5 |36 9 13(1029 22 21(154081 33 291409271426 42
6 46 10 14|1171 24 221582928 34 301995 329 569 43
7197 14 151954 25 23728 659 35 31|1775850573 45
8 (100 15 16(8125 26 2413451988 36 3212029543507 47

The records of distances D are plotted against starting numbers ng in the next figure.
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Figure 4.8: The records of distances D plotted against starting value ny.
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For ng < 10® a simultaneous orbit maximum record and distance record occurs for ng = 2,

16, 100 and 1029.
4.9 Questions
The iteration with the S function does raise some questions:

Question 1: Are (1), (8,15) (127,128,255,144,403,448), (512,1023) and (29 127,47 360)
the only cycles?

Question 2: Does there exist an untouchable number?

Question 3: Is the smallest starting number for which an orbit contains a triple of suc-

cessive odds equal to the first number of the triple?

Question 4: Does there exist a row with 4 or more successive odd numbers in a row?



Chapter 5

Collatz problem

5.1 Introduction

The Collatz problem or 3n + 1 problem is based on the iteration

3y + 1
”’“; if np =1 mod?2
Nk+1 = (51)

% if ng =20 mod 2

where ny, is a positive integer. If we start with ng = 1 then the orbit is 1, 2, 1, 2, 1, 2, ...
That is (1, 2) is a period 2 cycle. We will denote it as ¢;. For starting number 3 the orbit is 3,
5, 8,4, 2, 1, ... For starting number 7 the orbit is 7, 11, 17, 26, 13, 20, 10, 5, 8,4, 2, 1, ... We
see that for starting numbers 3 and 7 the orbits arrive at ¢;. It has been verified by computer

that for starting values up to almost 10%! the orbit arrives at the cycle ;.

5.2 Statistics of untouchables

For the Collatz iteration we will keep track of the smallest starting number ¢, for which a

number n is no longer untouchable.

The numbers t; through t199 are shown below.

1,1,6,3,3,12,9,3,18,7, 7,24, 7,9, 30, 21, 7, 36, 25, 7, 42, 19, 15, 48, 33, 7, 54, 37, 19, 60,
27, 21, 66, 45, 15, 72, 43, 25, 78, 15, 27, 84, 57, 19, 90, 27, 27, 96, 43, 33, 102, 69, 15, 108, 73,
37, 114, 51, 39, 120, 27, 27, 126, 75, 43, 132, 39, 45, 138, 93, 27, 144, 97, 43, 150, 39, 51, 156,
105, 15, 162, 109, 55, 168, 75, 57, 174, 117, 39, 180, 27, 27, 186, 55, 63, 192, 129, 43, 198, 133.
Since the third number is 6 we see that 3 is untouchable if we start with numbers smaller than
6. Similarly, 6 is untouchable if the starting numbers are confined to numbers smaller than 12

and 7 is untouchable if the starting numbers are confined to numbers smaller than 9, etc.

45
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Since every number has at least one predecessor (the numbers 2, 5, 8, 11, ..., 3k — 1, ...
have two predecessors) there will on the long run be no untouchables. However, if we confine
to a limited set of starting numbers, then there will be untouchables. For instance, the list
above of t; through t19p contains 22 numbers larger than 100. This implies that if we only
start with numbers from the set {1,2,...,99,100}, then 22 numbers would be untouchable:
u100 = 22. The ratio of untouchables and set length is 22/100 = 0.22. For larger sets the ratio
slightly changes. For numbers up to 10° the ratio u, /n is plotted against n in the next figure.
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Figure 5.1: The ratio u,/n against set length n.

The curve strongly suggest a limit value for the ratio u,/n. We obtained

im A7)~ 0213, (5.2)

n—oo N

5.3 Statistics of distances

As before we denote the number of steps required for a starting number ng to arrive at the
periodic cycle (1,2) as the distance D(n). The distance D(ng) = 0 if ng is an element of the
cycle ¢;. Thus D(1) = 0 and D(2) = 0. For ng < 10® the largest distance is 591. It occurs
for ng = 63728 127: D(63728127) = 591. The distribution of distances is shown in the next
figure.
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Figure 5.2: Distribution of distances for starting numbers smaller than or equal to: 10
(orange), 10° (red), 10° (green), 107 (blue), 10® (black).

The distribution of distances for numbers smaller than or equal to 10® is shown on a linear

scale in the next figure.
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Figure 5.3: Distribution of distances for numbers smaller than or equal to 108.
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5.4 FEven and odd orbit numbers

CHAPTER 5. COLLATZ PROBLEM

When an odd number of an orbit iterates to an even number 2%b with b odd, there will be a

successive even numbers in a row. Rows with successive odd numbers do also occur. We will

start considering rows of even numbers.

For starting number 3 the orbit 3, 5, 8, 4, 2, 1, ...

contains a row with three successive

even numbers. Moreover, 3 is the smallest starting number for which a row with three suc-

cessive even orbit numbers appears. The smallest starting numbers ng for which the orbit

contains a row with at least k successive even numbers are tabulated below for ng < 108.

no 15]21164|75/151|151|1024|1365|4096 | 5461

7407

14563

65536

87381

184111

k

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

no

184111

932067

932067

4194304

5592405

13256071

13256071

26512143

26512143

19

20

21

22

23

24

25

26

27

For k = 6,10, 12,16 and 22 there holds precisely ng = 2¥. The next figure shows a plot of the

length records of even rows.
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Figure 5.4: Records of length k of even rows against starting value ng of an orbit. The dashed

curve is the function ng = 2.
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The smallest starting number with a row with 27 successive even orbit numbers is 26 512 143.
The orbit is 26 512 143, 39 768 215, 59 652 323, 89478485, 134217 728, 67 108 864, 33 554432,
16777216, 8 388 608, 4194 304, 2097152, 1048576, 524 288, 262 144, 131072, 65536, 32768,
16384, 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, ... Since 134217728 = 227

the row descends in 26 steps from 227 to 2.

Next we will look for orbits with two or more successive odd orbit numbers in a row. The
smallest starting numbers n for which the orbit contains a row with at least k successive odd

numbers are tabulated below for ng < 108.

no|1|3|7|15|27 |27 127|255 |511 1023 | 1819|4095 | 4255 | 16383 | 32767 | 65535 | 77671

k|11|12|3(415]6| 7|8 9] 10| 11 12 | 13 14 15 16 17

ng | 262143 | 459759 | 1048575 | 2097151 | 4194303 | 7456539 | 16777215 | 33554431 | 67108863

k 18 19 20 21 22 23 24 25 26

The records do satisfy ng = 2k 1, except for ng = 27,1819,4255, 77671, 459 759 and 7 456 539.
The next figure shows a plot of the length records of odd rows.
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Figure 5.5: Records of length k of odd rows against starting value ng of an orbit. The dashed

curve is the function ng = 28 — 1
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For starting numbers ng which do satisfy the relation ng = 2% — 1, the next number is n; =
(3(2¢—1)+1)/2= (3-2F—2) /2 =3-2F"1 — 1. After two steps we have ny = 3%-2F"2 — 1.

=3m.2k=m _ 1. After k steps we have n; = 3% — 1,

Repetition of the arithmetic leads to n,,
which is even. Hence, starting with ng = 2¥ — 1 we obtain an orbit with a row of k& odd

numbers.

5.5 Records of maximums

Starting number 3 has orbit 3,5,8,4,2,1,2,.... Since the orbit never leaves the ¢; = (1,2)
cycle, the maximum value of the orbit is 8. We will call it the maximum M, thus M (3) = 8.
Starting number 7 we have the orbit 7,11,17, 26, 13, 20, 10, 5,8,4,2,1,2, ... That is, M (7) = 26,
which is a new maximum record. Continuing the search we find the next maximum record for
no = 15: M(15) = 80. The maximum records are tabulated below for ng < 108.

# Ing M record # |ng M record # Ing M record

11 2 1526623 53179010 29|1988859 [78457189112
213 8 16(31911 |60 506 432 30(2 643183 (95229909 242

3|7 26 17160975 {296 639 576 3112684647 176308906472

4 |15 80 18|77671 785412368 32|3041127 [311358950810

5 |27 4616 19(113383 |1241055674 333873535 (429277584788

6 255 6560 20138367 |1399161680 34|4637979 (659401147 466

7 1447 119682 21159487 |8601 188876 35|5656 191 |1 206 246 808 304

8 1639 20762 22|270271 (12324038948 [36(6416623 [2399998472 684

9 |703 125252 23665215 26241642656, [37|6631675 (30171305459 816
10{1819 (638468 24|704511 |28495741760| [38{19638399(153 148462601 876
1114255 |3405068 25|1042431|45119577824| 39|38 595 583|237 318 849 425 546
12]4591 [4076 810 26|1212415/69823368404| [40{80049391|1092571914 585 050
139663 [13557212| |27|1441407|75814 787186

14120895(25071632| |28|1875711|77952174 848

The records of orbit maximums have been plotted against starting numbers ng < 10% in the

next figure.
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Figure 5.6: The records of orbit maximums M against starting value n.

For ng < 10% a simultaneous odd row length record and orbit maximum record occurs for

n=1,3,7,15,255,1819, 4255, 77 671.

5.6 Records of distances

For starting numbers ng > 2 the distances are D(3) =4, D(4) =1, D(5) = 3, D(6) = 5 and

so on. We see the distance D(6) does supersede D(3). The next time a new distance record

occurs is for starting number 7. The distance records are tabulated below for ng < 10°.

#1ng|D record||# |ng | D record||# |ng |D record||# |ng D record
113 4 9 173 72 17703 107 25(10971] 168
216 5 10|97 74 18|871 112 26(13255| 173
3|7 10 11(129 76 19|1161] 114 27117647 175
419 12 12]171 78 2012223 115 28(23529| 177
5118 13 131231 80 21(2463| 131 29(26623| 193
6 |25 15 14313 82 22(2919| 136 30134239 195
7|27 69 151327 90 23(3711 149 31135655 203
8 |54 70 16649 91 2416171| 164 32152527 213
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# |ng D rec.||# |ng D rec.||# |ng D rec.||# |n D rec.

33|77031 | 220 ||41|626331 | 318 [|49|3732423 | 373 ||57|36791535 | 465

34(106239| 222 ||42|837799 | 328 [|5015649499 | 383 ||58|63 728127 | 591

35(142587| 235 ||43|1117065] 330 ||51{6649279 | 415 ||59|127456254| 592

36(156 159| 240 ||44|1501353| 332 ||52|8400511 | 428 ||60{169941673| 594

371216 367| 242 ||45|1723519| 348 ||53|11200681| 430 ||61]226 588897| 596

38(230631| 277 ||46|2298025| 350 ||54]14934241| 432 ||62]268549803| 601

39(410011] 281 ||47|3064033| 352 ||55|15733191| 440 ||63|537099606| 602

401511935| 294 ||48|3542887| 365 ||56|31466383| 441 ||64|670617279| 615

The records of distances are plotted against the starting numbers for ng < 10'° in the next

figure.
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Figure 5.7: The records of distances D against starting value ng.

For ng < 108 both an orbit maximum record and a distance record occurs for n = 3, 7, 27,

703 and 26 623.
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5.7 Rows of equal distance

Inspection tells there are many pairs {n,n+1} which end at the cycle ¢; after the same amount
of steps. The first pair is the trivial pair (1,2) which both have distance 0. The next pair is
(12,13). Although the orbits are different, 12, 6, 3, 5, 8, 4, ... and 13, 20, 10, 5, 8, 4, ..., the
distance is 6 in both cases. In general pairs of the type (8k+12,8k+13) have the same distance
since 8k +12 — 4k +6 — 2k+3 — 3k +5 and 8k + 13 — 12k +20 — 6k + 10 — 3k + 5. The
second pair is (14, 15). Despite the different orbits, 7, 11,17, 26, 13, 20, ... and 15, 23, 35, 53,
80, 40, 20, ..., the distance is 11 in both cases. In general pairs of the type (64k + 14, 64k +15)
have the same distance since

64k + 14 — 32k +7 — 48k +11 — 72k 417 — 108k + 26 — 54k + 13 — 81k + 20 and
64k 4+ 15 — 96k 4 23 — 144k + 35 — 216k + 53 — 324k + 80 — 162k + 40 — 81k + 20.

The next pair is (18,19) which has distance 13. Thereafter follows the pairs (20,21) with
distance 5 and (22, 23) with distance 10. Then we meet a triple (28,29, 30) for which all three
members have distance 12. The part (28,29) is a pair of the type (8k+12,8k+13) and (28, 30)
is the double of the pair (14, 15). The next triple is (36, 37, 38) with distance 14. The first row
with 4 members is (314,315,316, 317) with distance 25. For equal distance rows (r1,72,...,7))
with row length A, the first element 7; and the distance D are tabulated below for 71 < 107,

AT D A|r D AT D A |r D A D
1 0 1014722 |40 191159116 |53 28530052 |69 378151894149
12 |6 1116576 |88 20179592 |52 29331778 |62 3813705089|78
28 |12 12]11696 |92 2157857 |107 301524289 |69 3912754 368|130
314 |25 13]3982 |35 22121216055 31/1088129|135 401596 310 |66
98 |17 1412987 |33 23135225870 321913319 |130 41(2886 352|138
386 |76 15]17548|91 24122118563 3312065786|128 4214896 680|134
943 |25 1636 20830 25|57346 |53 3411541 308|126 431335044878
1494132 177083 |39 261294913|65 35|1032875|127 4413848 468|140
1680 |29 1815969250 271252548 (117 361264924 |86 45

—_

© |0 | N || O = W|N

For ng < 107 we have tabulated below the number rows with row length A\ whose members

have the same distance.

A 1 2 3 4 ) 6 7 8 9 10
# rows |2 7873891098440 | 576 687|210458|138891 (107824 (47172 |25150|9850 | 9276
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A 11 | 12 | 13 | 14 | 16 | 16 | 17 |18 |19 20 | 21 | 22 | 23 | 24 | 25
# rows | 7764|4619 | 3143|2529 | 3772|1430 | 1255|360 | 475|499 | 299|271 | 266 | 179|173

A 26 |27128|29(30(31|32[33[34|35|36|37|38[39|40|41|42|43|44|45
# rows | 179 | 75|57 |46 |87 5329|1217 |18 8 |2 |5 |11| 7|4 |3 |5|4]0

For row lengths A = 1 through 44, the cumulative number of rows with length A are plotted

against ng for ng < 107, see next figure.
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Figure 5.8: The number of same distance rows with length A\ against ng for the Collatz

iteration. The diagonal (dashed line) is drawn for comparison.

5.8 Question

For the Collatz iteration it is still an open question if every orbit ends in the (1,2) cycle.



Chapter 6

Negative Collatz

6.1 Introduction

The Collatz iteration or 3n + 1 iteration for negative n is identical to an iteration based on
3n — 1 for positive n. In this chapter we will consider sequences of integers generated by the

discrete iteration

3y — 1
”’“2 if np =1 mod?2
Ng+1 = (61)

% if ng =20 mod 2

where ny is a positive integer. For the negative Collatz iteration we have
one fixed point: (1),
one period 3 cycle: (5, 7, 10) and
one period 11 cycle: (17, 25, 37, 55, 82, 41, 61, 91, 136, 68, 34).

It is not known whether another cycle does exist. It also is not known whether sequences

always end in a cycle for every starting number.

6.2 Statistics of cycle arrivals

For starting numbers ng < 107 the fractions of numbers of which the sequences end in ¢1, co

and cg are plotted in the next figure.

95
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Figure 6.1: The fractions of numbers of which the sequences end in ¢; (black), c2 (blue) and

cs (green).

For ng < 108 the fractions of numbers for which the orbit arrives in ¢, co and c3 are approx-
imately 0.327, 0.324 and 0.348 respectively.

For ng < 107 the fraction of numbers for which the orbit arrives in ¢; at (1) , in ¢z at (5), in
c2 at (7), in ¢ at (10), in c3 at (17), in c3 at (25), in c3 at (37), in ¢z at (55), in c3 at (82),
in cg at (41), in ¢3 at (61), in c3 at (91), in ¢z at (136), in c3 at (68) and in c3 at (34) are
approximately 0.327, 0, 0.268, 0.056, 0, 0.055, 0.035, 0.0055, 0.0031, 0, 0.196, 0.0057, 0.0021,
0 and 0.0457 respectively.

6.3 Statistics of untouchables

For each number n we will keep track of the smallest starting number ¢,, for which a number
is no longer untouchable. If we start with numbers smaller than or equal to 100, the first 100
elements of the list of ¢, is as follows:

1,3,6,3,5,12,5,11,18,5,15,24,9,9,30,11,17, 36,9, 27,42, 15,21, 48,17, 35,54, 9, 39, 60, 21,
29,66,17,47,72,17,51,78,27,17,84,29, 53,90, 21,63, 96, 33,45, 7,35,57,7,17,75,7,39,53, 7,
17,83,7,29,87,7,45,17,7,47,57,7,33,99,7,51,69,7,53,7,7,17,7,7,57,65,7,53,7, 7,17, 7,7,
63,57,7,65,7,7,45.

We see, for instance, that tg = 12. It means that 6 is untouchable if we restrict to starting
numbers smaller than 12. The 22 question marks show the numbers which are untouchable
if we start with numbers smaller than or equal to 100. They become touchable if we start

with numbers smaller than or equal to 200. Then there are 44 untouchables in the first 200
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elements of the list of ¢,. To be specific, the 44 untouchables are all in the last 100 elements
of the list ¢; through t999. They become touchable if we start with numbers smaller than or
equal to 400. Then new untouchables will show up in the last 200 elements of the list of #;
through ¢409, and so on.

As before we let u, be the number of untouchables if we start with positive integers smaller
than n. For n = 100 we have w199 = 22 and the ratio of untouchables and starting numbers
is 0.22. For n = 200 we have usgg = 44 and the ratio of untouchables and starting numbers is
0.22. For n = 1000 we have w1999 = 214 and the ratio of untouchables and starting numbers

is 0.214. For numbers up to 10° the ratio u,/n is plotted against n in the next figure.
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Figure 6.2: The ratio u,/n against starting value n.

The curve strongly suggest a limit value for the ratio u,/n. We obtained

im A~ 0213, (6.2)

n—oo N

It seems to be the same value as for the positive Collatz iteration.

6.4 Statistics of distances

As before, the number of steps required for a starting number n to arrive at a periodic cycle
is the distance D(n). Thus D(1) = 0, D(2) = 1, D(3) = 3 and so on. For n < 108 the
largest distance is 472. It occurs for ng = 80545041: D(80545041) = 472. The distribution

of distances is shown in the next figure.
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Figure 6.3: Distribution of distances for starting numbers smaller than or equal to: 10
(orange), 10° (red), 10° (green), 107 (blue), 108 (black).

The distribution of distances for numbers smaller than or equal to 10® is shown on a linear

scale in the next figure.
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Figure 6.4: Distribution of distances for numbers smaller than or equal to 108.
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6.5 Even and odd orbit numbers

When an odd number of an orbit iterates to an even number 2%b with b odd, there will be a
successive even numbers in a row. Rows with successive odd numbers do also occur. We will

start considering rows of even numbers.

For starting number 11 the orbit 11, 16, 8, 4, 2, 1, ... contains a row with four succes-
sive even numbers. Moreover, 11 is the smallest starting number for which a row with 4
successive orbit numbers appears. The smallest starting numbers for which the orbit contains

a row with at least k successive even numbers are tabulated below for ng < 108.

no|1[2(3|8|11]29|29|128|171|512|683|1812| 1812|7193 | 10923 | 32768 | 38837

kE|10|1(2|3|4 5|67 ]| 8] 9 |10 11 12 13 14 15 16

ng | 7767377673 | 5242881699051 | 2097152 2796203 | 5891589 | 5891589 | 33554432 | 44739243

k| 17 18 19 20 21 22 23 24 25 26

For k = 0,1,3,7,9,15,19,21 and 25 there holds precisely ng = 2¥. The next figure shows a

plot of the length records of even rows.
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Figure 6.5: Records of length k of even rows against starting value ng of an orbit. The dashed

curve is the function ng = 2.
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The smallest starting number which leads to a row with 26 successive even orbit numbers
is 44739243. The orbit is 44739243, 67108864 = 226, 33554432, 16777216, 8388608,
4194304, 2097152, 1048576, 524 288, 262144, 131072, 65536, 32768, 16384, 8192, 4096,
2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, ... Since 67108864 = 226 the row descends in
26 steps from 226 to 2.

Next we will look for orbits with two or more successive odd orbit numbers in a row. For this
we only run through a cycle once. Otherwise everything would be dominated by the orbit
1,1,1,1,... For this situation the smallest starting numbers for which the orbit contains a row

with at least k successive odd numbers are tabulated below for ng < 108.

no|1(9(9]17]33]65|129|153|321|321 |2049 4097 | 8193 | 14565 | 32769 | 65537 | 131073
k|1(2|3|4|5|6| 7 |8 9|10 11 | 12 | 13 14 15 16 17
ng | 262145 | 524289 | 932069 | 2097153 | 4194305 | 8388609 | 16777217 | 26512145 | 26512145
k 18 19 20 21 22 23 24 25 26

The records do satisfy ng = 2% + 1, except for n = 1,153,321, 14 565, 932 069 and 26 512 145.
The next figure shows a plot of the length records of odd rows.
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Figure 6.6: Records of length k of odd rows against starting value ng of an orbit. The dashed

curve is the function ng = 2F + 1.
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For starting numbers ng which do satisfy the relation ng = 2% + 1 the next number is n; =
(3(2"+1)—1)/2=(3-2"+2) /2=3-2""1 4+ 1. After two steps we have ny = 3%-2F"2 4 1,
Repetition of the arithmetic leads to n,, = 3™ - 2F=™ 4+ 1. After k steps we have nj, = 3% + 1,
which is even. Hence, starting with ng = 2F 4+ 1 we obtain an orbit with a row of k& odd

numbers.

6.6 Records of maximums

Starting number 3 has orbit {3,4,2,1,1,...}. The maximum value of the orbit is 4, thus
M (3) = 4. Starting number 5 has orbit {7,10,5,7,...}. The maximum value of the orbit is 10.
Thus M (5) = 10 which is a new maximum record. The maximum records p(n) are tabulated
below for ng < 108.

#n M record #|n M record #|n M record

11 1 13/1601 |131 356 25(149345 4837921750

2 |2 2 14|1889 (413344 26(337761 4862920456

313 4 1513393 |417718 27(558341 39156432022

4 15 10 164097 |957 664 28(839429 39246157990

5 (9 28 1716929 (1439776 29(1022105 |45360267 382

6 |17 136 188193 |1594 324 3011467393 [3293075932912

7 (33 |244 19110497{2908 468 317932689 |7033004 986294

8 |65 (820 2011 025|40219 750 3218612097 15270716514 700
9 129 |2188 21]18273|44 442028 33123911 397|39704 218 231 240
10/153 |16 606 22(28161(195046228| 34|58 882625|127 143512668 792
111321 |66430 23|74 585|477 250624 35(75567105|1 101 396 273 700 744
12|1425|83 188 24185265(510919012

For ng < 108 a simultaneous odd row length record and orbit maximum record occurs for
n = 1,9,17,33,65,129, 153, 321,4097 and 8193. The records of orbit maximums have been
plotted against starting value ng < 108 in the next figure.
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Figure 6.7: The records of orbit maximums M against starting value ng.

6.7 Records of distances

For the first few starting numbers the distances are D(2) =1, D(3) = 3, D(4) =2, D(5) = 3,

D(6) = 4 and so on. We see the distance D(6) does supersede D(3).

That is, D(6) is a

distance record. The next time a new distance record occurs is for starting number 9. The

distance records are tabulated below for ng < 10%.

#1ng|D record||# |ng |D record||# |ng |D record||# |ng D record
112 1 9 |57 20 171903 72 25]6929 132
213 3 10|65 25 18(1209 74 267301 140
316 4 11|87 27 19(1425 98 2719735 142
419 5 121153 52 201689 103 28111025 153
5115 7 131305 53 21|2981| 107 29|18273| 184
6 (29 8 141321 61 22|3975| 109 30121657 189
7139 10 15641 62 235337 111 31138501 193
8 |53 12 16677 70 2415505 117 32147897 195




6.8. QUESTION

# |ng D rec.||# |ng D rec.||# [ng D rec.||# [ng D rec.
33154021 | 201 ||41(253959 | 235 ||49|3051879 | 350 ||57[38748977| 444
34154081 | 203 ||42(266469 | 237 ||50|3387153 | 366 ||58(40821969| 452
35164025 | 206 ||43]304901 | 250 ||51|3759257 | 382 ||59]43005861| 460
36164097 | 208 ||44(361365 | 255 ||52|5012343 | 384 ||60({80545041| 472
37185463 | 210 ||45(482817 | 341 ||53|6546273 | 424 ||61|0 0
381113951 | 212 ||46(858341 | 345 ||54|13092545| 425 ||62(0 0
391126465| 228 ||47(1144455| 347 ||55/16347225| 438 ||63|0 0
401149889| 233 ||48(2288909| 348 ||56/19374489| 443 ||64|0 0

The records of distances are plotted against starting number ng < 108 in the next figure.
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Figure 6.8: The records of distances against starting value n.
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For ng < 10® a simultaneous orbit maximum record and distance record occurs for ng =2, 3,

65, 153, 321, 1425, 6929, 11025 and 18 273.

6.8 Question

For the Negative Collatz iteration it is still an open question whether or not every orbit ends

in one of the three cycles c1, co and c3?
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Chapter 7

Generalised Collatz

7.1 Introduction

We will consider the sequence of positive integers that occurs for the iteration
73nk+w if np =21 mod?2
k41 = § py, 2 . (7.1)
5 if np =20 mod2
where n; is a positive integer and where w is an odd integer. Suppose we are interested in the
value of w for which a period 7 cycle occurs such that four members of the cycle are odd and
three members of the cycle are even. An example of such an odd even ratio is a cycle which
goes as (odd, odd, odd, even, odd, even, even). To such a cycle corresponds a parity cycle
which contains a 1 if a cycle element is odd and a 0 if a cycle element is even. Thus to a (odd,
odd, odd, even, odd, even, even) cycle corresponds the parity cycle (1,1,1,0,1,0,0). Let us

look at the orbit for this parity cycle. Starting with number ng we successively obtain

3ng +w
nl:T’
3ny +w 3%ng + (31 + 21) w
3ng +w 33n0—|—(32+31'21+22)w
nng:...: 23 ,
~ng no+ (32 +3'-2'+2%)w
ey T 24 ’
3ny +w 3o+ (33 +3%-21+3-22 424w
ns 3o+ (33+3%-21 4322+ 24w
n6:?= 6 )
ne 3mo+ (33+3%-21 4322+ 24w
TL?Z?: 27 .

For a period 7 cycle the condition ny = ng leads to

(3320 4 3221 4 3122 4 3024) w 73w
ng = = . (7.2)
27 — 34 47

65
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The starting number ng is an odd integer only if w = 47 or an odd multiple of 47. For
w = 47 we have ng = 73. The corresponding cycle is (73,133,223, 358,179,292, 146). For
w an odd multiple of 47, w = 47w say, we have ng = 73u and the corresponding cycle,
(73u, 133u, 223u, 358u, 179u, 292u, 146u), is just a multiple of the cycle (73,133,223, 358,179,

292, 146). In the sequel we confine to the smallest value of w for which ng is integer.

In equation (7.2) the powers of 2 in the four terms between brackets are 1 smaller than
the position of 1’s in the parity cycle. In general, if the parity cycle of period p is denoted
as (ki, ka2, ks, ..., kp) and if the parity cycle includes odd numbers exactly ¢ times at positions

r1 < --- < rg, then the unique solution which generates a cycle of period p in iteration scheme

(7.1) is given by
3q—19ri—1 4 39—29r2—1 4+t 309r¢—1) 4y
ng = ( ) . (7.3)
9 _ 3q
For example, parity cycle (1,1,1,1,0,0,0) we obtain
(3320 + 3221 3122 3023) w 65w
ng = = . (74)
27 — 34 47
Then, by taking w = 47 we obtain ng = 65 and cycle is (65,121,205, 331, 520, 260, 130).
Since there are (D = 35 ways to position four 1’s among 7 places, there are 35 differ-
ent parity cycles. Furthermore, since (0,1,1,1,1,0,0), (0,0,1,1,1,1,0), (0,0,0,1,1,1,1),

. . . . Ta . . . . 35 _
(1,0,0,0,1,1,1), etc. are just 7 periodic shifts of a unique parity cycle, there will be = =5

unique cycles of length 7. To construct unique parity cycles in a systematic way as much as
possible, we notice that for four 1’s among 7 places there must at least exist a row of two or
more adjacent 1’s. We therefore can require k1 = 1, ks = 1 and k7 = 0. Since there are (3) =6
ways to position two 1’s among 4 places, we obtain six possibilities for unique parity cycles.
The six possibilities are (1,1,1,1,0,0,0), (1,1,1,0,1,0,0), (1,1,0,1,1,0,0), (1,1,1,0,0,1,0),
(1,1,0,1,0,1,0) and (1,1,0,0,1,1,0). Next we observe that possibility (1,1,0,0,1,1,0) is just
a shift of possibility (1,1,0,1,1,0,0). So, we arrive at five unique parity cycles. The parity
cycles and the corresponding orbit cycles are:

(1,1,1,1,0,0,0) —  (65,121,205,331, 520, 260, 130),

(1,1,1,0,1,0,0) (73,133,223,358,179,292, 146),

(1,1,0,1,1,0,0) (85,151,250, 125,211, 340, 170),

(1,1,1,0,0,1,0) (89,157,259,412, 206,103, 178),

(1,1,0,1,0,1,0) (101,175,286, 143,238,119, 202).

L4414

Now we can proceed in two ways. The first way is to fix w = 47 and look for all periods
p of the corresponding cycles. The second way is too look for all w values which deliver period

7 cycles.
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7.2 Cycles for (3n +47)/2 iteration

Here we will consider the orbits of positive integers which occur for the iteration

3 47
Stk + 27 if n; 21 mod?2

M1 = { o, 2 (7.5)
5 if n; 20 mod?2 .

For this iteration the starting numbers of period p cycles with ¢ odds, are given by

(3q—127‘1_1 4397292~ L4 302Tq—1) 47
p — 3q '

ng =

Again r; < --- <1y are the positions of the ¢ odds in the parity cycle.
Let G be the greatest common divisor of (3“12”*1 4397292t Ly 3027"‘1*1) and 2P — 34,

If G = 1 the value of ng is only a positive integer if 2P — 39 = 47 or if 2 — 39 = 1. The
condition 2P — 37 = 1 is satisfied if p = 2 and ¢ = 1. For period 2 parity cycle (1,0) we obtain
no = 3°2° . 47 = 47. The corresponding period 2 cycle is (47,94). The condition 2P — 39 = 47
is satisfied probably only for p = 7 and ¢ = 4. This leads to the five period 7 cycles as derived

in the previous section.

For G # 1 the value of ng is only an integer if 2P — 39 = 47G. Such a situation occurs
for the period 18 parity cycle (1,1,0,1,0,0,1,0,0,1,1,0,0,0,1,0,0,0). That is, p = 18 and
q =7 and

(3020 4 3521 4 3123 4 3326 4 3229 4 31210 4 3021447 27655-47  5.5531-47

o = 918 _ g7 T 7259957 | 47-5531

The corresponding period 18 cycle is
(5,31,70,35,76,38,19, 52,26, 13,43, 88, 44, 22,11, 40, 20, 10).
Another situation with G # 1 occurs for the period 28 parity cycle (1,1,1,0,0,1,1,1,1,1,0,1,
1,0,1,1,0,0,1,0,1,1,0,1,0,0,0,0). Now p = 28 and ¢ = 16 and
1o = 119887625 - 47 _ 53.11-13-19-353 - 47 _
225388735 5-11-13-19-47-353

The corresponding period 28 cycle is (25,61,115,196,98,49,97, 169,277,439, 682, 341, 535,
826, 413,643,988, 494,247,394, 197, 319, 502, 251, 400, 200, 100, 50).

52.

For ng < 10° and w = 47 there is no cycle with a period larger than 28.
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7.3 Period records

Period 28 for w = 47 is not a period record. Already for w = 23 a period 43 cycle occurs.
That record was preceded by a period 31 cycle for w = 17. For w > 47 we obtain the records
p = 66 for w = 61, p = 100 for w = 85 and so on, where p denotes the cycle period. Given
a cycle which contains a period record, we will denote its smallest element as ¢ min, and the
smallest starting number for which the orbit ends in such a cycle as ng min. For positive odd

w < 2000 the records for p, ¢ min and ng min are tabulated below.

CHAPTER 7. GENERALISED COLLATZ

w | p |cmin|ng min w p |c min|ng min w P |c min|ng min
1] 2 1 1 107(106| 1 1 371 1222] 25 1
5 | 27 | 187 123 125|118 | 899 387 509 |262| 5 3
171 31| 23 9 1391136 11 1 563 |426| 19 1
23| 43 | 41 1 143|140 7 1 1135(476| 13 1
29| 65 | 3811 | 2531 197|141 5 1 1163 |526| 13 1
61| 66 | 235 175 253(162| 13 3 1307(636| 1 1
851100 7 1 313(200| 35 1 1699 |737| 23 1

The data for w and p records are plotted in the next figure.
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Figure 7.1: A plot for the records of cycle periods against w for ng < 10°.
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7.4 Values of w for period 7 cycles

In the first section of this chapter we explained why five different period 7 cycles with 4 odd
elements do occur for w = 47. In this section we will systematically derive the value for w for
which period 7 cycles occur with other than 4 odd elements.

We start with a period 7 cycle without odd elements. The parity cycle is (0,0,0,0,0,0,0).
That is, ny = %. The condition n7 = ng has the trivial solution ng = 0. Actually, ng = 0 is
a period 1 cycle or fixed point. We will confine to period 7 cycles which are not a multiple of
smaller cycles and count ng = 0 to the trivial period 1 cycle (0).

Next we consider a period 7 cycle with 1 odd element. The only unique possibility for the
parity cycle is (1,0,0,0,0,0,0) since other possibilities like (0, 1,0,0,0,0,0), (0,0,1,0,0,0,0),
etc. are just periodic shifts of (1,0,0,0,0,0,0). According to equation the parity cycle
(1,0,0,0,0,0,0) corresponds to ng = 23702_01;1 = %5 The smallest value of w for which ng is
integer is w = 125. Then ng = 1 and the cycle is (1,64, 32, 16, 8,4, 2). The shifted parity cycles
(0,1,0,0,0,0,0), (0,0,1,0,0,0,0), etc. just correspond to cycles starting with the elements
64, 32, etc.

Next we consider a period 7 cycle with 2 odd elements. The unique possibilities are

(1,1,0,0,0,0,0), (1,0,1,0,0,0,0) and (1,0,0,1,0,0,0). To (1,1,0,0,0,0,0) corresponds
(312043021 )w 5w

ny = 57—z~ = Tig- [Lhe smallest value of w for which ng is integer is w = 119.

Then ny = 5 and the cycle is (5,67,160,80,40,20,10). To (1,0,1,0,0,0,0) corresponds
190 092

ng = % = 17—1% = 17. The smallest value of w for which ng is integer is w = 17.

Then ng = 1 and the cycle is (1, 10,5, 16, 8,4,2). To (1,0,0,1,0,0,0) corresponds

ng = % = 11%’. The smallest value of w for which ng is integer is w = 119. Then
no = 11 and the cycle is (11,76, 38,19, 88,44, 22).

For period 7 cycle with 3 odd elements the unique possibilities are (1,1,1,0,0,0,0),
(1,1,0,1,0,0,0), (1,1,0,0,1,0,0), (1,1,0,0,0,1,0) and (1,0,1,0,1,0,0). These five par-
ity cycles correspond with the cycles (19, 79,169, 304, 152, 76, 38), (23, 85,178, 89,184,92,46),
(31,97,196, 98,49, 124, 62), (47,121, 232,116,58,29,94) and (37,106, 53, 130,65, 148, 74) re-
spectively all for w = 101.

For period 7 cycles with 5 odd elements the unique possibilities are (1,1,1,1,1,0,0),
(1,1,1,1,0,1,0) and (1,1,1,0,1,1,0). These three parity cycles correspond with the cycles
(211,259, 331,439,601, 844,422), (227,283, 367,493,682, 341, 454) and

(251,319,421, 574,287,373, 502) respectively all for w = —115.

For period 7 cycles with 6 odd elements there is only one unique possibility: (1,1,1,1,1,1,0).
It corresponds with the cycle (665,697, 745,817,925, 1087,1330) for w = —601.

Finally, for a period 7 cycle with 7 odd elements the parity cycle is (1,1,1,1,1,1,1). It corre-
sponds with the period 7 cycle (1,1,1,1,1,1,1) for w = —1. It is a multiple of the fixed point
(1) and will be discarded for period 7 cycles. The results for period 7 cycles are tabulated

below.
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parity cycle

125

1,0,0,0,0,0,0

(1,64,32,16,8,4,2

119

1,1,0,0,0,0,0

(5,67,160, 80, 40, 20, 10

17

1,0,1,0,0,0,0

(1,10,5,16,8,4,2

119

1,0,0,1,0,0,0

(11,76, 38,19, 88,44, 22

101

1,1,1,0,0,0,0

(19,79, 169, 304, 152, 76, 38

101

1,1,0,1,0,0,0

(23,85,178,89, 184,92, 46

101

1,1,0,0,1,0,0

(31,97,196, 98,49, 124, 62

101

1,1,0,0,0,1,0

(47,121,232, 116, 58, 29, 94

101

(37,106, 53, 130, 65, 148, 74

47

1,1,1,1,0,0,0

65,121,205, 331, 520, 260, 130

47

1,1,1,0,1,0,0

73,133,223, 358,179, 292,146

47

1,1,0,1,1,0,0

47

1,1,1,0,0,1,0

(
(
(85,151,250, 125,211, 340, 170
(89, 157,259, 412, 206, 103, 178

47

1,1,0,1,0,1,0

101, 175, 286, 143, 238, 119, 202

-115

1,1,1,1,1,0,0

-115

1,1,1,1,0,1,0

(
(211,259, 331,439, 601, 844, 422
(227,283, 367, 493, 682, 341, 454

-115

1,1,1,0,1,1,0

(251,319,421, 574, 287, 373, 502

-601

( )
( )
( )
( )
( )
( )
( )
( )
(1,0,1,0,1,0,0)
( )
( )
( )
( )
( )
( )
( )
( )
( )

1,1,1,1,1,1,0

(665,697, 745,817,925,1087, 1330

There are 1, 3, 5, 5, 3, 1 period 7 cycles with 1, 2, 3, 4, 5, 6 odd elements respectively. The
w values which lead to periodic 7 cycles are -601, -115, 17, 47, 101, 119 and 125.

The following observation for cycle elements might be of interest: If we add the even ele-

ments of a cycle and subtract the odd elements, then the result is w times the number of odd

elements. Examples are:

644+32+16+84+4+2-1=125=w

1604+80+40+20410—-5—-67 =238 =2-119 = 2w
104164+844+2-1-5=34=2-17T=2w

304+ 152+ 76+38—-19—-79 — 169 = 303 = 3 - 101 = 3w

1330 — 665 — 697 — 745 — 817 — 925 — 1087 = —3606 = 6 - —601 = 6w
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Let us denote the sum of the even elements minus the sum of the odd elements of a cy-
cle as h and the number of odd elements of a cycle as gq. Then we observe the following
relation between h and w and ¢:

h=wq. (7.7)

7.5 Cycles with a given period

In this section we consider cycles occurring in the iteration (7.1). The smallest cycles are
period 1 cycles or fixed points. To the parity cycle (0) corresponds the fixed point (0) for any
value of w. For this case h = wq is satisfied for every w since h = 0 and ¢ = 0. To the parity

cycle (1) corresponds the fixed point (1) for w = —1. The table is

w | q | parity cycle | cycle | X even | ¥ odd | h

x |0 (0) ©0) | 0 0 |0
11 (1) 1| o 1 |-

There is one unique period 2 parity cycle which is not a multiple of a fixed point: (1,0). The
corresponding cycle is (1,2) for w = 1. The table is

w | q | parity cycle | cycle | ¥ even | ¥ odd | h

11 (1,o) |(1,2)] 2 1|1

There are two unique period 3 parity cycles which is not a multiple of a fixed point: (1,0,0)
and (1,1,0). The corresponding cycles are (1,4,2) for w =5 and (5,7,10) for w = —1. The
table is

w | q | parity cycle| cycle |X even|X odd| h

1| (1,0,0) | (1,4,2) | 6 1 |5

112 (1,1,0) |(5,7,10)| 10 12 |2

For unique parity cycles with period 4, 5 and 6 the tables are
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w | q | parity cycle cycle Yeven | X odd| h

13 |1] (1,0,0,0) | (1,8,4,2) 14 1 |13

7 12| (1,1,0,0) | (5,11,20,10) | 30 16 |14

11(3] (1,1,1,0) |(19,23,29,38)| 38 71 |-33

w | q | parity cycle cycle Yeven|X odd| h

29 [1](1,0,0,0,0) (1,16,8,4,2) 30 1 29

23 12((1,1,0,0,0) | (5,19,40,20,10) 70 24 46

23 121](1,0,1,0,0) | (7,22,11,28,14) 64 18 46

5 13](1,1,1,0,0) | (19,31,49,76,38) 114 99 15

5 13](1,1,0,1,0) | (23,37,58,29,46) 104 89 15

-49141(1,1,1,1,0) | (65,73,85,103,130) | 130 326 |-196
w q | parity cycle cycle Yeven | X odd| h
61 |1/(1,0,0,0,0,0) (1,32,16,8,4,2) 62 1 61
11 (2((1,1,0,0,0,0) (1,7,16,8,4,2) 30 8 22
55 [2](1,0,1,0,0,0) (7,38,19,56,28,14) 136 26 | 110
37 13/(1,1,1,0,0,0) (19,47,89,152, 76, 38) 266 155 | 111
37 13/(1,1,0,1,0,0) (23,53,98,49,92,46) 236 125 | 111
37 13/(1,1,0,0,1,0) (31,65,116, 58,29, 62) 236 125 | 111
-17 |4(1,1,1,1,0,0) | (65,89,125,179,260,130) 390 458 | -68
-17 |4](1,1,1,0,1,0) | (73,101,143,206,103,146) | 352 420 | -68
-179 5] (1,1,1,1,1,0) | (211,227,251,287,341,422) | 422 1317 |-895

The table for unique period 7 cycles has already been shown in the previous section. If a(p) is
the number of unique cycles with period p then the sequence a(p) for p = 1,2,3,4,5, ... goes
as 2,1,2,3,6,9,18, .... The latter sequence is known as sequence A001037 of the OEIS [2].
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7.6 Cycles with |w| =1
Let the numerator and denominator of equation be Nw and D respectively. That is

N =3a-ton=t p ga=2gra=l 4 .. 4 309ra—l (7.8)

and
D =2FP -39, (7.9)

where p is the cycle period, ¢ is the number of odd elements in the cycle and the r;, i =
1,2,..., q, are the positions of the odd elements in the cycle. For an alternative way to describe
N we write a period p parity cycle as (ci1,ca, ...,¢p), where ¢ is either 0 or 1. Of course,

c1+c2+ ... + ¢, = q. Let C}, be given by

Cp = i Com - (7.10)

m=k-+1
Then N is also given by
p
N = ch 3Ck k=1 (7.11)
k
To obtain a cycle with w = —1 the denominator D should be negative and |D| should be
a divisor of N. For this situation we already met two cases: (1) and (5,7,10). For the
fixed point (1) we have N = 320 = 1 and D = 2! — 3! = —1. For the period 3 cycle
(5,7,10) we have N = 3120 + 392! = 5 and D = 23 — 32 = —1. The reason for these cy-
cles is clear: |D| = 1 always is a divisor of N. There happens to be a case with |D| > 1:

(17,25,37,55,82,41,61,91, 136, 68,34) with parity cycle (1,1,1,1,0,1,1,1,0,0,0). For this
case we have N = 3020 + 3521 + 3122 4 3323 4 3225 4 3120 4 3027 = 2363 = 17 - 139 and
D =21 — 37 = —139. This case occurs because 139 happens to be a divisor of 2363.

To obtain a cycle with w = 1 the denominator D should be positive and a divisor of N. For
this situation we already met one case: (1,2). For the trivial cycle (1,2) we have N = 3920 =1
and D =22 — 3! = 1. Since D = 1 it always is a divisor of N. To day, cases with D > 1 have

not been found.

The closer |D| to 1 the larger the probability for |D| to be a divisor of N. In general, a
relatively small denominator occurs if 2P ~ 39. However, for increasing period the value of
2P ~ 37 is almost of the same order as 2P. The larger the period, the smaller the probability

for a cycle to exist.
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7.7 Further generalization

Throughout this chapter we considered the iteration (7.1), where the 1 in (3n 4 1)/2 is gen-

eralized to w. A further generalization is obtained by considering the iteration
vk +w if ng 21 mod2
M1 = p, 2 (7.12)

> if n, 20 mod?2,

where v and w are odd integers. However, for an odd v larger than 3 there is a large probability

for orbits to run to infinity. For instance, for the iteration

5 1
™ + if ng 21 mod2
Ng41 = 2 (7.13)

% if ng =0 mod2

the orbit starting with 7 goes as 7, 18, 9, 23, 58, 29, 73, 183, 458, 229, 573, 1433, 8958,
4479, 11198, ... It is the sequence A185455 of the OEIS|[2]. The orbit runs to large val-
ues: for k& = 199 the element nj of the orbit exceeds 10'°, for k£ = 2176 the orbit exceeds
10199, for k = 21572 the orbit exceeds 10190 and for k = 207216 the orbit exceeds 1010000,

No wonder it is conjectured that the orbit goes to infinity, although it still is an open question.

For the (5n + w)/2 iteration we found by inspection for several w the smallest positive ng for

which the orbit seems to run to infinity, see the next table.

w [-29|-27(-25|-23-21|-19|-17|-15|-13|-11|-9 -7 |-5|-3 |-1

no| 1 |1 43119195 1 (11|37 | 7 |25 |17|33|19|17|9

no|7|5113119|15| 5 |5 | 7|5 |1 113|215 |1




Chapter 8

M and YW function

8.1 Introduction

Inspired by the Collatz function we create the following iteration:

Dny, — Nk if ny is odd,
Nkt1 = (8.1)
T

5 if ny is even,

where p,, is the n-th prime. For brevity we will denote the iteration as
Nk+1 = M(nk) s (82)

where the M function is defined as

pn—mn ifnis odd,
M(n) = (8.3)

n i
— if n is even.
2
For instance, for ng = 7 we have ny = p; —7=17—7=10,ny = 10/2 =5, ng =ps — 5 =

11 — 5 =6, and so on. The orbit is 7,10,5,6,3,2,1,1,1,....

8.2 Cycles of the M function

For starting values ng < 108 the iteration ngq = M(ny) contains
one fixed point: ¢; = 1, and
one period 7 cycle: co = (211,1086, 543, 3376, 1688, 844, 422).

Not all orbits end in ¢; or co. Instead, some orbit seems to grow to infinity. The growth
is more or less irregular. The smallest ng which seems to exhibit a growth to infinity is 35.
The orbit goes as 35, 114, 57, 212, 106, 53, 188, 94, 47, 164, 82, 41, 138, 69, 278, 139, 658,

75
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329, 1878, 939, 6454, 3227, 26 534,13267,129786, ... After 89 steps the orbit is arrived at
ngg = 1299179087 596844 773. The next ng which seems to exhibit a growth to infinity
and which is not already in the orbit of 35, is 55. The orbit goes as: 55, 202, 101, 446,
223, 1186, 593, 3746, 1873, 14218, 7109, 64728, ... After 57 steps the orbit is arrived at
ngy = 334499 083 750 963 285.

8.3 Statistics of cycle arrivals

For ng < 10® the fractions of starting numbers for which the orbit arrives in ¢, ¢z or grows

to infinity are plotted in the next figure.

1
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Figure 8.1: The fractions of starting numbers of which the orbit arrives in ¢; (blue), c2 (green)

or grows to oo (black).

Each fraction approaches a limit value for ng — co. The limit values of the fractions for which

the orbit ends in ¢;, co and oo are 0, 0 and 1 respectively.

The fraction of ¢y is for all ng negligible. For small ng most orbits arrive at ¢;. For large ng
most orbits grow to infinity. The tipping point is near ng = 255. Even if p,,/no would be a
constant, a larger ng would lead to a larger probability for an orbit to grow to infinity. This
behavior is enhanced by the fact that py,/no grows as Inng. A theoretical approximation of

the ratio p,/n is |4]

Inlnn -2 (Inlnn)? —6Inlnn + 11

Inn 2(Inn)? (84)

v, =Inn+Inlnn -1+
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A more practical approximation of the ratio p,/n is

fin = 0.71 4 1.058Inn.. (8.5)

8.4 Approximation for the n-th prime

Let us denote the ratio p,/n as py:
_bn

In the next figure we have plotted the p, and the approximations v, and p,.

Pn

0 H‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘ HHHH‘
102 10! 102 103 10* 105 10° 107 108 10910'°101110'2101310410210161017
n
Figure 8.2: The value of p, for n = 2¥ with 0 < k& < 57 an integer (black dots), the

approximation v, (orange) and the approximation p, (green).

To get a more detailed impression of the accuracy of the approximations, the values of p, v/p

and p/p are shown for various n in the next table.
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n p v/p 1/ p
1 2.000000000 - 0.3550
2 1.50000000 -11.97559627 0.9622
3 1.66666667 -3.52143336 1.1234
4 1.75000000 -1.64223131 1.2438
5 2.20000000 -0.67160691 1.0967
6 2.16666667 -0.29397721 1.2026
7 2.42857143 -0.02372752 1.1401
8 2.37500000 0.15823572 1.2253
9 2.55555556 0.28103411 1.1875
10 2.90000000 0.34455333 1.0849
15 3.13333333 0.61388557 1.1410
20 3.55000000 0.69814204 1.0928
30 3.76666667 0.84277500 1.1438
40 4.32500000 0.83858348 1.0666
50 4.58000000 0.86478913 1.0587
100 5.41000000 0.91153109 1.0318
150 5.75333333 0.95013674 1.0448
200 6.11500000 0.95432174 1.0328
500 7.14200000 0.97590997 1.0200
10° 7.91900000 0.98468935 1.0126
10% 10.47290000 0.99678386 0.9982
10° 12.99709000 0.99916230 0.9918
108 15.48586300 0.99968550 0.9897
107 17.94246730 1.00000099 0.9900
108 20.38074743 1.00000190 0.9911
107 22.80176349 1.00000846 0.9927
1010 25.20978006 1.00000585 0.9945
10! 27.60727303 1.00000464 0.9964
1012 29.99622428 1.00000312 0.9982
10%3 32.37805089 1.00000211 1.0001
104 34.75385759 1.00000145 1.0018
10%° 37.12450805 1.00000101 1.0034
106 39.49069139 1.00000071 1.0050
10'7 41.85296581 1.00000051 1.0065
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For n > 1166 the approximation v is more accurate than the approximation y. Anyway, the
important conclusion is that p, is much larger than n for large n. For instance, p,/n = 20 for
odd n ~ 108. So, for odd n; ~ 10® the next iterate is Ni+1 = Pn, —n; and the next to next iterate
nito is smaller than n; only if p,, —n; is divisible by 2° or a higher power of 2. The probability
for py,; —n; to be divisible by 2° is small. Even if n;+o happens to be smaller than n;, than n;,o
is most probably still large enough to be followed by a growth. For this reason a cycle with
elements larger than 10% is not very likely. Although very unlikely, it is not impossible. We are
therefore left with the question whether or not (1) and (211, 1086, 543, 3376, 1688, 844, 422)
are the only cycles of the M function.

8.5 The W function

A variation of the M function can be created by changing the minus sign into a plus sign.

Dy, + g if ng is odd,

Nk41 = (8.7)
Nk . .
— if ny is even,
2

where p,, is the n-th prime. To distinguish it from the M function we will call it the W
function:

ng1 = W(nyg), (8.8)
where

pn+mn ifnisodd,

W(n) = (8.9)
n . .
5 if n is even.

For instance, for ng =7 we have ny = py + 7= 1747 =24, ng = 24/2 = 12, n3 = 12/2 = 6,

ng =6/2=3,n5 =p3s+3=5+3=38, and so on. The orbit is 7,24,12,6,3,8,4,2,,1,3,8, ....

8.6 Cycles of the VW function

For starting values ng < 108 the iteration ng,; = W(n;) contains

one period 5 cycle: ¢; = (1,3,8,4,2),

one period 8 cycle: co = (235,1718,859, 7520, 3760, 1880, 940, 470),

one period 10 cycle: ¢3 = (15, 62,31, 158,79, 480, 240, 120, 60, 30),

two period 18 cycles:
ca = (21,94, 47,258, 129, 856, 428, 214, 107, 694, 347, 2688, 1344, 672, 336, 168, 84, 42),
cs = (51,284,142, 71,424, 212, 106, 53, 204, 147, 1000, 500, 250, 125, 816, 408, 204, 102).

Also here not all orbits end in periodic cycles. Instead, some orbit seems to grow to infinity.
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The growth is more or less irregular. The smallest ng which seems to exhibit a growth to infin-
ity is 13. The orbit goes as 13, 54, 27, 130, 65, 378, 189, 1318, 659, 5592, 2796, 1398, 699, 5972,
2986, 1493, 13996, ... After 80 steps the orbit is arrived at ngy = 1977693 361 846 020 549.
The next ng which seems to exhibit a growth to infinity is 17. The orbit goes as: 17, 76, 38,
19, 86, 43, 234, 117, 760, 380, 190, 95, 594, 297, 2248, ... After 83 steps the orbit is arrived at
ngs = 445705128 169 301 879.

8.7 Statistics of cycle arrivals

For ng < 108 the fractions of starting numbers for which the orbit arrives in one of the cycles

or grows to infinity are plotted in the next figure.
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Figure 8.3: The fractions of starting numbers of which the orbit arrives in ¢; (blue), ¢o (green),

cs (orange), ¢4 (red), ¢5 (brown) or grows to oo (black).

Each fraction approaches a limit value for ng — oo. The limit values of the fractions of
starting numbers for which the orbit ends in ¢1, ¢, ¢3, ¢4, ¢5 and oo are 0, 0, 0, 0, 0 and 1

respectively.

The question arises whether or not ¢y, ¢, c3, ¢4 and c5 are the only cycles of the W function.



Chapter 9

Reversal of digits

9.1 Introduction

From an arbitrary number we can create a second number by reversing the order of digits.
Subtraction of the smallest from the largest of the two numbers leads to a new number. We
give some examples:

From 962 we obtain 962 — 269 = 693.

From 8374 we obtain 8374 — 4738 = 3636.

In this chapter we will consider the iteration
N1 = max(ng, 7)) — min(ng, 7y , (9.1)

where rj is the digit reversal of ny. We will call it the digit reversal iteration. If we work
for instance with 4-digit numbers, than numbers smaller than 1000 are preceded by zero’s to
make them 4-digit numbers: 123 — 0123, 64 — 0064, 7 — 0007, etc.

For instance, for the 4-digit number ny = 3447 we obtain rq = 7443 and

n1 = 7443 — 3447 = 3996. Repeating the iteration we obtain

ng = 6993 — 3996 = 2997. ng = 7992 — 2997 = 4995, n4 = 5994 — 4995 = 0999,

ns = 9990 — 0999 = 8991, mng = 8991 — 1998 = 6993, n7 = 6993 — 3996 = 2997.

That is, ny = ny = 2997. So, (0999, 8991,6993,2997,4995) is a period 5 cycle. It can also be
written as 999 - (1,9,7,3,5).

When the iteration is applied to ng = 4086 we successively obtain

np = 6804 — 4086 = 2718, no = 8172 — 2718 = 5454, n3 = 5454 — 4545 = 0909,

ng = 9090 — 0909 = 8181, ns = 8181 — 1818 = 6363, ng = 6363 — 3636 = 2727,

ny = 7272 — 2727 = 4545, ng = 5454 — 4545 = 0909.

That is, ng = ng = 0909. So, (0909, 8181, 6363, 2727,4545) is a period 5 cycle. It can also be
written as 909 - (1,9,7,3,5).

81
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When the iteration is applied to ng = 0025 we successively obtain

ny = 5200 — 0025 = 5175, ng = 5715 — 5175 = 0540, n3 = 0540 — 0450 = 0090,
ng = 0900 — 0090 = 0810, mn5 = 0810 — 0180 = 0630, ng = 0630 — 0360 = 0270,
ny = 0720 — 0270 = 0450, ng = 0540 — 0450 = 0090.

We see (0090, 0810, 0630, 0270,0450) = 90 - (1,9,7,3,5) is a period 5 cycle.

When the iteration is applied to ng = 0176 we successively obtain
ny = 6710 — 0176 = 6534, mno = 6534 — 4356 = 2178, n3 = 8712 — 2178 = 6534.
That is, n3 = n1. So, (2178,6534) is a period 2 cycle. It can also be written as 2-3%-112-(1, 3).

It turns out that the orbit for almost all 4-digit numbers ends at one of the four forego-
ing periodic cycles. The only exceptions are the 100 palindrome numbers 0000, 0110, 0220,
..., 0990, 1001, 1111, 1221, ..., 1991, 2002, 2112, 2222, ......, 9889, 9999. These 100 numbers
are mapped on the trivial fixed point (0000).

As before we let the distance be the number of steps required to reach a periodic cycle. For
4-digit numbers it is the number of steps required to arrive at either one of the cycles (0000),
(0999, 8991, 6993, 2997, 4995), (0909, 8181, 6363, 2727, 4545), (0090, 0810, 0630, 0270,0450) or
(2178,6534). For the numbers 0 through 9999 the frequency of distances is shown in the table

below.

distance | 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12

#mno | 18| 1572 | 1170 | 1416 | 1376 | 724 | 728 | 604 | 656 | 704 | 564 | 172 | 296

There are two ways to generalize the iteration. The first way is by considering numbers with
other than 4 digits. The second way is by considering numbers in other bases. We start with

considering numbers with m digits in base 10.

9.2 Reversal of digits for m-digit numbers

For m = 1 there is one fixed point: (0). The numbers 1, 2, ..., 9 are mapped on the fixed point.

For m = 2 there is one fixed point: (00), and one period 5 cycle: (09,81, 63,27,45).

The numbers 11, 22, ..., 99 are mapped to the fixed point (00). For all other 2-digit num-
bers the orbit arrives at the cycle (09,81,63,27,45). To see this we let d; and dy be the
digits of a 2-digit number ng = 10dy + do. If di = dp then ny = 00. If di # dp then
ny = IO‘dl — do‘ + |d0 — d1’ = 9‘d1 — do‘. The latter is either an even multiple of 9 or a mem-
ber of the cycle (09,81,63,27,45). The even multiples of 9 arrive after one step at the cycle
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(09,81, 63,27, 45) since 18, 36, 54, 72 and 90 are mapped on 63, 27, 09, 45 and 81 respectively.
The distance frequencies for 2-digit numbers can be explained as follows. The fixed point 00
and the cycle elements 09, 81, 63, 27, 45 are 6 cases with distance 0. From n; = Q‘dl — do‘ we
see that for the 9 cases where di = dy # 0, that is for ng € {11,22, 33,44, 55,66, 77,88,99},
we have n; = 00. That are 9 cases with distance 1. For the 45 cases where {dl — do‘ is odd
and ng ¢ (09, 81,63,27,45) the successor n; is a member of the cycle (09, 81, 63,27,45). That
are 45 cases with distance 1. In total we have 45 + 9 = 54 cases with distance 1. For the 40
cases where }dl — do‘ is even and d; # dy, the successor nj is an even multiple of 9 and ns is
a member of the cycle (09,81,63,27,45). That are 40 cases with distance 2. Presented in a

distance table:

distance |0 1 | 2 |3|4|5]|6|7|8]9

#mng |6|54]40{0(0|1010|0|0O|O0O

For m = 3 there is one fixed point: (000), and one period 5 cycle: (099, 891, 693, 297, 495).
The palindrome numbers for which the last digit equals the first digit, are mapped to the fixed
point (000). For all other 3-digit numbers the orbit arrives at the period 5 cycle (099, 891, 693,
297, 495). To see this we let do, d; and dy be the digits of a number ny = 100ds + 10d; + dp.
If dy = dy then ny = 000 else ny = 100|dy — do| + 10(dy — d1) + |do — da| = 99|d2 — do|. The
latter is either an even multiple of 99 or a member of the cycle (099, 891,693,297,495). The
even multiples of 99 arrive after one step at the cycle (099,891, 693,297, 495) since 198, 396,
594, 792 and 990 are mapped on 693, 297, 099, 495 and 891 respectively.

The distance frequencies for 3-digit numbers can be explained as follows. The fixed point
000 and the cycle elements 099, 891, 693, 297, 495 are 6 cases with distance 0. From
ny = 99‘d2 — do‘ we see that for the 99 cases where do = dyp and ng # 000 we have
n1 = 000. That are 99 cases with distance 1. For the 495 cases where ‘dg - do‘ is odd and
no ¢ (099,891,693, 297,495) the successor n; is a member of the cycle (099, 891, 693,297, 495).
That are 495 cases with distance 1. In total we have 495 + 99 = 594 cases with distance 1.
For the 400 cases where }dg — do‘ is even and ds # dy the successor ny is an even multiple of
99 and ng is a member of the cycle (099, 891, 693,297,495). That are 400 cases with distance
2. For 3-digit numbers the distance table is:

distance | 0| 1 2 |3[4|5|6|7[8|9

#mg |61594]1400]0(0]0]0{0]|0]|0

The distance frequencies for 3-digit numbers are related to the distance frequencies for 2-digit
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numbers. Since the digit d; is not present in the equation n; = 99’(12 — do‘ for 3-digit numbers
the arithmetic is determined by the first and the last digit comparable with the situation for
2-digit numbers. For the 40 2-digit numbers with distance 2 we can plug in an arbitrary digit
between d; and dy to obtain the 400 3-digit numbers with distance 2. We cannot simply plug
in an arbitrary digit between d; and dy of a 2-digit member of a cycle in order to create a
3-digit cycle member. For example, if we take the 2-digit cycle member 81 and plug in the 0
through 9 in between the 8 and the 1, we obtain 801, 811, 821, ..., 891. They are all mapped
on 693 which is part of the cycle (099,891, 693,297,495). That is, the number of cycle mem-
bers for 3-digit numbers is the same as for 2-digit numbers. The number 891 in the example
has distance 0, while the numbers 801, 801, 811, 821, ..., 881 have distance 1. Therefore the
frequency of 3-digit numbers with distance 1 is 10 times the frequency of 2-digit numbers with
distance 1 added with 9 times the frequency of 2-digit numbers with distance 0.

Let us denote the frequency of m-digit numbers with distance D as f,,(D) then the relation
can be summarized as f3(2) = 10f2(2), f3(1) = 10f2(1) + 9f2(0) and f3(0) = f2(0).

For m = 4 there are
one fixed point: (0000),
one period 2 cycle: (2178, 6534), and
three period 5 cycles:

(0090, 0810, 0630, 0270, 0450),

(0999, 8991, 6993, 2997, 4995) and

(0909, 8181, 6363, 2727, 4545).
A general 4-digit starting number is given by ng = 1000d3 4+ 100ds + 10d; + dy, where dy
through ds3 are the four digits. In the palindrome case dy = d3 and d; = do the ng is mapped
to the fixed point (0000). In case d3 = dy and dy # dy the first and last digit of n; is zero.
The two digits in between behave as m = 2 numbers. So, in case d3 = dy and dy # di, the
orbit arrives at (0090, 0810, 0630, 0270, 0450). For 4-digit numbers the distance table is:

distance | 0 1 2 3 4 5 6 7 8 9

# no 18 | 1572 | 117 | 1416 | 1376 | 724 | 728 | 604 | 656 | 704

distance | 10 | 11 12 | 13 14 (15|16 | 17 | 18 | 19

#mng |564] 172 | 296 | O 0 0 0 0 0 0

For m = 5 there are

one fixed point: (00000),

one period 2 cycle: (21978,65934), and
three period 5 cycles:
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(09999, 89991, 69993, 29997, 49995

),
)

(00990, 08910, 06930, 02970, 04950) and
(09009, 81081, 63063, 27027, 45045).

For 5-digit numbers the distance table is:

distance | 0 1 2 3 4 5 6 7 8 9
# ng 18 | 15882 | 1170 | 14160 | 13760 | 7240 | 7280 | 6040 | 6560 | 7040

distance | 10 11 12 13 14 15 16 17 18 19
# ng | 5640 | 1720 | 2960 0 0 0 0 0 0 0

85

As for 3-digit and 2-digit numbers the distance frequencies for 5-digit and 4-digit numbers
are related. The relation is f5(0) = f4(0), f5(1) = 10f4(1) + 9f4(0) and f5(D) = 10f4(D) for

D > 2.

For m = 6 there are
one fixed point: (000000),
two period 2 cycles:
(219978, 659934) and
(021780, 065340),
seven period 5 cycles:
(099999, 899991, 699993, 299997, 499995),
009990, 089910, 069930, 029970, 049950),
090009, 810081, 630063, 270027, 450045),

099099, 891891, 693693, 297297, 495495) and

)
( )
( )
(000900, 008100, 006300, 002700, 004500),
(009090, 081810, 063630, 027270, 045450),
( )
( )

090909, 818181, 636363, 272727, 454545),

one period 9 cycle: (010989, 978021, 057142, 615384, 131868, 736263, 373626, 252747,

494505),

and one period 18 cycle: ( 043659, 912681, 726462, 461835, 076329, 847341, 703593, 308286,

374517, 340956, 318087, 462726, 164538, 670923, 341847, 406296, 286308, 517374).

For 6-digit numbers the distance frequencies are plotted in a diagram, see next figure.
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Figure 9.1: Distribution of distances for 6-digit numbers for the digit reversal iteration.

For m = 7 there are: one fixed point: (0000000),
two period 2 cycles:
(0219780, 0659340) and
(2199978, 6599934),
seven period 5 cycles:
(0999999, 8999991, 6999993, 2999997, 4999995),
(0099990, 0899910, 0699930, 0299970, 0499950),
(0900009, 8100081, 6300063, 2700027, 4500045),
(0009900, 0089100, 0069300, 0029700, 0049500),
(0090090, 0810810, 0630630, 0270270, 0450450),
(0990099, 8910891, 6930693, 2970297, 4950495),
(0909909, 8189181, 6369363, 2729727, 4549545),
one period 9 cycle: (0109989, 9789021, 8579142, 6159384, 1319868, 7369263, 3739626, 2529747,
4949505) and
one period 18 cycle (0439659, 9129681, 7260462, 4619835, 0769329, 8470341, 7039593, 3080286,
3740517, 3409956, 3189087, 4620726, 1649538, 6709923, 3410847, 4069296, 2860308,
5170374).
For 7-digit numbers the distance frequencies are plotted in the next diagram.
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Figure 9.2: Distribution of distances for 7-digit numbers for the digit reversal iteration.

The relation between the distance frequencies of 7-digit numbers and 6-digit numbers is
f7(0) = f6(0), f7(1) = 10fs(1) +9f6(0) and f7(D) = 10fs(D) for D > 2.

In summary, in base 10 the relation between distance frequencies of 2k + 1 digit and 2k

digit numbers is

for(D) if D=0
fokt1(D) = € 10for (D) + 9f2,(0)  if D=1
10 for (D) it D>2.

These equations satisfy the requirement

S k(D) =10 for(D).
D=0 D=0

For 8-digit numbers we have one fixed point: (00000000),
four period 2 cycles:
(21999978, 65999934),
(02199780, 06599340),
(00217800, 00653400),
(21782178, 65346534),
fifteen period 5 cycles:
(09999999, 89999991, 69999993, 29999997, 49999995),
(00999990, 08999910, 06999930, 02999970, 04999950),
(09000009, 81000081, 63000063, 27000027, 45000045),

(9.2)
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(00099900, 00899100, 00699300, 00299700, 00499500),

(00900090, 08100810, 06300630, 02700270, 04500450),

(00009000, 00081000, 00063000, 00027000, 00045000),

(00090900, 00818100, 00636300, 00272700, 00454500),

(09090909, 81818181, 63636363, 27272727, 45454545),

(09990999, 89918991, 69936993, 29972997, 49954995),

(09099909, 81899181, 63699363, 27299727, 45499545),

(09900099, 89100891, 69300693, 29700297, 49500495),

(09009009, 81081081, 63063063, 27027027, 45045045),

(00990990, 08918910, 06936930, 02972970, 04954950),

(00909090, 08181810, 06363630, 02727270, 04545450),

(09909099, 89181891, 69363693, 29727297, 49545495),
two period 9 cycles:

(01099989, 97899021, 85799142, 61599384, 13199868, 73699263, ..., 25299747, 49499505),

(00109890, 09780210, 08571420, 06153840, 01318680, 07362630, ..., 02527470, 04945050),
one period 10 cycle:

(07781229, 84437541, 69864093, 30817197, 48354606, 12290778, ..., 28026918, 53935164),
one period 14 cycle:

(11436678, 76226733, 42464466, 23981958, 61936974, 13973058, ..., 48737106),
and two period 18 cycles:

(04399659, 91299681, 72600462, 46199835, 07699329, ..., 28600308, 51700374), and

(00436590, 09126810, 07264620, 04618350, 00763290, ..., 02863080, 05173740).

9.3 Digit reversal iteration in base 2

In the previous section we considered 1- through 8-digit numbers in base 10. Here we will

consider 1 through 9-digit numbers in base 2.

For 1-digit numbers in base 2 we have two orbits: 0 — 0 and 1 — 0. That is, (0) is the
single fixed point.

For 2-digit numbers in base 2 we have four different starting values with orbits: 00 — 00,
01 — 01, 10 — 01 and 11 — 00. That is, (00) and (01) are fixed points. The numbers 10 and
11 both have distance 1. The numbers 10 and 11 in base 2 are written as 2 and 3 in base 10.
Sometimes one writes 100 = 219 and 119 = 31y or shortly 10 = 219 and 11 = 34 if the left

side base is clear.

For 3-digit numbers in base 2 we have: 000 — 000, 001 — 011, 010 — 000, 011 — 011,
100 — 011, 101 — 000, 110 — 011, 111 — 000. That is, (000) = (019) and (011) = (319) are
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two fixed points. The 6 other numbers have distance 1 to these fixed points.

For 4-digit numbers in base 2 we have 4 fixed points: (0000), (0010) = (21¢), (0101) = (510)
and (0111) = (710). It can be seen as follows: for a fixed point z = 8d3 + 4ds + 2d; + dp with
digits d3, ds, d1, dy the digit reversal should deliver a twice as large number. That is,

8dy + 4dy + 2dy + dg = 2 (8d3 +4dy + 2d; + do) . (9.4)

It is reduced to

16ds3 + 6do = 6dj . (9.5)
The solution is d3 = 0, do = dy and d; may be either 0 or 1. Indeed for ds = dyp = 0 and
d1 = 0 we have x = 0000, for do = dy = 0 and d; = 1 we have x = 0010, for do = dyp = 1 and
d; = 0 we have x = 0101 and for dy = dy = 1 and d; = 1 we have x = 0111. Among the 12

other 4-digit numbers there are 10 numbers with distance 1 and 2 numbers with distance 2.

For 5-digit numbers in base 2 we have 4 fixed points: (00000), (00110) = (619), (01001) = (910)
and (01111) = (1510). It can be seen as follows: for a fixed point = 16d4+8ds+4da+2d; +dp
with digits d4, ds3, ds, d1, dg the digit reversal should deliver a twice as large number:

16dg + 8dq + 4ds + 2d3 + dg = 2 (16d4 + 8ds + 4ds + 2d; + do) . (96)
This condition is reduced to
31d4 + 14ds + 4dy = 4dq + 14d, . (9.7)

The solution is dy = 0, d3 = dy and dy = d; may be either 0 or 1. Indeed for d3 = dy = 0 and
dy = dp = 0 we have x = 00000, for d3 = dg = 0 and ds = d; = 1 we have z = 00110, for
d3 =dyp=1and dy = d; = 0 we have x = 01001 and for d3 = dgp = 1 and do = d; = 1 we
have z = 01111. Among the 28 other 4-digit numbers there are 24 numbers with distance 1

and 4 numbers with distance 2.

For 6-digit numbers in base 2 we have 8 fixed points. In base 10 notation the fixed points are
(010), (410), (1010), (1410), (1710), (2110), (2710) and (3110). Among the 56 other numbers

there are 38 numbers with distance 1 and 18 numbers with distance 2.

For 7-digit numbers in base 2 we have 8 fixed points: (019), (1210), (1819), (3010), (3310),
(4510), (5110) and (6319). Among the 120 other numbers there are 84 numbers with distance

1 and 36 numbers with distance 2.

For 8-digit numbers in base 2 we have 16 fixed points: (019), (810), (2010), (2810), (3410), (4210),
(5410), (6210), (6510), (7310), (8510), (9310), (9910), (10710), (11910) and (12710). Among the
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240 other numbers there are 130 numbers with distance 1, 94 numbers with distance 2, 14

numbers with distance 3 and 2 numbers with distance 4.

For 9-digit numbers in base 2 we have 16 fixed points: (010), (2410), (3610), (6010), (6610),
(9010), (10210), (12610), (12910), (15310), (16510), (18910), (19510), (21910), (23110) and
(25510). Among the 496 other numbers there are 276 numbers with distance 1, 188 num-

bers with distance 2, 28 numbers with distance 3 and 4 numbers with distance 4.

Similar to the situation in base 10 we recognize in base 2 a similarity between a (2k)-digit
number and a (2k + 1)-digit number. Also in base 2 we denote the frequency of m-digit

numbers with distance D as f,,(D). Then the similarity can be expressed as

Jor(D) ifD=0
fors1(D) = § 2fo1(D) + for,(0)  if D=1 (9.8)
2far (D) if D>2.
and o .
> fakr1(D) =2 far(D). (9.9)
D=0 D=0

9.4 Digit reversal iteration in base 3

For 1-digit numbers in base 3 we have 3 orbits 0 — 0, 1 — 0 and 2 — 0. So, (0) is the single
fixed point.

For 2-digit numbers in base 3 we have 9 orbits: 00 — 00, 01 — 02 — 11 — 00, 02 — 11 — 00,
10 — 02 — 11 — 00 and 11 — 00, 12 — 02 — 11 — 00, 20 — 11 — 00, 21 — 02 — 11 — 00,
22 — 00. Presented in base 10 it reads 019 — 019, 110 — 210 — 410 — 010, 210 — 410 — 019,
310 — 210 — 410 — 010 and 419 — 010, 510 — 210 — 410 — 010, 610 — 410 — O10,
710 — 210 — 410 — 010, 810 — 010. So, (010) is a single fixed point.

For 2-digit numbers in base 3 the distance table is

distance |0 |12 (3|4|5]6|7|81]9

#mnog [1[12)2]4]0[0/0]0[0]O0

Hereafter we will solely present the cycles and the distances. The distances will be presented

in a distance table.



9.4. DIGIT REVERSAL ITERATION IN BASE 3 91

For 3-digit numbers in base 3 we have 1 fixed point: (019). The distance table is

distance |0 12| 3 |4|5]6|7|8]9

#mno |118|612]0]0[0]0]|0]|0

For 4-digit numbers in base 3 we have 2 fixed points: (019) and (3219). The distance table is

distance |0 1 | 2 | 3 |4|5|6|7|8|9

#mng |2|15|116[40|8|10|0|0[0|O0

For 5-digit numbers in base 3 we have 2 fixed points: (019) and (10410). The distance table is

distance |0 1 | 2| 3 | 4 |5|6|7]|8|9

#mng 2149148112024 |/0(0|0{0]0

For 6-digit numbers in base 3 we have 3 fixed point: (019), (9610), (32010), and 1 period 2
cycle: (10419, 52019). The distance table is

distance | 0 | 1 2 3 4 516 [718]9

#mno |5|841114 354|116 (24(32|0(0|0

For 7-digit numbers in base 3 we have 3 fixed points: (019), (31219) and (96819), and one
period 2 cycle: (32019, 16001p). The distance table is

distance |0 | 1 2 3 4 516 |718]9

#mno | 526234211062 | 348 | 72196 |0 |0 |0

For 8-digit numbers in base 3 we have

5 fixed points: (019), (28810), (96010), (262419) and (29121),
2 period 2 cycles: (31219, 156010) and (96819,48401¢), and

1 period 4 cycle: (32010, 544010, 224010, 416010).

The distance table is
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distance | 0 1 2 3 4 5 6 7 819

#mng | 13496 | 760 | 2824 | 1176 | 476 | 488 | 128 | 88 | 16

distance | 10 | 11 | 12 13 14 | 15 | 16 | 17 |18 |19

#mno | 16| 8 | O 0 0 0 0 01010

For 9-digit numbers in base 3 we have

5 fixed points: (019), (93610), (29041p), (780810) and (87444¢),
2 period 2 cycles: (96019, 480010) and (291219, 145601¢), and
1 period 4 cycle: (96810, 1645610, 677610, 125841¢).

The distance table is

distance | 0 1 2 3 4 5 6 7 8 9

#mno |13 ]1514 | 2280 | 8472 | 3528 | 1428 | 1464 | 384 | 264 | 48

distance | 10 | 11 12 13 14 15 16 | 17 | 18 |19

#mno | 48] 240 0 0 0 0 0 0 010

In base 3 the relation between distance frequencies of 2k + 1 digit and 2k digit numbers is

for(D) ifD=0
for+1(D) = { 3far(D) +2fox(0)  if D=1 (9.10)
3 far(D) if D> 2
and - -
Zf2k+1(D) =3Zf2k;(D). (9.11)
D=0 D=0

9.5 Digit reversal iteration in base b

In any base b the relation between distance frequencies of 2k + 1 digit and 2k digit numbers is

far(D) if D=0
Sor+1(D) = S bfor(D) + (b — 1) for(0)  if D=1 (9.12)
bfor(D) if D>2

and

D foks1(D)=b ) for(D). (9.13)
D=0 D=0
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For the remainder of the chapter we confine to the cycles.

9.6 Digit reversal iteration in base 4 through 9

For 1-digit numbers in base 4 we have a single fixed point: (0).
For 2-digit numbers in base 4 we have

1 fixed point: (0) and

1 period 2 cycle: (310,910)-
For 3-digit numbers in base 4 we have

1 fixed point: (0) and

1 period 2 cycle: (1510,4510)-
For 4-digit numbers in base 4 we have

1 fixed point: (0) and

3 period 2 cycles: (1219, 3610), (5110, 15310) and (6310, 1891¢).
For 5-digit numbers in base 4 we have

1 fixed point: (0) and

3 period 2 cycles: (6019, 18010), (19510, 58510) and (25510, 76510).
For 6-digit numbers in base 4 we have

1 fixed point: (0),

7 period 2 cycles: (4819, 1441¢), (20410,61219), (25219, 75610), (77110,231319),
(81910, 245710), (97510, 292510) and (102310, 306910),

1 period 3 cycle: (31519, 346510, 189010) and

1 period 6 cycle: (61519, 286510, 163510, 159010, 91519, 226510).

For 7-digit numbers in base 4 we have

1 fixed point: (0),

7 period 2 cycles: (24019, 72010), (78010, 23401¢), (102019, 306010), (307510, 922519),
(331510, 994519), (385510, 1156519) and (409510, 122851),

1 period 3 cycle: (127519, 1402519, 765010) and

1 period 6 cycle:(253510, 1150510, 643510, 639010, 379510, 898510).

For 8-digit numbers in base 4 we have

1 fixed point: (0),

15 period 2 cycles: (19219, 5761¢), (81610, 24481p), (100810, 30241p), (308410, 925219),
(327610, 98281¢), (390010, 117001¢), (409219, 122761¢), (1248319, 3744919),
(1329919, 3989719), (1537510,4612510), (1638310, 491491¢),(12291;¢, 3687310),
(1310719, 3932119), (1556719,4670119) and (1619119, 4857319),

2 period 3 cycles: (126019, 1386019, 756010) and (511519, 5626510, 306901¢),

1 period 5 cycle: (637510,4972510, 1785010, 2677519, 2805010),

2 period 6 cycles: (246010, 1146019, 654010, 636010, 366019, 906019) and

93
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(1021519, 4606510, 2563510, 2559010, 1531519, 3586510).
For 9-digit numbers in base 4 we have

1 fixed point: (0),

15 period 2 cycles: (96010, 28801¢), (312019, 936010), (408010, 122404),
(1230010, 3690010), (1326010, 3978010), (1542019, 4626010), (1638010,491401),
(4915510, 14746510), (5011519, 15034510), (5227510, 1568251¢), (5323510, 1597051¢),
(6145510, 18436510), (6241510, 1872451¢), (6457510, 19372510) and (6553510, 1966051¢),

2 period 3 cycles: (510010, 5610010, 3060010) and (2047519, 22522519, 1228501(),

1 period 5 cycle: (2557519, 19948519, 7161019, 10741519, 1125301¢),

2 period 6 cycles: (1014010, 4602019, 2574019, 2556010, 1518010, 35940;0) and
(4093510, 18430519, 10243519, 10239019, 6139519, 1433851¢).

For 1-digit numbers in base 5 we have 1 fixed point: (0).
For 2-digit numbers in base 5 we have 2 fixed points: (0) and (81¢).
For 3-digit numbers in base 5 we have 2 fixed points: (0) and (48;0).
For 4-digit numbers in base 5 we have
4 fixed points: (0), (4010), (20819) and (2481¢), and
1 period 2 cycle: (144, 432).
For 5-digit numbers in base 5 we have
4 fixed points: (0), (24010), (10081p), (12481¢), and
1 period 2 cycle: (744,2232).
For 6-digit numbers in base 5 we have
8 fixed points: (0), (20010), (104010), (124010), (500810), (520810), (604810) and
(624810),
2 period 2 cycles: (72019,216010) and (374410, 112321¢), and
1 period 3 cycle: (74410, 1413619, 967210).
For 7-digit numbers in base 5 we have
8 fixed points: (0), (120010), (504010), (624010), (2500810), (2620810),
(300481p) and (31248), and
2 period 2 cycles: (372010, 1116010) and (1874410, 5623210), and
1 period 3 cycle: (374419, 713610,4867219).
For 8-digit numbers in base 5 we have
16 fixed points: (0), (100010), (520010), (620010), (2504010), (2604010), (302401,
(3124019), (12500810), (126008;¢), (13020810), (131208;¢), (15004810), (1510481¢),
(15524819) and (156248;¢), and
4 period 2 cycles: (360019, 108001¢), (1872019, 5616010), (901449, 2704321¢) and
(9374410, 28123219), and
3 period 3 cycles: (372019, 7068010, 4836010), (4118410,29577619,213408;¢) and
(1874419, 35613610, 2436721).
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For 9-digit numbers in base 5 we have
16 fixed points: (0), (60001p), (2520010), (3120010p), (12504019), (13104010),
(15024010), (15624010), (62500810), (63100810), (65020819), (65620810),
(75004819), (75604810), (775248;¢) and (781248,¢), and
4 period 2 cycles: (1860010, 558001¢), (9372010, 2811601¢), (45014419, 13504321¢) and
(46874410, 140623210), and
3 period 3 cycles: (1872019, 35568010, 24336010), (20618419, 148077619, 1068408;¢) and
(9374410, 178113619, 12186721).
For both 10-digit and 11-digit numbers in base 5 we have 32 fixed points, 7 period 2 cycles, 5
period 3 cycles and 1 period 11 cycle.

For 1-digit numbers in base 6 we have 1 fixed point: (0).
For 2-digit numbers in base 6 we have 1 fixed point: (0) and 1 period 3 cycle: (510, 2510, 1510)-
For 3-digit numbers in base 6 we have
1 fixed point: (0) and 1 period 3 cycle: (3510, 17510, 10519).
For 4-digit numbers in base 6 we have
2 fixed points: (0) and (49010), and
3 period 3 cycles: (3019, 15010, 9010), (21510, 107510, 64519) and (18510, 92510, 55510).
For 5-digit numbers in base 6 we have
2 fixed points: (0) and (30104¢), and
3 period 3 cycles: (21019, 105010, 6301¢), (129519, 647510, 388510), (108519, 542510, 325510).
For 6-digit and 7-digit numbers in base 6 we have 3 fixed points, 7 period 3 cycles,
1 period 5 cycle and 1 period 12 cycle.
For 8-digit and 9-digit numbers in base 6 we have 5 fixed points, 15 period 3 cycles,
2 period 5 cycles, 1 period 6 cycle and 2 period 12 cycles.

For 1-digit numbers in base 7 we have 1 fixed point: (0).
For 2-digit numbers in base 7 we have 1 fixed point: (0).
For 3-digit numbers in base 7 we have 1 fixed point: (0).
For 4-digit numbers in base 7 we have
1 fixed point: (0) and
1 period 3 cycle: (38419,19201¢, 115219).
For 5-digit numbers in base 7 we have
1 fixed point: (0) and
1 period 3 cycle: (273610, 1368010, 820810).
For 6-digit numbers in base 7 we have
1 fixed point: (0) and
2 period 3 cycles: (268810, 1344019, 806410) and (1920019, 9600019, 5760010) and
1 period 6 cycle: (273610, 11217610, 9028810, 4651210, 2462410, 684001).
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For 7-digit numbers in base 7 we have
1 fixed point: (0) and
2 period 3 cycles: (1915219, 9576010, 5745610) and (1344481, 67224019,40334419) and
1 period 6 cycle: (1920010, 78720010, 63360010, 32640010, 1728001, 4800001¢).
For 8-digit and 9-digit numbers in base 7 we have 1 fixed point, 4 period 3 cycles and
2 period 6 cycles.

For 1-digit numbers in base 8 we have 1 fixed point: (0).
For 2-digit numbers in base 8 we have
2 fixed points: (0) and (2119), and
1 period 3 cycle: (710,4910,3510)-
For 3-digit numbers in base 8 we have
2 fixed points: (0) and (18919), and
1 period 3 cycle: (6310,44119,31510).
For 4-digit numbers in base 8 we have
4 fixed points: (0), (1681¢), (136510) and (15331¢9) and
3 period 3 cycles: (5619, 39210, 28010), (45510, 318510, 227519) and (51110, 357710, 255510).
For 5-digit numbers in base 8 we have
4 fixed points: (0), (15121¢), (1077319), (1228519) and
3 period 3 cycles: (409510, 2866510, 2047510), (50410, 352810, 25201¢) and
(359140, 2513710, 1795510).
For 6-digit and 7-digit numbers in base 8 we have 8 fixed points, 1 period 2 cycle,
7 period 3 cycles, 1 period 4 cycle and 7 period 8 cycles.
For 8-digit and 9-digit numbers in base 8 we have 16 fixed points, 2 period 2 cycle,
15 period 3 cycles, 2 period 4 cycles, 5 period 7 cycles, 14 period 8 cycles and 2 period 14

cycles.

For 1-digit numbers in base 9 we have 1 fixed point: (0).
For 2-digit numbers in base 9 we have
1 fixed point: (0), and
1 period 2 cycle: (1610,4810).
For 3-digit numbers in base 9 we have
1 fixed point: (0), and
1 period 2 cycle: (16010,48010).
For 4-digit numbers in base 9 we have
2 fixed points: (0) and (24001¢), and
3 period 2 cycles: (14419, 43219), (1312,39361¢) and (145650, 43681p), and
1 period 3 cycle: (80010, 56001¢,40001), and
1 period 4 cycle: (22419, 611219, 502410, 348810).
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For 5-digit numbers in base 9 we have
2 fixed points: (0) and (2184010), and
3 period 2 cycles: (144010, 432010), (1168010, 3504010) and (1312010, 3936010), and

1 period 3 cycle: (728019, 5096010, 364001¢), and

1 period 4 cycle: (152010, 5536010, 4520010, 3200010).

For 6-digit and 7-digit numbers in base 9 we have 3 fixed points, 7 period 2 cycle,

2 period 3 cycles, 4 period 4 cycle and 2 period 8 cycles.

For 8-digit and 9-digit numbers in base 9 we have 5 fixed points, 15 period 2 cycle,

5 period 3 cycles, 8 period 4 cycle, 4 period 6 cycles and 4 period 8 cycles.

9.7 Periodic cycles

For instance for 9-digit numbers in base 3 we found 5 fixed points and 2 period 2 cycle and 1

period 4 cycle. It will be denote briefly as 15, 22,4. With this notation the fixed points and

period cycles for 1- through 10-digit numbers in base 2 through 10 are tabulated below.

base
2 3 4 5 6 7
digits

1 1 1 1 1 1

19 1 1,2 19 1,3 1

19 1 1,2 19 1,3 1

14 19 1,25 14,2 12,33 1,3
14 19 1,25 14,2 12,33 1,3
1g 15,2 1,27,3,6 18,29,3 13,37,5,12 1,39,6
1g 13,2 1,27,3,6 1g,29,3 13,37,5,12 1,39,6
116 | 15,29,4 | 1,215,32,5,62 | l16,24,33 | 15,315,92,129 | 1,34, 062
116 | 15,29,4 | 1,215,32,5,62 | l16,24,33 | 15,315,92,129 | 1,34,062
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base
8 9 10
digits
1 1 1
12,3 1,2 1,5
12,3 1,2 1,5
14,33 19,23,3,4 1,2,53
14,33 19,23,3,4 1,2,53
18,37,4,87 13,27, 32,44, 82 1,29,57,9,18
18,37,4,87 13,27, 32,44, 82 1,29,57,9,18

116,22, 315,42, 75, 814, 142

15,215, 35,48, 64, 84

1,24,515,92,14, 18

116,22, 315,42, 75, 814, 142

15,215, 35,48, 64, 84

]-a 247 5155 927 147 182




Chapter 10

Kaprekar

10.1 Kaprekar’s constant

For 4-digit numbers we consider the following iteration:

ng+1 = 0(ng) — a(ng) , (10.1)

where d(ny) is created by sorting the 4 digits of ny in descending order and «(ny) is created
by sorting the 4 digits of ny in ascending order. For the algorithm numbers smaller than 1000
are preceded by zero’s to make them 4-digit numbers: 123 — 0123, 64 — 0064, 7 — 0007, etc.
For the 4-digit number ny = 9271 we obtain §(9271) = 9721, «(9271) = 1279 and

np = 9721 — 1279 = 8442. Repeating the iteration we obtain

ng = 8442 — 2448 = 5994,

ng = 9954 — 4599 = 5355,

ng = 5553 — 3555 = 1998,

ns = 9981 — 1899 = 8082,

ng = 8820 — 0288 = 8532,

ny = 8532 — 2358 = 6174,

ng = 7641 — 1467 = 6174.

That is, 6174 is a fixed point.

When applied to ng = 0123 we successively obtain

n1 = 3210 — 0123 = 3087,

ng = 8730 — 0378 = 8352,

ng = 8532 — 2358 = 6174

ng = 7641 — 1467 = 6174.

It turns out that the orbit for almost all 4-digit numbers ends in the fixed point (6174). The
only exceptions are the 10 numbers 0000, 1111, 2222, ..., 9999 which are mapped to the fixed
point (0000).

99
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The number 6174 is known as Kaprekar’s constant.

As before we let the distance be the number of steps required to reach a period cycle. For
4-digit numbers the distance is the number of steps required to arrive at one of the fixed points

(0000) and (6174). The distance table is

distance |0 | 1 2 3 4 5 6 7 819

#mno | 2392|576 | 2400 | 1272 | 1518 | 1656 | 2184 | 0 | O

Since we did not recognize a relation between distance tables, the distance tables will be left

in the remainder of this chapter.

There are two ways to generalize the iteration. The first way is by considering numbers
with other than 4 digits. The second way is by considering numbers in other bases. We start

with considering numbers with m digits in base 10.

10.2 Kaprekar for m-digit numbers
For m-digit numbers the Kaprekar iteration is given by

Ng+1 = 0(ng) — a(ng) , (10.2)

where d(ny) is created by sorting the m digits of nj in descending order and a(ny) is created
by sorting the m digits of ny in ascending order. Numbers smaller than 10" are preceded by

zero’s to make them m-digit numbers.

For 1-digit numbers and 2-digit numbers the Kaprekar iteration is identical to the digit rever-

sal iteration.

The 3-digit numbers 000, 111, 222, ..., 999 are mapped to the fixed point (000). For all other 3-
digit numbers the orbit arrives at the fixed point (495). In order to see this we let dy > d; > dj
be the digits of a descending ordered number ny. That is, §(ng) = 100d2+10d; +dp. If do = dy
then ny = 000 else ny = 100(dy — do) + 10(dy — d1) + (do — d2) = 99(da — dp). In the latter
case the nine possibilities for the successive orbits are

99-1=099 — 891 — 792 — 693 — 594 — 495

992 =198 — 792 — 693 — 594 — 495 |

99 -3 =297 — 693 — 594 — 495 |

99-4=2396 — 594 — 495
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99 -5 =495 — 495 |

99-6 =594 — 495 |

99 -7 =693 — 594 — 495

99-8 =792 — 693 — 594 — 495 |

99-9 =891 — 792 — 693 — 594 — 495 . That is, for 3-digit numbers the orbit arrives at
the fixed point (000) or the fixed point (495) in 5 or less steps.

For m = 4 there are two fixed points: (0000) and (6174). For 4-digit numbers the orbit
arrives at the fixed point (0000) or the fixed point (6174) in 7 or less steps.

For m = 5 we have
one fixed point: (00000),
one period 2 cycle: (53955,59994), and
two period 4 cycles: (61974, 82962, 75933, 63954) and (62964, 71973, 83952, 74943).

For m = 6 we have
three fixed points: (000000), (549945), (631764), and
one period 7 cycle: (420876, 851742, 750843, 840852, 860832, 862632, 642654).

For m = 7 we have
one fixed point: (0000000), and
one period 8 cycle: (7509843, 9529641, 8719722, 8649432, 7519743, 8429652, 7619733,
8439552).

For m = 8 we have
three fixed points: (00000000), (63317664), (97508421),
one period 3 cycle: (64308654, 83208762, 86526432), and
one period 7 cycle: (43208766, 85317642, 75308643, 84308652, 86308632, 86326632,
64326654).

For m =9 we have
three fixed points: (000000000), (554999445), (864197532), and
one period 14 cycle: (753098643, 954197541, 883098612, 976494321, 874197522,
865296432, 763197633, 844296552, 762098733, 964395531, 863098632, 965296431,
873197622, 865395432).

For m = 10 we have
four fixed points: (0000000000), (6333176664 ), (9753086421), (9975084201),

four period 3 cycles:
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(6431088654, 8732087622, 8655264432),
(6433086654, 8332087662, 8653266432),
(6543086544, 8321088762, 8765264322),
(9751088421, 9775084221, 9755084421), and
one period 7 cycle: (4332087666, 8533176642, 7533086643, 8433086652, 8633086632,
8633266632, 6433266654).

For m = 11 we have
two fixed points: (00000000000), (86431976532),
one period 5 cycle: (86420987532, 96641975331, 88431976512, 87641975322,
86541975432), and
one period 8 cycle: (76320987633, 96442965531, 87320987622, 96653954331,
86330986632, 96532966431, 87331976622, 86542965432).

For m = 12 we have
eight fixed points: (000000000000), (555499994445), (633331766664),
(975330866421), (977750842221), (997530864201), (997750842201), (999750842001),
eight period 3 cycles:
(643110888654, 877320876222, 865552644432),
(643310886654, 873320876622, 865532664432),
(643330866654, 833320876662, 865332666432),
(654310886544, 873210887622, 876552644322),
(654330866544, 833210887662, 876532664322),
(655430865444, 832110888762, 877652643222),
(975310886421, 977530864221, 975530864421)
(975510884421, 977510884221, 977550844221), and
one period 7 cycle: (433320876666, 853331766642, 753330866643,
843330866652, 863330866632, 863332666632, 643332666654).

10.3 Kaprekar in base 2

For 1-digit numbers in base 2 we have two orbits: 0 — 0 and 1 — 0. That is, (0) is the single
fixed point.

For 2-digit numbers in base 2 we have four different starting values with orbits: 00 — 00,
01 — 01, 10 — 01 and 11 — 00. That is, (00) and (01) are fixed points. The numbers 10 and

11 both have distance 1.

For 3-digit numbers in base 2 we have: 000 — 000, 001 — 011, 010 — 000, 011 — 011,
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100 — 011, 101 — 000, 110 — 011, 111 — 000. That is, (000) and (011) = (310) are fixed

points. The 6 other numbers have distance 1.

For 4-digit numbers in base 2 we have 3 fixed points: (0000), (0111) = (710) and (1001) = (919).

The 13 other numbers have distance 1.

For 5-digit numbers in base 2 we have 3 fixed points: (00000), (01111) = (1519) and (10101) =
(2119). The 29 other numbers have distance 1.

For 6-digit numbers in base 2 we have 4 fixed points: (000000), (011111) = (3119), (101101) =
(4510) and (110001) = (4919). The 60 other numbers have distance 1.

For 7-digit numbers in base 2 we have 4 fixed points: (0000000), (0111111) = (6310),
(1011101) = (931p) and (1101001) = (1051p). The 124 other numbers have distance 1.

For 8-digit numbers in base 2 we have 5 fixed points: (00000000), (01111111) = (127;9),
(10111101) = (1891), (11011001) = (21710) and (11100001) = (22510). The 251 other num-

bers have distance 1.

For 9-digit numbers in base 2 we have 5 fixed points: (000000000), (011111111) = (25519),
(101111101) = (381y0), (110111001) = (44110) and (111010001) = (4659). The 507 other

numbers have distance 1.

For 10-digit numbers in base 2 we have 6 fixed points: (0000000000), (0111111111) =
(51110), (1011111101) = (76510), (1101111001) = (889y0), (1110110001) = (94510) and
(1111000001) = (9611p). The 1018 other numbers have distance 1.

For 11-digit numbers in base 2 we have 6 fixed points: (0000000000), (01111111111) =
(102310), (10111111101) = (15331), (11011111001) = (178510), (11101110001) = (190510)
and (11110100001) = (19531¢). The 2042 other numbers have distance 1.

For 12-digit numbers in base 2 we have 7 fixed points: (0000000000), (011111111111) =
(204710), (101111111101) = (30691), (110111111001) = (357710), (111011110001) =
(382510), (111101100001) = (393719) and (111110000001) = (3969;10). The 4089 other num-

bers have distance 1.

We recognize a pattern: for m-digit numbers the values of the fixed points are 2™ —2m—*_2k 1]
where k is an integer, 0 < k < |m/2]|. This can be understood as follows. Let a m-digit num-

ber ng in base 2 have k digits equal to 0 and m —k digits equal to 1. Therefore, 6(ng) = 2™ —2*
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is in base 2 a number with m — k one’s to the left and k zero’s to the right. Explicitely,
(01 |l 1 1] o ] o |.]o]o]o]
-1 m-2 |k k ko1 k-2] 2] 0]

Subtraction of a(ng) = 2™ % — 1 from 6(ng) gives n; = §(ng) — a(ng) = 2™ — 2F —2m=F 4 1.
For 0 < k < |m/2] the subtraction of 2™~* from 2™ — 2* just changes a 1 into a 0, while the
addition by 1 changes the last digit from 0 to 1. As a net result, n; = 2™ — 28 — 2™~k 11 will
have as many one’s as 2™ — 2 and thus as ng. As a consequence, ny = n; and thus is n; is a

fixed point.

10.4 Kaprekar in base 3 through 9

For 1-digit numbers in base 3 we have three orbits 0 — 0, 1 — 0 and 2 — 0. So, (0) is the
single fixed point.
For 2-digit numbers in base 3 we have nine orbits: 00 — 00, 01 — 02 — 11 — 00,
02 - 11 —- 00, 10 - 02 — 11 — 00 and 11 — 00, 12 — 02 — 11 — 00, 20 — 11 — 00,
21 — 02 — 11 — 00, 22 — 00. That is, (00) is the single fixed point.
For 3-digit numbers in base 3 we have
one fixed point: (000) and
one period 2 cycle: (022,121) = (819, 1619).
For 4-digit numbers in base 3 we have
one fixed point: (019) and
one period 2 cycle: (3210,5210)-
For 5-digit numbers in base 3 we have two fixed points: (010), (1841p).
For 6-digit numbers in base 3 we have
one fixed point: (019) and
one period 3 cycle: (32010, 58010, 48410).
For 7-digit numbers in base 3 we have
two fixed points: (019), (2008;9) and
one period 2 cycle: (169619, 17681¢).
For 8-digit numbers in base 3 we have two fixed points: (010) and (533219).
For 9-digit numbers in base 3 we have
two fixed points: (019), (1914419),
one period 2 cycle: (1820819, 184241y) and
one period 3 cycle: (1530419, 1602410, 162401).
For 10-digit numbers in base 3 we have
two fixed points: (019), (5536010) and
one period 4 cycle: (2624019, 4810010, 4896410, 393641().

For 11-digit numbers in base 3 we have
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three fixed points: (019), (1464881p), (1755281¢),

one period 2 cycle: (17272019, 17336810), and

two period 3 cycles: (13777610, 14432810, 14713610), (16400810, 16616810, 16681610).
For 12-digit numbers in base 3 we have

two fixed points: (01p), (52037219) and

one period 2 cycle: (43301219, 44165219).

For base 4 through 9 we will not give the values of the cycle members, except for the fixed

points.

For 1-digit numbers in base 4 we have 1 fixed point: (019).

For 2-digit numbers in base 4 we have 1 fixed point: (019), and 1 period 2 cycle.

For 3-digit numbers in base 4 we have 2 fixed points: (019) and (301p).

For 4-digit numbers in base 4 we have 2 fixed points: (019) and (201;¢), and 1 period 2 cycle.
For 5-digit numbers in base 4 we have 1 fixed point: (019), and 1 period 2 cycle.

For 6-digit numbers in base 4 we have 4 fixed points: (019), (255010), (336910) and (38731¢).
For 7-digit numbers in base 4 we have 2 fixed points: (019) and (145651¢).

For 8-digit numbers in base 4 we have 4 fixed points: (019), (5444110), (626251¢) and (6464119),
and 1 period 3 cycle.

For 9-digit numbers in base 4 we have 4 fixed points: (010), (23440510), (17199019) and
(25486510).

For 10-digit numbers in base 4 we have 6 fixed points: (019), (8731291¢), (95426119),
(100419319), (103692919) and (10449931¢), and 1 period 2 cycle.

For 11-digit numbers in base 4 we have 4 fixed points: (019), (37556851¢), (408334510) and
(416518519), and 1 period 3 cycle.

For 12-digit numbers in base 4 we have 9 fixed points: (010), (1114095010), (1397828149),
(1528590910), (1607542510), (1639995310), (16599681 10), (1673062510), (1676288110).

For 1-digit numbers in base 5 we have 1 fixed point: (01p).

For 2-digit numbers in base 5 we have 2 fixed points: (019) and (819).

For 3-digit numbers in base 5 we have 1 fixed point: (019), and 1 period 2 cycle.
For 4-digit numbers in base 5 we have 2 fixed points: (019) and (3921).

For 5-digit numbers in base 5 we have 1 fixed point: (019), and 1 period 4 cycle.
For 6-digit numbers in base 5 we have 1 fixed point: (019), and 1 period 5 cycle.

For 7-digit numbers in base 5 we have 1 fixed point: (019), and 1 period 4 cycle.

F(

:(

F(

For 8-digit numbers in base 5 we have 1 fixed point: (019), and 1 period 6 cycle.
For 9-digit numbers in base 5 we have 2 fixed points: (019) and (1831056;¢).

For 10-digit numbers in base 5 we have 1 fixed point: (019), and 1 period 4 cycle.

For 11-digit numbers in base 5 we have 2 fixed points: (019) and (4821777619), and 1 period
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3 cycle.
For 12-digit numbers in base 5 we have 1 fixed point: (019), and 1 period 8 cycle.

For 1-digit numbers in base 6 we have 1 fixed point: (01p).

For 2-digit numbers in base 6 we have 1 fixed point: (019), and 1 period 3 cycle.

For 3-digit numbers in base 6 we have 2 fixed points: (019) and (10510).

For 4-digit numbers in base 6 we have 1 fixed point: (019), and 1 period 6 cycle.

For 5-digit numbers in base 6 we have 2 fixed points: (019) and (56001¢), and 1 period 2 cycle.
For 6-digit numbers in base 6 we have 4 fixed points: (019), (2719510), (338601¢) and (429251¢),
and 1 period 3 cycle.

For 7-digit numbers in base 6 we have 1 fixed point: (019), and 1 period 2 cycle.

For 8-digit numbers in base 6 we have 3 fixed points: (01¢), (127517019) and (16572251¢), and
2 period 2 cycles and 1 period 7 cycle.

For 9-digit numbers in base 6 we have 2 fixed points: (019) and (60184951¢), and 1 period 2
cycle.

For 10-digit numbers in base 6 we have 5 fixed points: (019), (4596233019), (476819001),
(563199251() and (60331825), and 3 period 2 cycles.

For 11-digit numbers in base 6 we have 3 fixed points: (01¢), (27769595010) and (3482851751),
and 1 period 2 cycle.

For 12-digit numbers in base 6 we have 4 fixed points: (019), (13050608551¢), (21519048251)
and (21759762251p), and 6 period 2 cycles.

For 1-digit numbers in base 7 we have 1 fixed point:
For 2-digit numbers in base 7 we have 1 fixed point:
For 3-digit numbers in base 7 we have 1 fixed point: , and 1 period 2 cycle.
For 4-digit numbers in base 7 we have 1 fixed point:
, and 1 period 5 cycle.
For 6-digit numbers in base 7 we have 1 fixed point: , and 1 period 6 cycle.

For 7-digit numbers in base 7 we have 1 fixed point: , and 1 period 6 cycle.

)
)
)
010), and 1 period 3 cycle.
)
)
)
)

For 8-digit numbers in base 7 we have 1 fixed point: and 1 period 6 cycle.

(
(
(
(
For 5-digit numbers in base 7 we have 1 fixed point: (019
(
(
(
(

For 9-digit numbers in base 7 we have 1 fixed point: (019), and 1 period 11 cycle.

For 10-digit numbers in base 7 we have 1 fixed point: (019), and 3 period 2 cycles.

For 11-digit numbers in base 7 we have 2 fixed points: (019) and (1922263344).

For 12-digit numbers in base 7 we have 2 fixed points: (019) and (111507665521¢), and 1 period

5 cycle.

For 1-digit numbers in base 8 we have 1 fixed point: (01p).
For 2-digit numbers in base 8 we have 2 fixed points: (010) and (2119), and 1 period 3 cycle.
For 3-digit numbers in base 8 we have 2 fixed points: (019) and (2521).
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For 4-digit numbers in base 8 we have 1 fixed point: (019), and 1 period 3 cycle and 1 period
5 cycle.

For 5-digit numbers in base 8 we have 1 fixed point: (019), and 1 period 2 cycle and 1 period
4 cycle.

For 6-digit numbers in base 8 we have 3 fixed points: (019), (147420;10) and (213402;9), and 1
period 3 cycle.

For 7-digit numbers in base 8 we have 2 fixed points: (019) and (17119621¢), and 1 period 4
cycle and 1 period 7 cycle.

For 8-digit numbers in base 8 we have 2 fixed points: (019) and (16092433;¢), and 2 period 3
cycles.

For 9-digit numbers in base 8 we have 2 fixed points: (019) and (765457561), 1 period 4 cycle,
and 2 period 5 cycles.

For 10-digit numbers in base 8 we have 2 fixed points: (019) and (10682635531), and 4 period
3 cycles.

For 11-digit numbers in base 8 we have 1 fixed point: (019), and 1 period 2 cycle, 1 period 4
cycle and 1 period 6 cycle.

For 12-digit numbers in base 8 we have 5 fixed points: (019), (392586831001),
(574978398261¢), (585734453221¢) and (686756505611p), and 1 period 2 cycle, 7 period 3 cy-
cles and 1 period 4 cycle.

010

For 1-digit numbers in base 9 we have 1 fixed point: (019)

For 2-digit numbers in base 9 we have 1 fixed point: (019), and 1 period 2 cycle.
+ (010)
+ (

For 3-digit numbers in base 9 we have 1 fixed point: (019), and 1 period 2 cycle.

For 4-digit numbers in base 9 we have 1 fixed point: (019), and 2 period 3 cycles.

For 5-digit numbers in base 9 we have 2 fixed points: (019), (4152010), and 1 period 5 cycle.
For 6-digit numbers in base 9 we have 1 fixed point: (019), and 1 period 14 cycle.

For 7-digit numbers in base 9 we have 1 fixed point: (019), and 1 period 2 cycle: (3496800,
3916640).

For 8-digit numbers in base 9 we have 2 fixed points: (019) and (31531872;¢), and 1 period 4
cycle.

For 9-digit numbers in base 9 we have 2 fixed points: (019) and (3269525601¢), and 1 period
12 cycle.

For 10-digit numbers in base 9 we have 2 fixed points: (019) and (25987440001), 1 period 4
cycle and 1 period 5 cycle.

For 11-digit numbers in base 9 we have 2 fixed points: (019) and (2308738872019), and 1 period
6 cycle.

For 12-digit numbers in base 9 we have 1 fixed point: (019), and 2 period 2 cycles and 1 period
6 cycle.
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10.5 Periodic cycles

For instance for 11-digit numbers in base 3 we found 3 fixed points and 1 period 2 cycle and
2 period 3 cycles. It will be denote briefly as 13,2,35. The fixed points and period cycles for
1- through 12-digit numbers in base 2 through 10 are tabulated below.

base
2 3 4 ) 6 7 8 9 10
digits

1 1 1 1 1 1 1 1 1 1
2 19 1 1,2 | 1o 1,3 1 12,3 1,2 1,5
3 19 1,2 10 | 1,2 19 1,2 19 1,2 19
4 13 1,2 19,2 | 19 1,6 1,3 1,3,5 1,39 19
5 13 19 1,2 | 1,4 19,2 1,5 1,2,4 19,5 | 1,2,45
6 14 1,3 14 | 1,5 14,3 1,6 13,3 1,14 13,7
7 14| 19,2 1o | 1,4 1,2 1,6 19,4,7 1,2 1,8
8 15 19 14,3 | 1,6 | 13,29,7| 1,6 12,32 12,4 | 15,3,7
9 15 | 12,2,3 | 14 19 19,2 | 1,11 | 19,4,52 | 19,12 | 13,14
10 lg | 19,4 |1,2| 1,4 | 15,23 | 1,23 19,34 19,4,5 | 14,34, 7
11 lg | 13,2,32 | 14,3 | 12,3 | 13,2 19 1,2,4,6 19,6 | 12,5,8
12 17| 19,2 lg | 1,8 | 14,26 | 12,5]15,2,37,4|1,29,6 ] 18,38,7




Chapter 11

Squared digit sum

11.1 Introduction

Well known is the iteration of an integer number to the sum of the squares of its digits. That

is, if d; are the digits of a positive integer number,

o0
ng =y d;107, (11.1)
j=0
then ~
Nep1 =Y _ds. (11.2)
=0

For ng = 1 the successor is n; = 12 = 1. That is, 1 is a fixed point. For ng = 2 the repeated

iteration leads to the following orbit:

n =22 =4, no = 42 = 16, ng =12 4+ 62 = 37,
ng =324 7% = 58, ns=524+8 =289, ng==8+9% =145,
np=124+4245%2=42, ng=42+4+22=20, ng=22+0%=4.

That is, (4,16, 37,58,89, 145,42, 20) is a period 8 cycle.

It turns out there are no other cycles. This can be seen as follows. By numerical inspec-
tion it is quickly found that the orbit of ng arrives in either the fixed point 1 or the cycle
(4,16, 37,58, 89,145,42,20) if 0 < ng < 99. If ng is a m-digit number then 10™~! < ng < 10™.
The largest m-digit number is 10™ — 1. Its successor is m - 92 = 81m. For a m-digit number
10~ < ng < 10™ the successor n, is smaller than 81m + 1. Therefore ny is certainly smaller
than ng if 81m 4+ 1 < 10™~!. The latter inequality is satisfied if m > 4. So, numbers larger

than or equal to 1000 have a smaller successor.

109
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A 3-digit number is given by ng = 100dz + 10d; + do and its successor is n1 = d3 + d> + d%,
where1§d2§9,0§d1§9and0§d0§9.

If 3 <dy <9 and thus 300 < ng < 1000 then n; < 243 = 92 + 92 + 92, So, ng > nq if
3<dy <09.

If dy = 2 and thus 200 < ng < 300 then n; < 166 = 22 + 92 + 92. So, ng > n if do = 2.

If dy = 1 then ng = 100+ 10d; +do and ny = 1+d3 +d3. Since 10d; > d} and 100+dy > 1+d3
we have ng > nq if dy = 1.

We therefore can conclude that 3-digit numbers always have a smaller successor.

In summary, numbers with 3 or more digits will have a smaller successor. As a consequence,
the orbit of numbers with 3 or more digits will always arrive below 100.

For numbers smaller than 100 we know from numerical inspection that the orbit will arrive
at either 1 or (4,16,37,58,89,145,42,20). Hence, the orbit of all positive integers arrive at
either 1 or (4,16,37,58,89,145,42,20). In the next diagram the n; are plotted against ng for
0 < ng < 250.

250 7
200 | -
(99,162) — o .
150 . i
E . : // . .
100 | s
idr ‘ et
100 150 200 250
no

Figure 11.1: The black dots are the ny against ng for 0 < ng < 250. The diagonal ni = ng is
shown dashed. The period 8 cycle (4, 16, 37, 58, 89, 145, 42, 20) is orange.

As shown in the diagram ng = 99 is the largest ng for which n; = 162 is larger than nyg.
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11.2 Statistics of cycle arrivals

We will denote the fixed point as ¢; and the period 8 cycle as ca. Thus ¢; = (1) and ca =
(4,16,37,58,89,145,42,20). For ng < 10* with k& = 1,2,3,4,5,6, the number of starting

values for which the orbit ends in ¢; or ¢; are shown in the next table.

cycle [ ng < 10" | ng < 10% [ng < 103 [ ng < 10* | ng < 10° [ng < 106
c1 3 20 143 1442 14377 | 143071
2 7 80 857 8558 85623 | 856929

The figures in the table suggest the fraction of ng < n for which the orbit ends in the fixed
point 1 converges smoothly to approximately 0.143. This is, however, not the case. The curve

of the fraction of ny < n for which the orbit ends in the fixed point 1 is bumpy, see next figure.

0.16 B

0.15 L

fraction

0.14 B

T T T T T T T T
0 01 02 03 04 05 06 07 08 09 1

n 106

Figure 11.2: The fraction of ng < n for which the orbits arrives at 1.

11.3 Statistics of untouchables

If we start with ng = 2, then the orbit is 2, 4, 16, 37, 58, 89, 145, 42, 20, 4, ... So, if we start
with numbers smaller than 3, the number 2 is untouchable. Since 2 is 12 + 12 we have to wait
until starting number ng = 11 before 2 becomes touchable. As before, we keep track of the

smallest starting number ¢,, for which a number n is no longer untouchable.
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If we start with numbers smaller than 103, the first part of the list of ¢, is:

n|l/2] 3 (45| 6 |7]89|10(11| 12 |13| 14. |15|16|17|18| 19 |20| 21 | 22 (23| 24 |25|26

tn|1(11(111(2]12(112|7|22|3| 7 |78|222|23|123 | 7 | 2 | 6 |33|133| 2 |124|233| 7 |224| 5 |15

The question marks show that for starting numbers smaller than 10? the numbers 7, 15, 23,

d 1P=n (11.3)
k=1

any number consisting of solely n digits 1 will make n touchable. The question mark will

.. are untouchable. Since

therefore sooner or later disappear. For instance, if ng = 1111111 gives ny = 7. Of course,

ng = 1112 also gives ny = 7.
For starting numbers smaller than 10 the first part of the list of ¢, is as follows:

1, 11, 111, 2, 12, 112, 1112, 22, 3, 7, 78, 222, 23, 123, 1123, 2, 6, 33, 133, 2, 124, 233
1233, 224, 5, 15, 115, 1115, 5, 125, 1125, 44, 144, 27, 135, 6, 2, 116, 1116, 15, 6, 2, 335, 226, 6,
136, 1136, 444, 7, 6, 69, 8, 27, 127, 1127, 246, 227, 2, 137, 1137, 3, 156, 1156, 8, 3, 118, 337
19, 88, 356, 1356, 66, 38, 57, 157, 266, 238, 257, 1257, 48, 3, 19, 119, 248, 5, 129, 1129, 466, 2,
39, 139, 1139, 258, 239, 1239, 448, 7, 77, 177, 19, 168, 277, 1277, 268, 458, 59, 159, 666, 368
259, 1259, 2666, 78, 178, 359, 468, 69, 169, 1169, 2468, 269, 378, 577, 1577, 568, 369, 1369,
88, 188, 7, 179, 288, 469, 279, 1279, 668, 388, 578, 379, 1379, 2388, 569, 1569, 488, 2, 189,
777, 1777, 289, 1289, 2777, 4668, 588, 389, 579, 1579, 2588, 2389, 2579, 4488, 489, 99, 199
638, 1688, 299, 1299, 2688, 4588, 589, 399, 1399, 3688, 2589, 2399, 7, 78S,...

Now the first question mark is for n = 176.
For starting numbers smaller than 105 the first question mark is for n = 286.
For starting numbers smaller than 10° the first question mark is for n = 367.

If we only start with numbers from the set {1,2}, then 2 is the only element of the set
{1,2} which is untouchable. The ratio of the number of untouchables and set length is 1/2. If
we only start with numbers from the set {1,2,3,4,5,6,7,8,9,10}, then 2, 3, 5, 6, 7 and 8 are
the untouchable elements. The ratio of the number of untouchables and set length is 6/10.
As before, we let u, be the number of elements which are untouchable if we only start with
numbers from the set {1,2,3,...,n}. For n up to 10° the ratio u,/n is plotted against n in

the next figure.
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Figure 11.3: The ratio u,/n for the digits factorial sum.

U
The latter diagram suggest lim — = 1 for the squared digit sum iteration.
n—oo N

11.4 Statistics of distances

Since ni+1 < ng for ng > 100 orbits will fast descend to below 100 and arrive at the fixed
point ¢ or the period 8 cycle co. Therefore the distances are limited. The distribution of

distances for the squared digit sum iteration in base 10 is shown in the next figure.
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102 é . . ° ° ° . . ° . ° ?
10" .
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distance D

Figure 11.4: Base 10 distribution of distances for starting numbers smaller than or equal to:
103 (orange), 10* (red), 10° (green), 10° (blue), 107 (black).
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11.5 Other bases

The squared digit sum iteration can be generalized to an arbitrary base b. That is, if d; are

the digits of an integer number in base b,

ne =Y d;b’, (11.4)
=0
then -
Nep1 =y _d3. (11.5)
j=0

If ng is a m-digit number in base b then ¥™~1 < ng < b™. The largest m-digit number is ™ —1.
Its successor is m - (b — 1)2. For a m-digit number ™! < ng < b™ the successor n; is smaller
than m(b—1)?4 1. Therefore n; is certainly smaller than ng if m(b—1)24+1 < 6™~ 1. The lat-

ter inequality is satisfied if m > 4. So, numbers with 4 or more digits have a smaller successor.

Again, for 3-digit numbers we let ds, di and dg be the digits. Then a 3-digit number in base b
is given by ng = b%dy + bdy + dg and its successor is n; = d% + d% + d%, where 1 < dy <b—1,
Ogdlgb—landogdogb—l.

If do = 1 then ng = b? + bdy + dy and ny = 1+ d3 + d3. Since b + dy > 1+ d3 and bdy > d3
we have ng > nqy if dy = 1.

If dp = 2 and thus b > 3 and ng = 2b% + bd; + dy > 2b%, then n; = 4+d%+d% <
44 (b—1)2+ (b—1)2 < 2% So, ng > ny if dg = 2

If 3 <dy <b— 1 then ng = b?dy + bdy + do > 3b* while ny = d3 + d3 + d3 < 3(b—1)? < 3b%.
So, ng > nq if dg > 3

We therefore can conclude that for 3-digit numbers in base b there always holds n; < ng.

In summary, in any base b numbers with 3 or more digits will have a smaller successor. As a
consequence, in any base b the orbit of numbers with 3 or more digits will always arrive below
b2,

For numbers smaller than b? the cycles are determined by numerical inspection.

For base 9 we found in this way three fixed points: 19 = 11g, 459 = 4119 and 559 = 5019, one
period 2 cycle: (759, 829) =(681¢, 7410), and one period 3 cycle: (589, 1089, 729) =(5310, 8910,
6510). In the next diagram the n; are plotted against ng for 0 < ng < 200.
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Figure 11.5: The n; against ng for 0 < ng < 200 for the case where the iteration is performed
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The distribution of distances is shown in the next figure.
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Figure 11.6: Base 9 distribution of distances for starting numbers smaller than or equal to:

103 (orange), 10% (red), 10° (green), 10° (blue), 107 (black).
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In base 8 there are three fixed points: 1g = 119, 245 = 2019 and 64g = 521, two period 2 cycles:
(487 208) :(410, 1610) and (328, 158) :(2610, 1310), and one period 3 cycle: (58, 3187 128) :(510,
2510, 1010). The distribution of distances is

E | =
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> . ¢ ° L ° ° ° ° I
= 10* o . « ° S
g ] ° ° ° o ° ° ° ° r
R IR
02 . T, . .
10 ¢ T
100 ; I I I I I ;
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Figure 11.7: Base 8 distribution of distances for starting numbers smaller than or equal to:

103 (orange), 10% (red), 10° (green), 10° (blue), 107 (black).

In base 7 there exist five fixed points: 17 = 119, 137 = 101g, 347 = 2519, 447 = 3219 and 637 =
4510, and two period 4 cycles: (27, 47, 227, 117) :(210, 410, 1610, 810) and (237, 167, 527, 417) ==
(1710, 1310, 3710, 2910). The distribution of distances is
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Figure 11.8: Base 7 distribution of distances for starting numbers smaller than or equal to:

103 (orange), 10% (red), 10° (green), 10° (blue), 107 (black).
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In base 6 there exist one fixed point: 14 = 119, and one period 8 cycle:
(326, 216, 56, 416, 256, 456, 1056, 426) = (2010, 1310, 510, 2510, 1710, 2910, 4110, 2610)-

The distribution of distances is
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Figure 11.9: Base 6 distribution of distances for starting numbers smaller than or equal to:

10? (orange), 10* (red), 10° (green), 10° (blue), 107 (black).

In base 5 there exist three fixed points: 15 = 119, 235 = 1319 and 335 = 1819, and one period

3 cycle: (45,315,205) = (410, 1610, 1019). The distribution of distances is

_
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Figure 11.10: Base 5 distribution of distances for starting numbers smaller than or equal to:

103 (orange), 10% (red), 10° (green), 10° (blue), 107 (black).
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In base 4 there exists only one fixed point: 14 = 119. The distribution of distances is
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Figure 11.11: Base 4 distribution of distances for starting numbers smaller than or equal to:
103 (orange), 10% (red), 10° (green), 10° (blue), 107 (black).

In base 3 there exist 3 fixed points: 13 = 119, 123 = 519 and 223 = 81, and one period 2 cycle:
(23,113) = (210, 410). The distribution of distances is
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Figure 11.12: Base 3 distribution of distances for starting numbers smaller than or equal to:
10% (orange), 10* (red), 10° (green), 10° (blue), 107 (black).
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In base 2 there exists only one fixed point: 19 = 179. The distribution of distances is
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Figure 11.13: Base 2 distribution of distances for starting numbers smaller than or equal to:
103 (orange), 10% (red), 10° (green), 10° (blue), 107 (black).

For the square digit sum iteration in base 8 we found 3 fixed points and 2 period 2 cycles and
1 period 3 cycle. The cycle periods p will be denote briefly as 13,25,3. The p for the square

digit sum iteration in base 2 through 10 are tabulated below.

base 2 3 4 5 6 7 8 9 10

p 1| 15,2 | 1 | 15,3 | 1,8 | 15,40 | 15,29,3 | 15,2,3 | 1,8

11.6 Happy numbers

For the squared digit sum iteration in base b a positive integer whose orbit arrives at 1 is
called a happy number. In base 10, for example, 7 is a happy number since its orbit goes as
7,49, 97, 130, 10, 1. In base 10 the first view happy numbers are 1, 7, 10, 13, 19, 23, 28, 31,
32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100, ... The latter sequence is known as the A007770
sequence of the OEIS [2]. In base 6, as another example, 112¢ = 44 is a happy number since
its orbit goes as 1124, 104, 1. Presented in base 10 the latter orbit is 44, 6, 1. Presented in
base 10 the first view happy numbers in base 6 are 1, 6, 36, 44, 49, 79, 100, 160, 170, 216,
224, 229, 254, 264, 275, 285, 289, 294, 335, 347, 355, 357, 388, ...

In base 2 and base 4 there exists no other periodic cycles than the single fixed point 13 = 119
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and 14 = 17 respectively. As a consequence, in base 2 all orbits will arrive at 1 and in base 4
all orbits will arrive at 1. That is, in base 2 all numbers are happy and in base 4 all numbers
are happy. For this reason base 2 and base 4 are called happy bases. The only happy bases
less than 5- 108 are base 2 and base 4. It is still an unsolved problem whether base 2 and base

4 are the only happy bases.

In any base b the fraction of starting values for which the orbit ends in 1 is called the density
of happy numbers.

For ng < 105 the density of happy numbers in base 10 is approximately 0.143.
For ng < 105 the density of happy numbers in base 9 is approximately 0.0733.
For ng < 10° the density of happy numbers in base 8 is approximately 0.0571.
For ng < 108 the density of happy numbers in base 7 is approximately 0.0154.
For ng < 10° the density of happy numbers in base 6 is approximately 0.0557.
For ng < 105 the density of happy numbers in base 5 is approximately 0.206.
For ng < 108 the density of happy numbers in base 4 is exactly 1.

For ng < 108 the density of happy numbers in base 3 is approximately 0.267.
For ng < 108 the density of happy numbers in base 2 is exactly 1.

In each of the above bases the curve of the density against n is rather wobbly. We saw
that already for the density curve in base 10. To illustrate it once more we show the density
curve in base 6 for 10° < n < 109.
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n 106

Figure 11.14: The density of happy numbers ng < n in base 6 for 10° < n < 10°.

Because of the descending trend of the density curve it is not clear if the density converges to

a limit value in the limit n — oo.



Chapter 12

Digits factorial sum

12.1 Introduction

Another way to play with the digits of a numbers is by taking the sum of the factorials of
the digits [5]. For instance, if we start with the number 147, then the sum of the factorials
of the digits is 1! + 4! + 7! = 1 4+ 24 + 5040 = 5065. Repeating the process gives 5! +
0+ 6!+ 5! = 120 + 1 4+ 720 + 120 = 961, 9! + 6! + 1! = 362880 + 720 + 1 = 363601,
314-6!4+3!14+6!40!+1! = 64+7204+64+720+1+1 = 1454, 11+4!4+5!44! = 1424+120+24 = 169,
'+ 6!4+ 9! =14 720 4 362880 = 363601. That is, the sequence ends at the period 3 cycle
(169, 363601, 1454). Formally, let {d,, dm—1, ...d2,d1,dp}, with d,,, > 0, be the m + 1 digits of
n. Thus n =} 1", d; 107. Then the digits factorial sum F is defined as

m
Fln)=> dj!. (12.1)
j=0
m .
The largest number n with m + 1 digits is Z 9-10’. After one iteration we obtain F(n) =
j=0

(m+1)-9! = 362880(m + 1). The largest number with 7 digits is 9999999. After one iteration
we obtain F(9999999) = 7 - 9! = 2540160. Since 2540160 is smaller than 9999999, we know
for sure that a sequence of numbers generated by the digits factorial process eventually will
be smaller than or equal to 2540160: F(n) < 2540160 for n < 9999999. For n < 2540160
the largest number F(n) is 2177281. It only occurs for n = 1999999: F(1999999) = 217728]1.
Since F(2177281) = 50406, which is much smaller than 2177281, it is of interest to see for the
largest number after two iterations starting with numbers smaller than or equal to 2540160.
Or even better, to see for the largest number after i iterations starting with numbers smaller

than or equal to 2540160. The results are shown in the next table.

121
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¢ |maximum number |7 |maximum number |[¢ |maximum number
0 2540160 13 726493 26 404670
1 2177281 14 726493 27 404670
2 1094406 15 726493 28 404670
3 766106 16 443520 29 404670
4 766106 17 443520 30 404670
) 730800 18 443520 31 404670
6 726608 19 443520 32 404670
7 726608 20 443520 33 404670
8 726608 21 443520 34 404670
9 726608 22 443520 35 404670
10 726493 23 443520 36 404670
11 726493 24 443520 37 363601
12 726493 25 443520 38 363601

The maximum number will never descend below 363601 since 363601 is an element of the cycle
(169, 363601, 1454).

12.2 Cycles of the F function

A numerical inspection of numbers smaller than 363601 delivers the following periodic cycles:
four fixed points: (1), (2), (145), (40585),
two period 2 cycles: (871,45361), (872,45362) and
one period 3 cycle (169, 363601, 1454).

We will denote the periodic cycles as follows:
c1 = (1), ca = (2), c3 = (145), ca = (40585),
c5 = (871,45361), c¢g = (872,45362) and
c7 = (169, 363601, 1454).

The cycles ¢5 and cg are known as A214285 of the OEIS and the cycle ¢7 is known as A308259
of the OEIS [2].
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12.3 Statistics of cycle arrivals

For ng < 10F with k = 1,2, 3,4, 5,6, 7, the number of starting values for which the orbit ends

in ¢q, c2, c3, ¢4, C5, Cg O c7 are shown in the next table.

cycle |n < 10" |n <102 |n <10%|n <10*|n < 10° |n < 105 | n < 107
1 1 1 1 1 1 1 1
co 2 3 12 138 2679 | 25789 | 251822
cs 0 0 10 10 318 7454 | 63931
¢4 0 0 0 0 108 504 | 14627
cs 0 2 12 76 666 6261 | 83873
ce 0 0 12 96 558 6679 | 40089
7 7 94 953 9679 | 95670 | 953312 | 9545657

We see approximately 95.5% of the orbits ends at the (169,363601, 1454) cycle and approxi-
mately 2.5% ends at the fixed point (2).

12.4 Statistics of untouchables

If we start with ng = 3, then the orbit is 3, 6, 720, 5043, 151, 122, 5, 120, 4, 24, 26, 722, 5044,
169, 363601, 1454, 169, ... . So, if we start with numbers smaller than 4, the numbers 1, 2,
4, 5 and 6 are touchable, while the numbers 3, 7, 8, 9, etc. are untouchable. If we start with
ng = 8, then the orbit is 8, 40320, 34, 30, 7, and so on until it arrives at the period 3 cycle
c7. That is, if we start with numbers smaller than 9, the number 7 is no longer untouchable.
Also here we keep track of the smallest starting number ¢,, for which a number n is no longer

untouchable.

If we start with numbers smaller than 103, the first part of the list of ¢, is:

n|1|2| 3 14(5/6]7[ 89|10 |11 |12] 13 [14.|15|16|17| 18 |19|20|21|22|23|24|25|26|27 |28

1, |1]2(12(3|3[3|8]23]45(223|569(33(133(233| 7 |7 |7 |333| 7| ? |77 |7 |3|14]|3 (55|37

We see t; = 8 as mentioned before. The question marks show that for starting numbers
smaller than 1000 the numbers 15, 16, 17, 19, 20, 21,22,23, ... are untouchable. Question

marks may disappear by taking larger starting numbers.
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For starting numbers smaller than 107 the first part of the list of ¢, is as follows:

1, 2,12, 3, 3, 3, 8, 23, 45, 223, 569, 33, 133, 233, 1233, 2233, 12233, 333, 1333, 2333, 12333,
22333, 122333, 3, 14, 3, 55, 37, 1224, 8, 134, 234, 1234, 8, 28, 246, 1334, 2238, 128, 499, 2589,
3334, 1338, 23334, 12589, 223334, 1223334, 44, 45, 66, 68, 268, 12244, 344, 1266, 377, 7, 1299,
489, 3344, 2338, 23344, 1229, 223344, 1223344, 33344, 133344, 233344, 1233344, 2233344, ?,
444, 1444, 58, 9, 22444, 122444, 3444, 36, 5589, 25589, 223444, 1223444, 33444, 4589, 233444,
1233444, 2233444, 7, 333444, 1333444, 2333444, 7, 7, 7, 4444, 9,...

Now the first question mark is for n = 71.

It raises the question whether or not all numbers eventually become touchable if large enough
starting numbers are used or do there exist truly untouchable numbers in the sense that they

stay untouchable even if infinitely large starting numbers are used.

If we only start with numbers from the set {1,2,3}, then 3 is the only element of the set
{1,2, 3} which is untouchable. The ratio of the number of untouchables and set length is 1/3.
If we only start with numbers from the set {1,2,3,4,5,6,7,8,9,10}, then 3, 8, 9 and 10 are
the only untouchable elements. The ratio of the number of untouchables and set length is
4/10. As before, we let u,, be the number of elements which are untouchable if we only start
with numbers from the set {1,2,3,...,n}. For numbers up to 107 the ratio u,/n is plotted

against n in the next figure.
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Figure 12.1: The ratio u,/n for the digits factorial sum.

U
The latter diagram suggest lim — = 1 for the digits factorial sum.
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12.5 Statistics of distances

125

For instance, the orbit 4, 24, 26, 722, 5044, 169 implies D(4) = 5. There are more starting

values for which the distance is 5. The distribution of distances is shown in the next figure.
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Figure 12.2: Distribution of distances for starting numbers smaller than or equal to: 10%
(orange), 10° (red), 10° (green), 107 (blue), 10® (black).

12.6 Records of distances

Since 1 and 2 are fixed points, we have D(1) = D(2) = 0. From the orbit 3, 6, 720, 5043, 151,
122, 5, 120, 4, 24, 26, 722, 5044, 169, 363601, 1454, 169 ... we see that for starting value 3 it

takes 13 steps to arrive at a cycle. Thus D(3) = 13, which is a distance record. The distance

records are tabulated for ng < 10°.

# 1123|456 7 8 9 10
ng 3| 7|8 2336452291479 | 1233466 | 246 779 999
D record | 1329 |33 |34 |45|51 | 52 | b7 o8 99

It raises the following question: for which ng > 10° will show up a distance record larger than

597
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12.7 Records of maximums

As we saw before, starting number 3 has orbit 3, 6, 720, 5043, 151, 122, 5, 120, 4, 24,
26, 722, 5044, 169, 363601, 1454, 169, ... The maximum value of the orbit is 363601, thus
M(3) = 363601. As follows from the orbit of 3, M(4) = M(5) = M(6) = 363601. Starting
number 7 has orbit 7, 5040, 146, 745, 5184, 40465, 889, 443520, 177, 10081, 40324, 57, 5160,
842, 40346, 775, 10200, 6, 720, 5043, 151, 122, 5, 120, 4, 24, 26, 722, 5044, 169, ... That is,
M (7) = 443520, which is a new maximum record. Continuing the search we find the next
maximum record for n = 45: M(45)=726493. The maximum records are tabulated below for
n < 2177286.

#1n M record #1n M record #1n M record

113 363 601 1317999 |1093680 251199999 | 1814401

2 17 443 520 1418999 | 1128960 261299999 | 1814402

3 |45 726 493 1519999 | 1451520 271399999 | 1814406

4 1799 | 730800 16 |1 19999 | 1451521 28 1499999 | 1814424

5 899 | 766080 17129999 | 1451522 291599999 | 1814520

6 999 | 1088640 18139999 | 1451526 30699999 | 1815120

7 11999 | 1088641 19149999 | 1451544 31{799999 | 1819440

8 12999 | 1088642 20 159999 | 1451640 32899999 | 1854720

9 13999 | 1088646 21169999 | 1452240 331999999 | 2177280

10 | 4999 | 1088 664 22179999 | 1456 560 3411999999 | 2177281

1115999 | 1088760 23189999 | 1491840 352177282 | 2177282

12 1 6999 | 1089 360 24199999 | 1814400 36 | 2177283 | 2177283

For n > 2177282 the maximum record equals the starting value of the orbit. So, for the digits
factorial sum it is not interesting to look for maximum records other than the ones shown in
the table above.



Chapter 13

P function

13.1 Pillai’s function

For a number n Pillai’s arithmetical function P(n) is defined as follows
P(n) = ged(j,n) (13.1)
j=1

where ged(j, n) is the greatest common divisor of j and n. An equivalent expression for Pillai’s
arithmetical function is
P(n)=> de(n/d) . (13.2)
d|n
The summation is over all divisors d of n. Euler’s totient function ¢(n) counts the positive

integers up to a number n that are relatively prime to n. Another equivalent expression is

P(n) =Y _dr(d)u(n/d) (13.3)
din

where 7 is the divisor function and p is the Mébius function. The divisor function 7(n) counts

the number of divisors of n. The Mobius function is defined as follows:

+1 if n is a square-free positive integer with an even number of prime factors,
u(n) =< —1 if nis a square-free positive integer with an odd number of prime factors,

0 if n has a squared prime factor .
(13.4)

For n = 6, for instance, we will obtain P(6) = 15 with any of the above three functions:

P(6) = ged(1,6) + ged(2,6) + ... +gcd(6,6) =14+2+3+2+1+6 = 15.

P(6) =1-0(6) +20(3) +30(2) + 6p(1) =1-24+2-24+3-146-1=2+4+3+6 = 15.

P6) =1-7(1)u(6) +27(2)u(3) +37(3)pu(2) + 67(6)pe(1) =1-1-1-2-2-1--3-2-14+6-4-1
=1-4-64+24=15.

127
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The set {ged(1,6), ged(2,6), ged(3,6), ged(4,6), ged(5,6),gcd(6,6)} = {1,2,3,2,1,6} contain
the same numbers as the product of {1,2} and {1,1,3}: {1,2} ® {1,1,3} = {1,1,3,2,2,6}.
That is, the set {gcd(k,6)}, k = 1,2,3,4,5,6, equals the set {ged(k,2)}, k = 1,2, times the
set {gcd(k,3)}, k= 1,2,3. As a consequence, P(6) = P(2)- P(3). In general, if ged(v, w) =1
then P(vw) = P(v)- P(w). Pillai’s function being multiplicative is a consequence of the Euler

totient function being multiplicative. Indeed for n = vw and ged(v, w) = 1 we have

P(n) = Plow) = Y _de(vw/d) => > dudwp(vw/dy/dy) . (13.5)

dlvw do|v do |w
Since p(vw/dy/dw) = p(v/dy) p(w/dy) the latter can be elaborated to
Plow) =Y " dyp(v/dy) Y dwp(w/dy) = P(v) - P(w) . (13.6)
dy|v dw|w
Let us write the prime factorization of n as
n= Hquzj , (13.7)
pjln

where o; > 1 is the largest power of prime p; for which p?j is a divisor of n. Then the

multiplicative nature of Pillau’s function allows us to write
P(n) =[P (p?f) . (13.8)
pjln

To obtain Pillau’s function for a prime power we first take a look at P(5) = 1+1+1+1+5 and
P(5%) =14+ 141414541+ 14+1+14+5+1+14+1+145+14+1+1+14+5+14+1+14+1+25.
It follows that P (5%) = 5P(5) + 5% — 5. Similarly, P (5°) = 5P (5%) 4+ 5° — 5%. The rule in
these examples holds for any prime: P (pa'H) =p-P(p*) + p*t — p® . The latter implies

P(p*) = (a+ 1)p® — ap*!. (13.9)

It can be proven by induction: For o« = 0 we have P (po) =P1)=1=0+1)p"-0-p!
and for o + 1 we have
P (pa+1) = p- P(pa) +pa+1 _pa _ (Oé 4 1) (pa+1) o apa +pa+1 _pa
= (a+2)(*"") — (a+ 1)p” 0. (13.10)

From equations ((13.9) and (|13.8) it follows

P(n) = H(aj + 1)p?j — ajp?j_l = H (a(p; — 1) +Pk)P]O'Cj

pjln pjln

- (13.11)

It offers a fast way to evaluate the Pillai function. For n = 1,2,3,4,5,6,7,8, ... the Pillai
values are 1,3,5,8,9,15,13,20, .... The latter is the sequence A018804 of the OEIS [2].
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According to equation (13.9) P(p®) > p®, and therefore P(n) > n. To avoid orbits running

to infinity, we create by means of Pillai’s function the following iteration:

R )
P ged (ng, P(ny))

We will denote the underlying function as the P function:

P(n)
Pn) = ged (n, P(n))
For instance, for n = 6 we obtain
P(6) 15 15

P(6) = gcd (6, P(6))  ged(6,15) 3

13.2 Cycles of the P function.

For starting values ng < 10% the iteration ngq = P(ny) contains
one fixed point: ca = (1),
two period 2 cycles: ¢ = (13,25) and

c3 = (2758743,10327625),
five period 3 cycles: ¢4 = (21, 65,45),

cs = (31,61, 121),

c6 = (651, 3965, 5445),
c7 = (1281, 7865, 1395) and
cs = (2015, 2745, 2541),
two period 4 cycles: c¢g = (377,1425,481,1825) and
c10 = (70737,295075,1135953, 134125),

two period 6 cycles: ¢11 = (403, 1525, 1573, 775,793, 3025) and

45617,44175,29341, 220825) and

one period 14 cycle: c¢14 = (12483, 37555, 486837, 402375,23579, 177045, 262143,
209235, 312075, 97643, 104025, 69745, 187245, 28971).

=—=95.

(
(
c12 = (498945, 761463, 4544155, 15091947, 24544875, 2853059),
one period 12 cycle: ¢33 = (11687, 86925, 58201, 56575, 22997, 172425, 14911, 111325,

(13.12)

(13.13)

(13.14)

The elements of the cycles are all odd. An odd n implies all pj|n are odd, which implies
all the aj(p; — 1) + p; in equation (13.11) are odd, which on its turn implies all n’s successors
P(n), P(P(n)), etc., are odd. So, if an element of a cycle is odd, then all elements of the cycle

have to be odd. As a consequence, if an element of a cycle is even then all the elements have

to be even. To investigate the latter possibility we consider the situation for even n. An even

n will contain a factor 2%*. For a possible even factor in P(n) we only have to consider the

factor p¢* ! (a1 (p1 — 1) + p1) = 27 Yy +2).
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Now we distinguish two cases: a7 is odd and « is even.
If aq is odd, then aq + 2 is odd and the even factor in Pillai’s function is 2**~!. As a conse-
quence ged (n, P(n)) = 2*~! and P(n) will be odd.

If oy is even, then a1 + 2 is even and the even factor in Pillai’s function is at least 2%. As
a1+ 2

2

< 2% for ay > 2, the even factor of P(n) is smaller than the even factor

is

a consequence ged (n, P(n)) = 2% and there will only be an even factor in P(n) if
a1+ 2

even. Since
of n. Each generated even number will therefore never equal one of its predecessors.

As a result we can conclude that a cycle with an even element is impossible.

13.3 Cycle combinations

The first element of cycle cg is 377 = 13 % 29. We notate it as cg(1) = 377. The first element
of cycle ¢5 is 31. We notate it as ¢5(1) = 31. The product of 377 and 31 is 11687, which is
the first element of cycle ¢13. We therefore have cg(1) - ¢5(1) = ¢13(1).

Since 1425 is the second element of cycle cg, and 61 is the second element of cycle ¢; and
1425 - 61 = 86925 is the second element of cycle ci3, we have c9(2) - ¢5(2) = c13(2).

In total we obtain:

Cgl '051

co(2) - c5(2
c9(3) - c5(3
co(4) - c5(1
cg(l) - c5(2
3)-c5(1
co(4) - c5(2
co(l) - e5(3
cg(2) - c5(1

co(3) - c5(2

(1) - es(1) (
(2) - ¢5(2) (
(3) - ¢5(3) (
(4) - e5(1) (
(1) - e5(2) (
(2)-c5(3) = a3l
(3)-es(1) (
(4) - ¢5(2) (
(1) - e5(3) (
(2) - e5(1) (
(3) - ¢5(2) (
(4) - ¢5(3) (

C9 4 Cy 3 (13.15)

That is, the period 12 cycle c;3 is a combination of period 4 cycle ¢g and period 3 cycle cs.

There are other combinations of cycles.



13.3. CYCLE COMBINATIONS 131

The period 3 cycle cg is a combination of period 3 cycle ¢4 and period 3 cycle cs:

04(1) . C5<1) = 66(1) y
04(2) . C5(2) = 06(2) y
ca(3)-c5(3) = c6(3). (13.16)

cs(1)-e5(2) = (1),
cs(2)-e5(3) = ¢7(2),
cs(3)-es5(1) = er(3). (13.17)

64(1) . 65(3) = 08(3) N
ca(2) - e5(1) = es(1),
04(3) . C5<2) = 68(2) . (13.18)

= cn(l),
= cn(2),
3),
)
)
)

= c11(5),

) (

(2) (
(3) = cul
ce5(l) = (4
(2) (
(3) (

= (11 6). (13.19)

Ignoring that cycle dimensions do not allow c12 as a combination of c¢i4 and c5, we obtain

the following:

cia(l)-e5(2) = c12(2),

c14(2) - e5(3) = c12(3),

c14(3) -es5(1) = c12(4),

c14(4) -c5(2) = c12(5),

c1a(5) - e5(3) = c12(6),

c14(6) - es(1) = 11-c12(1),
c1a(7) - e5(2) = 3-7-c12(2),
c14(8) - e5(3) = ’ '713 c12(3)

(13.20)
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The first five equalities seem hopeful for some sort of combination, but then things break down.

Anyway, the union of all prime power factors of all elements of all cycles is the set
{3,32%,3%,5,52,5%,7,11,11%,13,17,19, 29, 31, 37, 61, 73}.
13.4 Statistics of cycle arrivals

For ng < 10* with k = 3,4, 5,6, 7,8, the number of starting values for which the orbit ends in

a cycle are shown in the next table.

cycle | ng < 103 | ng < 10% | ng < 10° | ng < 10% | ng < 107 | ng < 108
c1 1 1 1 1 1 1
o 300 2189 16387 | 127175 |1029420| 8757731
cs 0 0 2 110 2415 38261
cyq 43 226 1364 9842 78 086 647030
cs 4 41 433 4388 40243 359671
6 6 57 374 3324 31183 314522
cr 4 50 357 2783 24750 228999
s 2 27 290 3000 29728 296019
o 450 4688 45824 | 439902 | 4241676 | 41039799
€10 0 37 957 15374 | 210249 | 2619968
11 96 831 7695 70411 | 652854 | 6131639
c12 0 1 151 3583 63 376 919061
c13 15 522 7628 94458 |1042165|11047228
c14 79 1330 18537 | 225649 |2553854 (27600071

13.5 Statistics of untouchables

If we start with ng = 2, then the orbit is 2, 3, 5, 9, 7, 13, ...
smaller than 4, the numbers 1, 3, 5, and 7 are touchable, while the numbers 2, 4, 6, 8, etc. are
untouchable. For ng = 4 the orbit is 4, 2, 3, 5, 9, 7, 13, ... That is, for starting number 4 the

number 2 is no longer untouchable. As usual, we keep track of the smallest starting number

So, if we start with numbers

t,, for which a number n is no longer untouchable.
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If we start with numbers smaller than 103, the first part of the list of ¢, is:

1,4, 2 64, 2,60, 2, 7, 2, 12, 41, 960, 2, 36, 120, 7, 14, 20, 34, 192, 11, 324, 7, 7, 13, 28, 10,
576, 711, 7, 121, 7, 14, 500, 14, 320, 14, 196, 14, 7, 7,44, 7,7, 23,7, 7, 7, 34, 52, ...

From s4 = 64 we see that 4 becomes untouchable for the first time if the starting value is 64.
The question marks show that for starting numbers smaller than 1000 the numbers 8, 16, 23,
24, 30, 32, 40, 41, 43, 44, 46, 47, 48 ... are untouchable. Question marks may disappear by

taking larger starting numbers.

For starting numbers smaller than 107 the first part of the list of ¢, is as follows:

1,4, 2,64, 2, 60, 2, 16384, 2, 12, 41, 960, 2, 36, 120, 7, 14, 20, 34, 192, 11, 324, 59049, 245760,
13, 28, 10, 576, 711, 16380, 121, 7, 14, 500, 14, 320, 14, 196, 14, 49152, 1271, 44, 20434, 5184,
23, 236196, 7, 7, 34, 52,...

Several question marks have disappeared. The first question mark now is for n = 16.

If we only start with numbers from the set {1,2,3,4}, then 4 is the only untouchable ele-
ment. The ratio of the number of untouchables and set length is 1/4. Let u, be the number
of elements of the set {1,2,3,...,n} which are untouchable if we only start with numbers from
the set {1,2,3,...,n}. The ratio of untouchables and set length is w, /n. For numbers up to

107 the ratio u,/n is plotted against n in the next figure.
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Figure 13.1: The ratio u,/n for the P function.

U
The question arises: What will be the value of lim —?
n—oo N
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13.6 Statistics of distances

For instance, the orbit 2, 3, 5, 9, 7, 13 implies D(2) = 5. The distribution of distances is

shown in the next figure.
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Figure 13.2: Distribution of distances for starting numbers smaller than or equal to: 10

(orange), 10° (red), 10° (green), 107 (blue), 10® (black).

13.7 Records of maximums

For starting number 2 we have the orbit 2, 3, 5,9, 7, 13, 25, 13, ... Since the orbit never leaves
the cycle co = (13,25), the maximum value of the orbit is 25: M (2) = 25. It is a maximum
record since M (1) = 1. It turns out that M(n) = 25 for n = 3,4,5,6,7,8 and 9. For starting
number 10 we have the orbit 10, 27, 3, 5, 9, 7, 13, 25, 13, ... That is, M (10) = 27, which is a
new maximum record. Continuing the search we find the next maximum record for n = 11:

M(11) = 65, and so on. The maximum records are tabulated below for n < 10°.
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#In M record ||# |n M record #In M record

11 1 14119198 602248075 2715070331 4129546 655637
212 25 15145691 959109375 2817470479 5107319823177

3 |10 |27 1684467 5182970625 2918424961 8449565753475

4 |11 |65 171126691 9212646 375 30111022962 10788553 771875

5 |14 |1825 18137073 |17583 671875 31111116562 |18216 757288125

6 |29 [13797 191186437 23220390625 3213807831 |19402011657909

7 |74 486837 20(253 382 25694585917 33121242577 |23541461598375

8 331 (802845 21(380073 [49412665 225 34121894478 69900648191 649

9 1662 (1271875 22(451153 |72872017075 35]36 091262 |135348136 171875
1012297|2429973 23(868129 [324498671875 |]36|41934721 |1586 828448502605
11130624673 025 24(1330257]1013947890417||37|285435047|4 340378 636 015 625
1213959|58 907277 |]25|2604 3871529779453 125||38|760800 842 |37 474339 083671 875
1319599|110653125|(26|3 9274223014 17257872539

The records of orbit maximums have been plotted against the starting numbers n < 10? in

the next figure.
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Figure 13.3: The records of orbit maximums M plotted against starting value n.

For starting value 2 the orbit is 2, 3, 5, 9, 7, 13, 25, 13, ... Its maximum, 25, is a maximum
record which occurs on the seventh position of the orbit. In the next figure the position of a

maximum record in an orbit is plotted against the starting value of the orbit.
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Figure 13.4: The mth position of a maximum record in an orbit against the starting value of
the orbit.

The position of a maximum record in an orbit seems to be quite independent of the starting

value of the orbit; the correlation is approximately —0.067.
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13.8 Records of distances

For n = 2 the orbit is 2, 3, 5, 9, 7, 13, 25, 13, ...

137

Thus the distance is 5: D(2) = 5. For

n = 3 the distance is 4. For n = 4 the orbit is 4, 2, 3, etc. That is, D(4) = 6, which is a new

distance record. The distance records are tabulated below for n < 10°.

# |n | D record #1n D record #n D record
112 5 11{1009 34 211371899 52
2 |4 6 121199 35 2212057849 53
3 (12 7 1311207 36 23|6654 391 54
4 114 17 1413967 39 24114909 397 55
5 |36 18 15]5431 43 25|32514 996 56
6 |51 19 167369 45 261|109 625669 58
7 |87 23 17166 889 48 27|862 305 881 59
8 198 24 181110218 49 28

9 454 25 191381919 50 29

101|947 27 20732818 51 30

13.9 Successive even numbers

From second section of this chapter we recall that an even n will contain a factor 24 with oy

a positive integer and that the contribution to Pillai’s function is 2%~ (ay + 2). If ay is odd

then 2% and 2%~ (a; + 2) will have 217! in common. As a consequence, for odd «; there

is no even factor in P(n). We will state it as a rule:

rule 1: If n = 22"*! then P(n) is odd.

If o is even, then n = 2% and Pillai’s function 2**~!(a; + 2) will have 2*' in common.
The factor in P(n) will be a;/2 + 1 for as far it is not divided by a divisor of n. Therefore

P(n) will not contain an even factor if 1 /2 is even. We state it as a rule:

rule 2: If n contains a factor 24™ then P(n) is odd.
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The remaining possibility, a; = 4m + 2 will be split into a3 = 8m + 2 and a3 = 8m + 6. For
a1 = 8m +2 we have a1 /2 +1 = 2(2m + 1). So, there is a factor 2! in P(n). Because of rule
1 P(P(n)) is odd. As a rule:

rule 3: If n contains a factor 28™2 then P(n) contains a factor 2! and, because of rule

1, P(P(n)) is odd.

The remaining possibility, a3 = 8m + 6 will be split into a; = 16m + 6 and a3 = 16m + 14.
For a; = 16m + 6 we have a1/2 +1 = 4(2m + 1). So, there is a factor 22 in P(n). Because of
rule 3 P(P(n)) contains a factor 2! and P(P(P(n))) is odd. As a rule:

rule 4: If n contains a factor 2!6™+6 then P(n) contains a factor 22 and, because of rule

3, P(P(n)) contains a factor 2! and P(P(P(n))) is odd.

The remaining possibility, oy = 16m + 14 will be split into a; = 32m+ 14 and a1 = 32m + 30.
For oy = 32m + 14 we have a;/2 + 1 = 8(2m + 1). So, there is a factor 23 in P(n). Because
of rule 1 P(P(n)) is odd. As a rule:

rule 5: If n contains a factor 2327+14 then P(n) contains a factor 23 and, because of rule 1,
P(P(n)) is odd.

The remaining possibility, a; = 32m+ 30 will be split into a; = 64m+ 30 and a3 = 64m+ 62.
For oy = 64m + 30 we have a1/2+ 1 = 16(2m + 1). So, there is a factor 2% in P(n). Because
of rule 2 P(P(n)) is odd. As a rule:

rule 6: If n contains a factor 264m*30 then P(n) contains a factor 2% and, because of rule 2,
P(P(n)) is odd.

The remaining possibility, a; = 64m + 62 will be split into a; = 128m + 62 and a1 =
128m + 126. For a; = 128m + 62 we have a1/2 + 1 = 32(2m + 1). So, there is a factor 2° in
P(n). Because of rule 1 P(P(n)) is odd. As a rule:

rule 7: If n contains a factor 2128762 then P(n) contains a factor 2° and, because of rule 1,

P(P(n)) is odd.

The remaining possibility, a3 = 128m + 126 will be split into a; = 256m + 126 and a3 =
256m + 254. For a1 = 256m + 126 we have a1/2 + 1 = 64(2m + 1). So, there is a factor 26
in P(n). Because of rule 4 P(P(n)) contains a factor 22 and P(P(P(n))) contains a factor 2*
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and P(P(P(P(n)))) is odd. As a rule:

rule 8: If n contains a factor 22°0+126 then P(n) contains a factor 2° and, because of
rule 4, P(P(n)) contains a factor 22, P(P(P(n))) contains a factor 2! and P(P(P(P(n)))) is
odd.

Once one comprehends the regularity, the remaining rules can be stated without analysis

and solely by referring to previous rules:

rule 9: If n contains a factor 2°12m+2%4 then P(n) contains a factor 27 and, because of
rule 1, P(P(n)) is odd.

rule 10: If n contains a factor 21024m+510 then P(n) contains a factor 28 and, because of

rule 2, P(P(n)) is odd.

rule 11: If n contains a factor 22048m+1022 then P(n) contains a factor 2° and, because
of rule 1, P(P(n)) is odd.

rule 12: If n contains a factor 24096m+2046 then P(n) contains a factor 2! and, because
of rule 3, P(P(n)) contains a factor 2! and P(P(P(n))) is odd.

rule 13: If n contains a factor 28192m+409 then P(n) contains a factor 2! and, because
of rule 1, P(P(n)) is odd.

rule 14: If n contains a factor 216324m+8190 then P(n) contains a factor 2'? and, because
of rule 2, P(P(n)) is odd.

rule 15: If n contains a factor 232648m+16322 then P(n) contains a factor 2'3 and, because of
rule 1, P(P(n)) is odd.

The list of rules goes on and on. For even «y, thus for rules 2 and larger, the regularity

is: If n contains a factor 222" 2 then P(n) contains a factor 272,

By means of the latter regularity we will search for records of lengths of rows with even
numbers. The smallest starting value n for which P(n) does not contain an even factor is
n = 2. Then P(n) is odd. To obtain the smallest n for which P(n) contains a factor 2 we
substitute r = 3 in 222 '=2 The result is 2222, For m = 0 this is 222 = 2%
So, for n = 22 = 4 the next iterate is P(n) will contain a factor 2. To obtain the smallest

n for which P(n) contains a factor 22 we substitute » = 4 in 222 -2 The result s
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92'm+2°=2 " For g = 0 this is 2272 = 20, So, for n = 26 = 64 the next iterate is P(n)
will contain a factor 22. To obtain the smallest n for which P(n) contains a factor 2° we
substitute 7 = 8 in 2222 The result is 2222 For m = 0 this is 22" 2 = 2126,
So, for n = 2126 = 85070591730234615865843651857942052864 the next iterate is P(n) will
contain a factor 26 . To obtain the smallest n for which P(n) contains a factor 2'26 we sub-
stitute 7 = 128 in 22722 The result is 22 2% ~2 For m = 0 this is 22 2 =

2170141183460469231731687303715884105726 So. for n = 2170141183460469231731687303715884105726 the
' )

next iterate is P(n) will contain a factor 2126,
In summary, starting with no = 2170141183460469231731687303715884105726 t} e jterate ny contains a
factor 2126 = 85070591730234615865843651857942052864, the iterate no will contain a factor
64, the iterate ng will contain a factor 4, the iterate ny will contain a factor 2 and the iterate
ns will be odd. So, for the first row with 5 successive even numbers we have to start with the

huge number ng = 9170141183460469231731687303715884105726

Briefly, if n,, = 2, then n,_1 = 222 n,_o = 22Mm-172 o = 220m-—2-2 pn  , —

22nm-3=2 and so on. Explicitly, if ny = 2!, then

For the latter case the orbit starting with ng is:
9170141183460469231731687303715884105726 9126 G4 4 9 3 5 9. 7. 13, 25, 13, ...

For the record:

n = 2 is the smallest number for which the orbit has a row of 1 even number,

n = 4 is the smallest number for which the orbit has a row of 2 even numbers,

n = 64 is the smallest number for which the orbit has a row of 3 even numbers,

n = 2126 ig the smallest number for which the orbit has a row of 4 even numbers, and
n = 2170141183460469231731687303715884105726 5 the smallest number for which the orbit has a row

of 5 even numbers.
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